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Abstract: A precise estimate of solar energy output is essential for its efficient integration into the
power grid as solar energy becomes a more significant renewable energy source. Contrarily, the
creation of solar energy involves fluctuation and uncertainty. The integration and operation of energy
systems are complicated by the uncertainty in solar energy projection. As a post-processing technique
to lower systematic and random errors in the operational meteorological forecast model, the analog
ensemble algorithm will be introduced in this study. When determining the appropriate historical and
predictive data required to use the approach, an optimization is conducted for the historical period in
order to further maximize the capabilities of the analog ensemble. To determine statistical consistency
and spread skill, the model is evaluated against both the raw forecast model and observations. The
outcome lowers the uncertainty in the predicted data by demonstrating that statistical findings
improve significantly even with 1-month historical data. Nevertheless, the optimization with a year’s
worth of historical data demonstrates a notable decrease in the outcomes, limiting overestimation
and lowering uncertainty. Specifically, analog ensemble algorithms calibrate analog forecasts that are
equivalent to the latest target forecasts within a set of previous deterministic forecasts. Overall, we
conclude that analog ensembles assuming a 1-year historical period offer a comprehensive method to
minimizing uncertainty and that they should be carefully assessed given the specific forecasting aims
and limits.

Keywords: analog ensemble; ensemble; forecast model; post-processing; solar forecasting; analog
members

1. Introduction

The operational meteorological forecast (OMF) model has been primarily used in
solar power prediction as well as weather forecasts. This model is essential for day-to-day
solar resource assessment and further for the long-term climate outlook [1]. Variables
such as surface temperature, pressure, solar irradiance taken from OMF are employed
to estimate the amount of solar power that will be generated at a specific location over
a defined period of time. OMF exhibits a reliable wind and solar forecast up to three
days ahead, although there are still uncertainties to consider [2]. The accuracy of OMF is
consequential in electricity generation and in electricity trading. For example, in a hybrid
system, forecasting is important in determining the energy mix and preventing disruption
by providing traditional energy sources such as hydrothermal, gas, or coal as back-up
sources [3,4]. In some countries, power producers are penalized if they do not deliver the
committed energy production amounts. OMF has also been used to evaluate and assess
the overall performance of renewable power plants.

The integration of solar energy forecasting is not only vital for ensuring the stability
and optimal functioning of solar power plants but also holds significant implications for the
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diverse energy landscape of residential buildings. While residential structures constitute
approximately 25% of the total final energy consumption [5], their energy needs exhibit
a broad spectrum, surpassing the range observed in commercial and industrial counter-
parts. As highlighted in the 2021 Global Status Report for Building and Construction [6],
the overall building sector accounted for a substantial 37% of total energy consumption,
encompassing both operational and process-related aspects [7]. Solar forecasting, tra-
ditionally associated with energy producers, extends its relevance to various building
types, including the paradigm of autonomous buildings or smart structures capable of
operating independently from external infrastructural support like electric power [8]. For
autonomous buildings, renewable energy stands as the undisputed priority, with solar
forecasting emerging as a crucial tool in mitigating challenges posed by occupancy patterns
that contribute to fluctuating energy demands throughout consumption periods. Despite
the myriad of benefits attributed to solar forecasting, it is imperative to acknowledge
inherent limitations.

One of the limitations in solar forecasting is the uncertainty of weather forecast itself [9].
Solar forecasting heavily relies on weather prediction models, which can be complex, espe-
cially in long-term forecasts. These are caused by rapid changes in atmospheric conditions
and other weather phenomena that can impact radiation levels. Spatial variability is an-
other factor [10]. Irradiance can sometimes vary significantly within a relatively small
area, factors such as topography, shadowing, and other factors that cause spatial variation
in solar energy prediction. Another limitation is the forecast horizon [11], long forecast
horizon deprives solar predictability. Finally, the solar forecasting model may struggle to
account for sudden operational changes or unexpected events that can affect solar energy
generation [12].

Despite several limitations, solar forecasting has made significant contributions to
energy resource harvesting and allocation. Thus, to improve the reliability and depend-
ability of solar forecasting, post-processing techniques are introduced [13–15]. While solar
forecasting involves predicting the amount of solar energy that will be generated, post-
processing techniques are used to increase the accuracy [16] of solar forecasts by refining
raw forecast data. Post-processing techniques help refine the initial forecast, which is vital
for efficient integration of solar energy into the grid and optimizing grid operation [17].
One of the techniques used is ensemble forecasting. Ensemble forecasting involves generat-
ing multiple forecasts using different models or variations in the input data. Ensembles are
then combined to create an ensemble forecast, which can provide a more reliable prediction.
Analog ensemble is one of the ensemble forecast techniques used in solar forecasting [18].

Analog ensemble forecasting in solar forecasting refers to techniques that use historical
analogs or similar patterns in solar radiation data to improve the accuracy and reliability
of solar energy generation predictions [19,20]. The analog ensemble technique leverages
the idea that similar atmospheric patterns tend to produce similar weather outcomes. By
identifying historical situations that closely resemble the current condition, the technique
aims to capture the likely ranges of outcomes for the forecasted variable, such as the solar
irradiance.

The goal of this paper is to create and put into use an analog ensemble prediction sys-
tem that is appropriate for a weather forecast model operated by the Korea Meteorological
Administration (KMA). Additionally, in this research, historical period optimization will
be used to further maximize the analog ensemble’s capabilities. By identifying the most
suitable dynamic period for observations through careful evaluation and cross-validation,
analog ensemble forecasts can provide valuable insights for decision-making across various
domains, ranging from weather and climate predictions to resource management and
risk assessment. This will increase the precision and dependability of future forecasts
by utilizing the knowledge and data from past occurrences. The operational meteoro-
logical forecast model’s integration of analog ensemble forecasts will be examined for its
calibration through statistical validation.
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2. Materials and Methods
2.1. Data

The observed solar irradiance data of global horizontal irradiance (GHI) and direct
normal irradiance (DNI) were derived by the University of Arizona Solar Irradiance Based
on Satellite-Korea Institute of Energy Research (UASIBS-KIER) model [21] over a two-year
period from January 2018 to December 2019. This study-prescribed history dataset for
analog ensemble prediction relied on the dynamic period selection, starting from a month
of historical data and growing by a month until they reach a full year (see Figure 1. OMF
came from Unified Model Local Data Assimilation and Prediction System (UMLDAPS),
which was initialized at 03 Korean Standard Time (KST) from January 2018 to December
2019. As the solar irradiance forecast here was performed for a same-day forecast, model
outputs were valid for a span between 06 and 20 KST, which corresponded to forecast
horizons of 03 and 17 h, respectively. Vanyyye et al. [22] pointed out that the utilization
of 365 days was adequate as the history datasets of previous observations. That is why
this study also limits the historical data to reaching a full year. Figure 2 illustrates the
geographical locations of ground observing stations in Korea; Busan (35.17◦ N, 129.07◦ E),
Daejeon (36.35◦ N, 127.39◦ E), Daegu (35.87◦ N, 128.59◦ E), Gangneung (37.75◦ N, 128.87◦ E),
Gwangju (35.17◦ N, 126.85◦ E), Jeju (33.51◦ N, 126.52◦ E), Naju (35.03◦ N, 126.72◦ E), Nonsan
(36.2◦ E, 127.08◦ N), and Seoul (37.53◦ N, 127.02◦ E).
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2.2. Analog Ensemble Prediction

Analog ensemble prediction (AnEn) is usually classified into the post-processing of
forecast data that utilizes historical analogs to make predictions about future events or
conditions. It is based on the concept that similar patterns in the past tend to be associated
with similar outcomes in the future, and its equation [23,24] is defined as follows:

‖Ft, At‖ = ∑Nv
i=1

wi
σf i

√
∑k

j=−k (Fi,t−j − Ai,t+j)
2, (1)

where Ft is the current numerical deterministic forecast at future t; At is the analog forecast
at the same time and location valid at past time t’; Nv is the number of physical variables,
whereas wi is the weight of each variable; σfi is the standard deviation of the training
time series; and k is the half of the number of additional times computed. The use of the
equation requires at least two variables (wi), and this study selects GHI and DNI with equal
weights [25,26]. Here, Ft is taken from UM-LDAPS model’s corresponding weights, and
At is historical data from satellite-derived solar irradiance produced by the UASIBS-KIER
model. Finally, compute the analog ensemble forecast by computing the distance of every
lead from past forecasts issued at the same time by using Equation (1). The prediction is
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calculated based on independent searches. Arrange the data and select the 20 best forecasts
by using the error distance. Find the average value from the selected analogs, and this will
constitute the analog ensemble forecast for the same historical period and location. These
steps provide a significant result since it will not have a cumulative error, and there are no
missing predictions.
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2.3. Statistical Forecast Evaluation

Statistical evaluation for AnEn involves assessing the performance and skill of the
ensemble forecast generated using the analog ensemble method. In this study, several error
statistics are used for the verification of the AnEn and its effectiveness compared to OMF.
Correlation coefficient, Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Skill score are employed here as error statistics.

MBE =
1
N

N

∑
i=1

(
yi

p − yi
o

)
(2)

MAE =
1
N

N

∑
i=1

(∣∣∣yi
p − yi

o

∣∣∣) (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi

p − yi
o

)2

(4)

Skill Score =
MAEOMF −MAEAN

MAEOMF
(5)

Above, yp, yo, and N indicate the forecast, observation, and number of samples,
respectively. Furthermore, Skill score represents the improvement of AnEn in comparison
with OMF.
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3. Results

Two examples are given in Figure 3, which shows the time series of solar irradiance
forecast from OMF and AnEn that is produced by 12 months dataset and a month dataset
with observation data at Nonsan and Gwangju stations. As AnEn is one of probabilistic
forecast, prediction interval at 95% confidence level is also illustrated in Figure 3. In the
context of Nonsan station’s historical data analysis, spanning both a concise one-month
period and a more comprehensive twelve-month duration, a noteworthy observation
emerges. Specifically, during the hours between 12 to 16 KST, the OMF exhibits a propensity
to deviate from actual observations. However, this deviation was not left unaddressed.
Through the application of an analog ensemble approach, a method renowned for its
proficiency in harnessing historical precedents, the previously mentioned discrepancy in
the OMF’s predictions was adeptly compensated and rectified. This intriguing occurrence
prompts a nuanced discussion about the efficacy of analog ensembles in improving model
deviations, especially within the temporal framework of midday to late afternoon, and
the potential implications of such compensation on enhancing the overall accuracy and
reliability of operational meteorological forecasts at Nonsan station. When using 12-month
historical data, the AnEn’s prediction interval is more condensed than when using 1-month
historical data. The result comparing 1 month to 12 months gradually increased, with
the prediction interval decreasing every 1 month increment in the dynamic period of
observation data. This shows that there are few deviations from the observed data and a
higher level of confidence in the model’s predictions. As the AnEn similarly confronts the
outcome of the observed data, the pattern and observation of the result are also comparable
to those at the Gwangju station (see Figure 3c,d). When compared to AnEn with a 1-month
historical period in Gwangju, AnEn with 12-month historical data also provided a narrow
predicted interval, demonstrating minimal uncertainty and showing a significant agreement
with the observed value.

Table 1 displays the average of the observations in comparison to the OMF and AnEn
operated by 12 months datasets. Although OMF indicated great performance with an
average correlation value of 0.9348 and a high degree of linear association, the correlation
increased to 0.9811 on average with the deployment of the analog ensemble. There is a
strong positive bias, with results ranging from 48 to 67 W/m2 per station, demonstrating
that the OMF routinely overestimates the observed values, which was greatly reduced, in-
dicating that it is generally less biased in its predictions than the OMF. Further examination
of mean absolute error (MAE) and root mean square error (RMSE) confirms the analog
ensemble’s superiority. OMF’s MAE and RMSE are around 47.04 and 103.06 W/m2, respec-
tively. These values, however, are halved with the introduction of the analog ensemble,
suggesting a considerable reduction in prediction errors and a significant improvement in
forecast precision on average. The outcomes are represented in its skill score; the reduction
in error statistics has also been validated by the skill score, with an average improvement of
more than 50% when analog ensemble is used. These findings emphasize the extraordinary
development made in forecasting, which promises more precise and dependable predic-
tions for a wide range of applications. The highlighted stations are marked for additional
review in the following paragraph.

To further evaluate the result, a scatter diagram is used to determine the analog ensem-
ble’s overall performance. Studying the scatter plot (see Figure 4a) demonstrates how OMF
overestimates the predicted value since the data are more strongly moved upwards. We
can state that the data seems to improve even on a 1-month historical basis when compared
to the AnEn vs. observation plots. The close alignment of the data points in the AnEn
versus observation data along a diagonal line suggests a linear relationship between the
variables. This implies a strong positive correlation between the two variables, indicating
that the trends in their values are similar. As a result, we are able to draw conclusions
regarding the outcome of the analog ensemble post-processing method. The statistical
analysis also shows that the OMF is dispersed with bigger deviations from the reference
line as compared to the observation value, indicating considerable discrepancies that lead
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to lower accuracy. Contrarily, each data point for analog ensembles is densely packed
around the reference line, demonstrating agreement between the ensemble’s predictions
and the observational results (see Figure 4). This gives us a better understanding of how
performing analog ensemble as a post-processing technique for all places detected has
improved overall. The scatter plot of the AnEn vs. observations plot generally does not
appear to exhibit differences in terms of improvement, so it is important to validate the
outcome to statistical verification.
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Table 1. Summary of Average of observation data, error statistics of OMF and AnEn.

Station

Average OMF AnEn

Obs OMF AnEn Corr. MBE MAE RMSE Corr. MBE MAE RSME Skill
Score (%)

Busan 336.84 393.15 334.34 0.9372 56.31 49.54 105.46 0.9807 −2.5 22.23 50.48 52.13

Daegu 326.26 374.66 328.22 0.9401 48.40 44.82 97.69 0.9806 1.95 21.21 48.63 50.22

Daejeon 320.21 375.92 322.34 0.9368 55.71 46.59 102.01 0.9829 2.14 19.68 44.85 56.03

Gangneung 305.27 356.99 307.60 0.9263 51.72 46.88 104.16 0.9766 2.33 23.42 51.47 50.58

Gwanju 317.23 372.29 322.38 0.9378 55.06 46.18 100.64 0.9835 5.14 19.49 44.02 56.26

Jeju 303.89 371.68 301.50 0.9156 67.79 55.35 117.47 0.9805 −2.4 22.52 48.65 58.58

Naju 320.74 374.91 322.52 0.9374 54.17 46.41 100.70 0.9829 1.78 20.13 45.29 55.03

Nonsan 322.93 373.30 321.30 0.9414 50.37 44.66 97.12 0.9840 −1.63 19.63 44.07 54.63

Seoul 317.01 377.41 314.74 0.9393 60.40 46.14 102.29 0.9783 −2.27 22.80 50.36 50.77

TOTAL 318.93 374.48 319.44 0.9348 55.55 47.04 103.06 0.9811 0.51 21.23 47.54 53.80

4. Discussion

Delving into the realm of forecast evaluation and the application of analog ensemble,
this discussion centers on our assessment of correlation, MAE, RMSE, and bias as bench-
marks of model accuracy. By scrutinizing the correlations between predicted and observed
values, we gauge the level of association that underpins our forecasts. Simultaneously,
we dissect the magnitudes of errors through MAE and RMSE, which together convey
the predictive precision. Lastly, we untangle the presence of systematic tendencies via
bias analysis. Our synthesis of these metrics provides a holistic understanding of analog
ensemble and the right historical periods.

The correlation plot for all stations using the analog ensemble is shown in Figure 5.
The analog ensemble result is impacted by the applicability of a long historical period. In
the 1-year historical dataset compared to a 1-month historical period, the correlation is
highest. A longer historical period will have a positive impact across all stations by as
much as 4%. Although the result is noticeably high compared to the ongoing forecast from
the OMF. In Table 1 for instance, the correlation between observation data and the Nonsan
station of the OMF is 94.14%; however, when the analog ensemble prediction is used, even
with a 1-month historical period, the correlation improves by roughly 98.4%, leading to
a reduction in uncertainty. The comparison between the 12-month and 1-month periods
reveals a narrow margin between their respective outcomes.
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The proposition is that employing a 12-month historical period proves to be as effi-
cient as utilizing a 1-month historical period. This assertion is substantiated by the close
resemblance in correlation values evident from the graphical representation. As correlation
alone is inadequate at determining the ideal historical period for an analog ensemble, we
shall look more closely at the other statistical techniques.

As seen in Figure 6, the bias plot’s distribution is clearly skewed to the right. Except
for the Gangneung station, the trend is essentially the same for all of the stations. In
comparison to OMF, which ranges from 25.98 to 34.77 W/m2, the results for all historical
periods are reduced, with the range roughly being −2 to 3 W/m2. When the historical
period is 3 months, the bias result is the lowest at the other stations, including Busan,
Jeju, Naju, and Seoul. However, considering a 1-year historical period, the results are not
significantly different from the bias result. Overall, it appears that the analog ensemble
method has a smaller bias than OMF based on the bias analysis results. This indicates that
the genuine values or consequences have been underestimated. This can be useful in solar
PV plants where conservative estimations are required to avoid overestimation and over
commitment of resources.

Regarding the performance with respect to historical periods, the analysis indicates
a notably reduced bias within the range of 2 to 4 months for certain stations like Busan,
Jeju, Nonsan, and Seoul. This finding underscores that forecasts derived from these specific
historical windows tend to align more closely with the actual observations, implying a
higher accuracy in these cases. Conversely, a reverse trend is observed for other stations,
where superior results are achieved when employing a longer historical period. The impli-
cation here is that the choice of historical period significantly influences the precision of our
forecasts, and station-specific considerations play a pivotal role in determining the optimal
historical window. The interaction between historical eras and station features produces
complicated dynamics that necessitate careful study for precise forecasts, underscoring the
complexity of the forecasting process.

The MAE is cut in half when analog ensemble is applied to OMF’s GHI data. Figure 7
illustrates the considerable decrease in MAE for all locations when compared to OMF. The
accuracy and dependability of the forecasting findings are considerably increased by these
states. Additionally, if you examine the trend of the analog ensemble at various historical
periods, you will notice that all of the plots are comparable and that the AnEn with the
1-year historical period has the lowest MAE, whereas the AnEn with the 1-month historical
period has the greatest MAE. On average, the analog ensemble results on historical period
of one year are quite near to the actual observed values.
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Figure 7. MAE analysis plots for all stations in South Korea. AnEn forecasting at different historical
periods are compared to the observation data from the UASIBS-KIER.

The RMSE plot is the same in Figure 8, which has the same trend as the MAE plot.
The RMSE’s output for AnEn at various historical periods is likewise diminished. When
compared to OMF, which has RMSE scores between 90 and 100 W/m2, AnEn findings range
between 40 and 55 W/m2 at various historical periods. AnEn exhibits a significant result
when compared to OMF on the RSME plot, with a reduction of about 55%. When comparing
AnEn results at various historical periods, the 12-month historical period continues to have
the lowest RMSE and most dependability.

In Figure 9, to determine the analog ensemble forecast, the result needed to identify
twenty analog members, as assumed by the researchers. These twenty analog members are
derived from the lowest distance from historical patterns. The contribution of the analog
members, represented by the dashed lines, defined the mean result of the analog ensemble.
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The test dataset from the UASIBS-KIER verifies the results of the analog ensemble. The
initial 24 h depiction in the figure stands as a notable exemplar. Here, the analog ensemble
effectively unfolds a trajectory that closely mirrors the observation data, signifying a
commendable alignment between the model’s predictions and the actual occurrences.
One noteworthy observation emerges when comparing the root mean square error (RMSE)
outcomes. Notably, there exists a proportional relationship between the RMSE values
and the biased results in the context of the OMF. Intriguingly, this pattern experiences a
significant reduction when the analog ensemble approach is applied. This implies that the
analog ensemble method contributes not only to minimizing biases but also to restraining
the overall magnitude of errors, effectively elevating the predictive capability of the model.
The interplay between bias reduction and RMSE diminishment highlights the synergy
between these evaluation metrics and underscores the efficacy of the analog ensemble
technique in enhancing forecast precision. In essence, the strategic selection of analog
members, coupled with their cumulative impact on forecast generation, underscores the
rationale and potential of the analog ensemble approach. Its alignment with observation
data, coupled with the advantageous reduction in both biases and errors, accentuates its
practicality in improving forecasting accuracy across a diverse range of scenarios. This
robust approach encapsulates the fusion of historical patterns and modern computational
methodologies, culminating in a predictive framework that holds promise in a variety of
forecasting applications.
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The average error between the observation value and the OMF/analog ensemble is
measured by the RSME value. Analog ensemble reveals that outcomes are more consistent
with observation value when RSME is lower. The average overall RSME percentage has
been reduced across the board by 74%, demonstrating that analog ensembles improve
forecast accuracy (see Figure 9).

While our study provides valuable insights into the application of AnEn in solar irradi-
ance forecasting, it is essential to acknowledge certain limitations. The effectiveness of the
analog ensemble method is contingent upon the availability and quality of historical data.
Variations in the performance of the analog ensemble across different stations highlight
the sensitivity of the approach to regional differences and microclimates. Additionally,
the study primarily focuses on specific regions in South Korea, and the applicability of
the findings may vary when extrapolated to other geographical locations with distinct
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weather patterns. Future research endeavors could explore the optimization of the analog
ensemble method for different climatic conditions and diverse datasets and optimization
of the appropriate analog ensemble members given a one-year historical period. Moreover,
investigating the integration of advanced machine learning techniques with the analog
ensemble could enhance the accuracy of solar irradiance predictions. As the field of re-
newable energy forecasting continues to evolve, our study lays the groundwork for a
broader understanding of forecasting methodologies, emphasizing the need for adaptive
approaches tailored to specific contexts.
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5. Conclusions

This study evaluates the comprehensive analysis of solar irradiance forecasts using
the Operational Meteorological Forecast (OMF), and the analog ensemble (AnEn) reveals
valuable insights into the accuracy and reliability of these forecasting methods. The study
considered a range of factors, including historical periods, MBE, MAE, RMSE, correlation,
and the overall performance of the analog ensemble in comparison to the OMF.

Using the analog ensemble methodology to reduce uncertainty is a complex process
that depends on a number of different elements. The quality of observation data is one
important factor since it supports the precision and dependability of the overall prediction
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process. Recognizing that even the most complex model can only function as well as
the data it is given with is crucial. Therefore, it is impossible to stress the importance
of carefully curated, high-quality observation data. The interaction between the analog
ensemble’s capacity for prediction and the reliability of the input data serves as a reminder
of the interconnection that exists by nature in forecasting techniques. The temporal analysis,
focusing on Nonsan station’s historical data, highlighted a notable tendency of the OMF to
deviate from actual observations during specific hours. However, the application of the
analog ensemble, known for its proficiency in leveraging historical precedents, effectively
compensated for these discrepancies, particularly during midday to late afternoon periods.
This underscores the efficacy of the analog ensemble in improving model deviations and
enhancing the overall accuracy of operational meteorological forecasts.

Comparing different historical periods, it was observed that the analog ensemble,
particularly with a 12-month historical dataset, significantly reduced errors, bias, and
improved correlation when compared to the OMF. The scatter plots and bias analysis
demonstrated that the analog ensemble consistently outperformed the OMF, providing
more accurate and dependable predictions. The correlation analysis for all stations using the
analog ensemble indicated that a longer historical period, such as 12 months, had a positive
impact, with correlation values improving by as much as 4%. The bias analysis revealed
that the analog ensemble generally exhibited a smaller bias than the OMF, indicating more
conservative estimations. Further scrutiny of error statistics, including MAE and RMSE,
confirmed the analog ensemble’s superiority, with a substantial reduction in prediction
errors. The skill score also validated the remarkable improvement achieved by the analog
ensemble, promising more precise and reliable predictions for various applications.

Nonetheless, it is essential to acknowledge that this study does not encompass all
potential factors that could influence observation data quality. A prime example of this
omission is the intricate interplay of climate change, which could introduce significant
alterations to observational patterns. The absence of an assessment of climate change’s
impact on the data is a limitation within the scope of this research. However, it serves as
an avenue for future inquiries, underlining the dynamic nature of the scientific process.
Subsequent studies can delve into the intricate relationship between climate change and
observational data, enriching the understanding of their collective influence on forecasting
precision.

In essence, the analog ensemble approach, with its strategic selection of analog mem-
bers and consideration of historical patterns, emerged as a robust and promising method-
ology for improving solar irradiance forecasts. The study’s findings have significant
implications for enhancing the accuracy of renewable energy forecasts, contributing to
more reliable and efficient energy planning and utilization.
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Nomenclature

OMF Operational meteorological forecast model
AnEn Analog ensemble prediction
KMA Korea Meteorological Administration
GHI Global horizontal irradiance
DNI Direct normal irradiance
UASIBS-KIER University of Arizona Solar Irradiance Based on Satellite-Korean

Institute of Energy Research
UM-LDAPS Unified Model Local Data Assimilation and Prediction System
Corr (%) Correlation coefficient
MBE (W/m2) Mean bias error
MAE (W/m2) Mean absolute error
RMSE (W/m2) Root mean square error
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