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Abstract: This paper proposes a hybrid power supply system for commercial drones. The proposed
hybrid power supply system consists of a lithium polymer battery, a supercapacitor, and a power
converter for charging the supercapacitor. In the proposed system, the supercapacitor is pre-charged
with a lithium polymer battery through a power converter, and the supercapacitor first supplies
the power required for the drone’s initial startup and lift-up. Afterward, in the section where the
power consumption of the drone is low, the battery and the supercapacitor supply power together,
minimizing the stress on the battery. To verify the proposed hybrid power supply system, a computer
simulation was conducted, the actual hardware was fabricated, and experiments were performed.

Keywords: hybrid power supply system; supercapacitor; lithium-ion capacitor; H-bridge buck–boost
converter; UAV

1. Introduction

Recently, drones, also referred to as unmanned aerial vehicles (UAVs), have become
increasingly popular and are widely used in various industries and application fields.
These drones were initially developed for military purposes, but as their use is gradually
recognized in various fields, they are applied to fields such as agriculture, construction,
lifesaving, and logistics delivery. These types of drones that are applied in different fields
to replace tasks that are difficult for humans to perform are called industrial drones, and
research is being actively conducted to develop industrial drones equipped with various
functions [1–4].

Lithium polymer (Li-Po) batteries are commonly used as power sources for industrial
drones. Li-Po batteries are rechargeable batteries that use solid polymer electrolytes instead
of liquid or gel electrolytes found in conventional lithium-ion (Li-ion) batteries [5,6]. Be-
cause of their high energy density, Li-Po batteries can store significant amounts of energy
in relatively small and lightweight packages, and because they use lightweight polymer
materials, they are lighter than other rechargeable batteries. They can provide a large
amount of power quickly compared to other rechargeable batteries. For this reason, Li-Po
batteries are used in most UAVs [7–10]. However, since they are very sensitive to over-
charge, overdischarge, and high temperature, the risk of thermal runaway is high, and in
extreme cases, a fire or explosion may occur. In addition, the capacity gradually decreases
over time, and the output power decreases because the internal resistance increases at
a low temperature [11,12]. Due to the advantages described above, Li-Po batteries are
mainly used for drones that require a lot of power during flight and must be light in
weight. However, due to the nature of drones that require excessive power during flight,
the disadvantages of Li-Po batteries are becoming more prominent.
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The most important thing in the operation of industrial drones is the flight time of the
drone, and the flight time has a close relationship with the capacity of the battery mounted
on the drone. In general, increasing capacity by connecting batteries in parallel increases
flight time, but it is difficult to add batteries because drones consume different power
depending on the take-off weight, and space for batteries is limited [13,14]. In addition,
the power consumption of drones is very high due to high-performance BLDC motors for
generating thrust. In particular, power consumption can be further increased due to initial
startup, upward startup, and logistics loading [15,16]. This feature can overdischarge the
Li-Po battery, which can shorten the flight time and cause thermal runaway of the Li-Po
battery. A supercapacitor is proposed as a solution to this problem. Table 1 compares
lithium secondary batteries and supercapacitors. Supercapacitors have higher power
density, longer lifespan, and wider operating temperature range, and they can be rapidly
charged and discharged compared to batteries [17–19].

Table 1. Comparison of lithium batteries and supercapacitors.

Characteristic Supercapacitor Lithium Battery

Temp −40~85 ◦C −20~45 ◦C

Cycle Life >1,000,000 10,000

Power Density 10,000 W/kg 100~3000 W/kg

Energy Density 1~10 Wh/L 250~650 Wh/L

Efficiency >98% 90~95%

If a supercapacitor is added to a drone that uses a Li-Po battery alone, the stress applied
to the Li-Po battery can be reduced, which can be a way to minimize the disadvantages
of the drone caused by the Li-Po battery described above. Therefore, studies on these
systems are increasing [20,21]. A power supply system that combines a supercapacitor
to compensate for the disadvantages of a lithium battery is called a hybrid power supply
system. When this system is applied to a place that requires a large amount of power for a
short moment, such as during the initial startup and ascent of a drone, the supercapacitor
can assist the discharge C-rate that the Li-Po battery cannot handle. Therefore, a more
stable operation than before can be made possible [22–27].

Studies on battery stress reduction and lifespan have been conducted on different
hybrid power supply systems in [28–33], and the results have concluded that the presence
of supercapacitors actually helps reduce battery stress and extend battery life.

The innovation or contribution of this research is to further increase the efficiency of
battery stress reduction by the supercapacitor by adding a power conversion device to
the existing hybrid system in which the battery and supercapacitor are simply connected
in parallel.

In this paper, we propose a hybrid power supply system combining a Li-Po battery and
a supercapacitor and its operation method to overcome the above-mentioned disadvantages
in the operation of industrial drones. In the proposed hybrid power supply system, the
voltage of the supercapacitor is raised higher than that of the Li-Po battery through a
power converter, and then the supercapacitor first supplies power alone when power
is needed for the drone. As the supercapacitor is discharged, when the voltage of the
supercapacitor becomes the same as the voltage of the Li-Po battery, the Li-Po battery
also starts to discharge. The power converter for charging a supercapacitor must perform
a charging operation both in a section where the voltage of the supercapacitor is lower
than and higher than the voltage of the Li-Po battery. Therefore, an H-Bridge buck–boost
converter (HBBBC) topology capable of both step-up and step-down was applied. In the
proposed system, the step-down mode is transferred from the step-down mode to the
step-up mode while the converter is charging the supercapacitor. Since the main switch
used in the HBBBC differs depending on the operating mode, an accident may occur if
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there is no proper transfer technique. Therefore, in this paper, a mode transfer technique to
solve this problem is also proposed.

The main contributions of this paper are listed below:

(1) The hybrid power supply system is effective in reducing the risk of various explosions
and fire accidents that may occur in fields where lithium batteries are used.

(2) Since the step-down and step-up operation of the converter is possible with a single
controller through the mode transfer method, there is no need to design a controller
for each mode of the converter.

(3) The efficient power management of Li-Po batteries is possible because the superca-
pacitor supplies power preferentially during flight sections where UAVs consume
excessive power.

The validity of the hybrid power supply system proposed in this paper, its operat-
ing technique, and the mode transfer method of the power converter for charging the
supercapacitor were verified through simulation and experiment.

2. Hybrid Power Supply System for Industrial Drones

Figure 1 shows the overall configuration of the hybrid power supply system proposed
in this paper, which combines a lithium battery and a supercapacitor. The proposed
system consists of a Li-Po battery, a supercapacitor, an HBBBC, and a protection circuit that
connects a relay and a diode in series.
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The input of the system is 44.4 V by configuring two 22.2 V (3.7 V × 6 cells) Li-Po
batteries in series, and the supercapacitor used as output is a lithium-ion capacitor (LIC)
module. One cell is 3.8 V, 3200 F, but 14 cells are connected in series to have a specification
of 53 V, 228 F. Supercapacitors are largely divided into LICs and electric double-layer
capacitors (EDLCs) that combine the advantages of batteries and capacitors. LICs can
store a large amount of energy similar to batteries but are characterized by being able to
charge and discharge faster than capacitors. In addition, because of the long cycle life, they
can undergo many charge–discharge cycles without performance degradation, so their
efficiency is higher than that of EDLCs. However, since the voltage level per cell is fixed
like a battery, care must be taken for complete discharge. For the above reason, this paper
applied the LIC module.

2.1. Operation Method of the Proposed Hybrid Power Supply System

The hybrid power supply system proposed in this paper is operated in three operating
modes according to the power consumption patterns that appear when industrial drones
fly. Figure 2 is a graph showing power consumption by time and the flight altitude of
industrial drones. The section with the highest power consumption of the drone is the
section where the drone starts ascending at the same time as the initial maneuver on the
ground. In addition, it can be confirmed through Figure 2 that power consumption is high
even in the section where the flight altitude rises.
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If the Li-Po battery alone supplies the power required for initial startup, overdischarge
proceeds in a short period of time, which can put great stress on the Li-Po battery and
drastically reduce the total flight time of the drone. This means that if the supercapacitor
supplies the amount of power required during the initial startup and during the rising
period, the stress applied to the Li-Po battery can be minimized.

The operating mode of the hybrid power supply system proposed in this paper is as
follows.

Mode 1: supercapacitor charging mode;
Mode 2: supercapacitor discharging mode;
Mode 3: supercapacitor and Li-Po battery discharging mode.
Figure 3 shows Mode 1: supercapacitor charging mode. Mode 1 is a mode in which the

LIC is charged with the Li-Po battery using the HBBBC before the drone starts flying. Due
to the circuit structure, the voltage of the LIC must be higher than the voltage of the Li-Po



Energies 2023, 16, 7552 5 of 19

battery in order for the LIC to supply power alone when the drone initially starts. The LIC
has a voltage of 2.8 V per cell when discharged and 3.8 V when fully charged, and the 14
series LIC module applied to the proposed system needs to be charged from 39.2 V to 53 V.
Since the voltage of the Li-Po battery for capacitor charging is 44 V, the HBBBC operates in
the buck mode when the voltage of the capacitor is lower than that of the lithium polymer
battery. In the section where the capacitor voltage is equal to or higher than that of the
Li-Po battery, it operates in the boost mode. In this mode, the relay between the Li-Po and
the LIC is turned off, so the LIC can only be charged through the HBBBC.
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Figure 4 shows Mode 2: supercapacitor discharge mode. When the drone starts flying
after the LIC module is fully charged through Mode 1, the LIC module alone supplies
power to the drone. As can be seen from the drone power consumption graph in Figure 2,
the drone consumes a lot of power during initial startup and elevation, and then the power
consumption gradually decreases. Therefore, in this section, the LIC must supply power to
the drone alone to minimize stress and excessive power consumption on the Li-Po battery.
Since the voltage of the LIC is higher than the voltage of the Li-Po battery, the relay is turned
on, but power is supplied to the drone only from the LIC due to a potential difference.

Figure 5 shows Mode 3: supercapacitor and Li-Po battery simultaneous discharge
mode. In Mode 3, the LIC alone supplies power to the drone in Mode 2, and it starts from
the moment the voltage of the LIC and the voltage of the Li-Po battery become the same.
From this point on, the Li-Po battery and LIC are discharged together to supply power
to the drone. Since the Li-Po battery starts to discharge in the period when the power
consumption of the drone is low, and the LIC is also discharged together, it is possible to
minimize the stress applied to the Li-Po battery.
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2.2. H-Bridge Buck–Boost Converter (HBBBC)

As described in “Mode 1: supercapacitor charging mode” of Section 2.1, the HBBBC
must operate in the buck mode and boost mode to charge the LIC. Figure 6 shows the
HBBBC topology. The HBBBC is also called a non-inverting buck–boost converter because
the output voltage is not inverted, unlike a general buck–boost converter. Depending on
the switch that operates as the main switch between switches S1 and S2, it is possible to



Energies 2023, 16, 7552 7 of 19

operate in the buck mode and boost mode, respectively, so in this paper, the HBBBC was
used as the converter to charge the LIC module [34,35].
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When the HBBBC operates in the buck mode, as shown in Figure 7, S1 becomes the
main switch and performs PWM operation according to the task needed, and S2 becomes
an auxiliary switch and always maintains the OFF state. In the boost mode, as shown in
Figure 8, S1 becomes an auxiliary switch and maintains the ON state at all times, and S2
becomes the main switch and performs PWM operation according to the task needed [36,37].
As such, during the boost and buck operations, the main switch and the auxiliary switch
are changed, and the operation status of the auxiliary switch is also different. In the
supercapacitor charging mode described above, the discharged LIC module has a voltage
of 39.2 V, and the Li-Po battery has a voltage of 44 V. Therefore, in order for the HBBBC to
charge the LIC module, it must initially operate in the buck mode. As charging progresses,
the voltage of the LIC module increases and becomes equal to the voltage of the Li-Po
battery. Since charging is not possible in the buck mode from this section, the HBBBC must
be transferred to the boost mode. During mode transfer, if the duty by the output value
from one controller is applied to the buck mode and boost mode as is, a problem may occur
in the converter, so a control method for mode transfer is required.
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2.3. Mode Transfer Method of H-Bridge Buck–Boost Converter (HBBBC)

In the hybrid power supply system applied in this paper, the voltage of the LIC module
may be lower or higher than that of the Li-Po battery at the beginning. The HBBBC needs to
charge the LIC module under any condition, and at this time, the transfer of operation mode
may occur. For natural transfer of the operating mode, an accurate criterion and algorithm
for changing the operating mode are required, and appropriate forward compensation is
required to minimize the transient state of the converter at the moment of transfer.

Figure 9 shows the control block diagram of the HBBBC proposed in this paper for
charging the LIC module. The proposed control method operates as one current controller
for charging current control in the buck mode and boost mode, and the output of the
controller is added to the feedforward compensation value to determine the switching
state according to the size of the value. If the feedforward compensation value is less
than 1, it becomes a duty value for operating as a buck converter, and if it is greater than
1, it becomes a duty value for operating as a boost converter. The mode selection block
allows us to determine the operating mode of the converter through the algorithm shown
in Figure 10 by receiving feedback from the input voltage, Li-Po battery voltage Vin, and
the output voltage, LIC module voltage Vout.

If the mode is simply transferred by comparing the difference between the input
voltage and the output voltage, a problem may occur in which the buck mode and the
boost mode are repeatedly transferred for a short moment due to the output voltage
ripple or error in the sensing value. Therefore, the Mode_Cnt variable is designated at
the moment of switching from the buck mode to boost mode to prevent returning to the
buck mode if the value of the variable does not reach a certain level. When the operating
mode of the converter is determined with the mode selection block, the feedforward
compensation value is calculated according to the determined mode. Equations (1) and (2)
are formulas for calculating feedforward compensation values in the buck mode and boost
mode, respectively.



Energies 2023, 16, 7552 9 of 19Energies 2023, 16, x FOR PEER REVIEW 9 of 20 
 

 

Mode
Selection

Vin

Vout

RAMP
Reference

I*
ref

I*
ramp

+
－

Ireal

PI Current
Controller

PI_out

FF
+

+

Feed Forward
Calculation

PI_out + FF

PI_out + FF > 1
+
－

1

PWM Period

Buck Duty = OFF
Boost Duty = Duty Out

Buck Duty = Duty Out
Boost Duty = OFF

Yes

No

 
Figure 9. Proposed control block diagram of H-bridge buck–boost converter. 

If the mode is simply transferred by comparing the difference between the input volt-
age and the output voltage, a problem may occur in which the buck mode and the boost 
mode are repeatedly transferred for a short moment due to the output voltage ripple or 
error in the sensing value. Therefore, the Mode_Cnt variable is designated at the moment 
of switching from the buck mode to boost mode to prevent returning to the buck mode if 
the value of the variable does not reach a certain level. When the operating mode of the 
converter is determined with the mode selection block, the feedforward compensation 
value is calculated according to the determined mode. Equations (1) and (2) are formulas 
for calculating feedforward compensation values in the buck mode and boost mode, re-
spectively. 𝐵𝑢𝑐𝑘_𝐹𝐹 = ൬𝑉௢௨௧𝑉௜௡ ൰ × 𝐹𝐹_𝑔𝑎𝑖𝑛 (1) 

𝐵𝑜𝑜𝑠𝑡_𝐹𝐹 = ൜൬1 − 𝑉௜௡𝑉௢௨௧൰ + 1ൠ × 𝐹𝐹_𝑔𝑎𝑖𝑛 (2) 

Each feedforward compensation value is calculated based on the voltage transfer ra-
tio of the buck converter and the boost converter, and FF_gain (0.1~0.4) is applied to pre-
vent excessively large compensation values from being applied at once. 

Figure 9. Proposed control block diagram of H-bridge buck–boost converter.

Energies 2023, 16, x FOR PEER REVIEW 10 of 20 
 

 

Start

Buck Mode

Vin >= Vout

Mode = Boost?

Mode_Cnt++

Mode_Cnt > 5

Buck Mode
Mode_Cnt = 0

Boost Mode
Mode_Cnt = 0

Yes

No

Yes

No

Yes

Yes

No

 
Figure 10. Proposed mode transfer algorithm of H-bridge buck–boost converter. 

3. Simulations 
Prior to the experiment, a simulation using PSIM was conducted to verify the perfor-

mance of the hybrid power supply system proposed in this paper. The simulation con-
sisted of a simulation of the mode transfer method of the HBBBC to charge the superca-
pacitor and an operation simulation of the hybrid power supply system. The parameters 
applied to the mode transfer simulation of the HBBBC are shown in Table 2, and the sim-
ulation circuit diagram is shown in Figure 11. The simulation circuit diagram of the 
HBBBC consists of a converter circuit part, a reference generation part, and a controller 
part using a DLL block. In order to simulate real-world conditions, a Li-Po battery was 
modeled and applied to the converter input. However, because the capacity of the LIC 
module could not proceed to 228 F due to the limitations of the simulation tool, it was set 
to 100 mF, and the simulation proceeded. In addition, to confirm the operation of the buck 
mode and boost mode, the initial voltage of the supercapacitor was set to 0 V and the 
simulation was performed. 

Table 2. Simulation parameters of H-bridge buck–boost converter. 

Parameter Value Unit 

Converter 

Power rating 500 W 
Lithium polymer battery voltage 44 V 

CV reference voltage 53 V 
Converter inductor 33 µH 

Supercapacitor 100 mF 
CC reference current 10 A 
Switching frequency 50 kHz 

Figure 10. Proposed mode transfer algorithm of H-bridge buck–boost converter.

Buck_FF =

(
Vout

Vin

)
× FF_gain (1)

Boost_FF =

{(
1− Vin

Vout

)
+ 1

}
× FF_gain (2)



Energies 2023, 16, 7552 10 of 19

Each feedforward compensation value is calculated based on the voltage transfer ratio
of the buck converter and the boost converter, and FF_gain (0.1~0.4) is applied to prevent
excessively large compensation values from being applied at once.

3. Simulations

Prior to the experiment, a simulation using PSIM was conducted to verify the perfor-
mance of the hybrid power supply system proposed in this paper. The simulation consisted
of a simulation of the mode transfer method of the HBBBC to charge the supercapacitor and
an operation simulation of the hybrid power supply system. The parameters applied to the
mode transfer simulation of the HBBBC are shown in Table 2, and the simulation circuit
diagram is shown in Figure 11. The simulation circuit diagram of the HBBBC consists of a
converter circuit part, a reference generation part, and a controller part using a DLL block.
In order to simulate real-world conditions, a Li-Po battery was modeled and applied to the
converter input. However, because the capacity of the LIC module could not proceed to
228 F due to the limitations of the simulation tool, it was set to 100 mF, and the simulation
proceeded. In addition, to confirm the operation of the buck mode and boost mode, the
initial voltage of the supercapacitor was set to 0 V and the simulation was performed.

Table 2. Simulation parameters of H-bridge buck–boost converter.

Parameter Value Unit

Converter

Power rating 500 W

Lithium polymer battery voltage 44 V

CV reference voltage 53 V

Converter inductor 33 µH

Supercapacitor 100 mF

CC reference current 10 A

Switching frequency 50 kHz

Figure 12 shows the simulation result waveform of the HBBBC. The initial voltage of
the Li-Po battery used as the input of the converter was 44 V.

In order to confirm that the battery SOC decreased as charging progressed in the
battery model, the initial value of SOC was set to 88%. Since the initial voltage of the
supercapacitor applied to the simulation was 0 V, when charging started, the HBBBC
operated in the buck mode and charged the supercapacitor. As charging progressed,
the voltage and SOC of the Li-Po battery gradually decreased, and the voltage of the
supercapacitor increased. When the voltage of the Li-Po battery and the voltage of the
supercapacitor became similar, the converter switched to the boost mode. At this time,
since the proposed switching technique was applied, no malfunction occurred during mode
conversion, and it was confirmed that no transient state occurred in the charging current
due to the feedforward compensation value.

Figure 13 shows the simulation waveform when the method proposed in this paper is
not applied. It can be seen through the waveform that an undershoot occurs in the inductor
current at the moment the mode is switched, and a transient state continues to occur even
during operation in the boost mode. If this phenomenon occurs in an actual experiment,
a current exceeding the permissible value of the inductor current may flow and cause a
significant problem.

Figure 14 is a circuit diagram of a simulation in which the hybrid power supply
system proposed in this paper supplies power to the load side, and Table 3 shows the
main parameters applied in the simulation. The Li-Po battery was implemented through
modeling, and the initial voltage was set to 44.7 V. The supercapacitor was set to 53 V, 228
F, assuming a fully charged state. In addition, in order to reflect the load pattern of the
drone to some extent, a buck converter-based CPL (constant power load) was applied. By
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varying the current controller reference of the CPL, the load pattern at the initial startup of
the drone was implemented.
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Table 3. Simulation parameters of hybrid power supply system.

Parameter Value Unit

Li-Po battery
Initial voltage 44.7 V

Battery capacity 16 Ah

Super cap
(LIC)

Initial voltage 53 V

Capacitance 228 F

Power load Power rating 7.5 (5) kW

Figure 15 shows the simulation waveform of a hybrid power supply system. Since the
power consumption is the most severe when the drone starts to ascend from the ground,
the initial current reference of the CPL was set to 170 A in the simulation and changed to
125 A after about 1 s. The simulation was conducted under the assumption that both the
Li-Po battery and the LIC module were fully charged. Initially, since the voltage of the
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LIC module was higher than the voltage of the Li-Po battery, the LIC module discharged
alone to operate in Mode 2, supplying all the power required by the load. After that, as the
LIC module was discharged over time, it became equal to the Li-Po battery voltage. From
44.7 V, it operated in Mode 3, and it can be seen that the Li-Po battery also supplied power
to the load.
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4. Experiment Results

Figure 16 shows the configuration of the entire experimental set of the hybrid power
supply system proposed in this paper, and Figure 17 shows the HBBBC hardware. The
control board for controlling the converter applied was TMS320F28377S MCU. In addition,
an experiment was conducted by configuring a separate touch panel to monitor and control
the operation status of the entire system. Table 4 shows the parameters applied in the
experiment. The Li-Po battery used in the experiment was 22.2 V (3.7 V × 6 cells), 16 Ah,
and had a voltage of 44.4 V by connecting two in series. The LIC was 3.8 V, 3200 F per cell,
and a module was formed by connecting 14 in series and had a voltage of 53.2 V and a
capacity of 228 F.

Figure 18 shows the waveform of the HBBBC transferring from the buck mode to the
boost mode and charging the LIC module. Initially, the voltage of the Li-Po battery was
45.5 V, and the LIC module’s voltage was 39.5 V. The charging CC reference was 10 A, and
the CV reference was 53 V. The HBBBC initially operated in the buck mode and charged the
LIC module. In the section where the voltage of the Li-Po battery and the voltage of the LIC
module became similar, it transitioned to the boost mode and charged the LIC up to the
CV reference value. Figure 19 shows the screen of the touch panel before charging started
and after charging was completed. Using the touch panel, we could check the battery,
capacitor voltage, and output current before and after charging started. In addition, the
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operational duty information of the buck mode and boost mode can be monitored during
converter operation.
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Table 4. Experimental parameters of the proposed system.

Parameter Value Unit

H-bridge
Buck–boost
Converter

Power rating 500 W

Input voltage range 38~50 V

Output voltage range 39~54 V

Inductor 33 µH

Charing current 10 A

Switching frequency 50 kHz

Li-Po
Battery

Nominal voltage 22.2 × 2EA V

Capacity 16 Ah

Super cap
(LIC)

Rated voltage 53.2 V

Capacitance 228 F
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Figure 20 illustrates the waveform of the HBBBC charging in the boost mode in the
section where the initial voltage of the LIC module was the same as that of the Li-Po battery.
Figure 21 shows the state of the touch panel when charging in the boost mode.
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Since the initial voltages of the Li-Po battery and the LIC module were 45.4 V and
45.3 V, respectively, it can be seen through the waveform that the converter operated in the
boost mode from the beginning to charge the LIC module.

Figure 22 shows the experimental waveforms for operating Modes 2 and 3 of the
hybrid power system proposed in this paper. The initial voltages of the Li-Po battery
and LIC module were 44.7 V and 52 V, respectively. When a load of 5.4 kW was applied,
the hybrid power supply system operated in Mode 2 in which only the LIC module was
discharged and supplied power to the load. As the LIC module was discharged, when the
voltage dropped to 44.7 V, which was the Li-Po battery voltage, it converted to Mode 3, and
the Li-Po battery also started to discharge, so the current flowing from the LIC module to
the load decreased, and the current flowing from the Li-Po battery to the load increased.
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5. Conclusions

In this paper, a hybrid power supply system combining a Li-Po battery and a super-
capacitor (LIC) for commercial drone applications, an operating method, and a control
method for an HBBBC for charging the supercapacitor (LIC) in the system are proposed.

After applying the system and method proposed in this paper, the following conclu-
sions were drawn:

(1) Among the proposed techniques, when the HBBBC mode transfer control method for
charging the LIC module was applied, it could operate as one controller in the buck
mode and boost mode. In addition, it was verified through simulation and experiment
that the transient state did not occur at the moment the mode was transferred.

(2) In the case of the operating technique of the hybrid power supply system, the pre-
charged LIC module supplied power to the load preferentially in the section where
high power was required for a short moment, such as the initial startup and ascending
operation of the drone. Therefore, it was possible to minimize the stress applied to
the Li-Po battery in a section where power consumption was high.

(3) It was verified through simulations and experiments that a more stable power supply
was possible because the LIC module and Li-Po battery supplied power to the load
together even in the section where the power consumption of the load was reduced.

Applications using Li-Po batteries, including commercial drones, are increasing day
by day, but various accidents caused by Li-Po batteries are also increasing. If the hybrid
power supply system proposed in this paper is applied to these applications, it is hoped
that the efficient use of Li-Po batteries will be possible.

In future studies, we will calculate the appropriate supercapacitor capacity to mini-
mize the weight and volume of the proposed hybrid power supply system and explore
the applicability of applying it to actual commercial drones to optimize performance
and efficiency.
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