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Abstract: This article discusses research on the low-temperature pyrolysis of waste floor and furniture
joinery as an example of chemical recycling. Pyrolysis was carried out at 425 ◦C to obtain solid, liquid,
and gaseous products. In line with the circular economy concept, the waste was transformed into
economical and environmentally friendly raw materials suitable for application. Research results
related to the chemical composition and properties of pyrolysis products are shown, with particular
emphasis on the migration process of acidic impurities, i.e., sulphur and chlorine. In some processes,
the presence of such substances can be a problem. Research has shown the high potential for sulphur
and chlorine migration in pyrolysis products. It was shown that for woodwork, the most sulphur
was discharged with the pyrolysis gas and the least was immobilised in the oil fraction. For vinyl
panels, more than 50% of the sulphur was immobilised in the char. Chlorine was immobilised mainly
in the char and pyrolysis gas. A high chlorine content of 12.55% was found in the vinyl panel. At the
same time, a high chlorine content was also found in the pyrolysis products of these panels. This
value is several times higher than in wood-based waste.

Keywords: low-temperature pyrolysis; chlorine migration; sulphur migration; chemical recycling

1. Introduction

Human existence, the progress of civilisation, and consumerism translate into a con-
stant increase in the amount of municipal and industrial waste generated. Among these
wastes are also woodwork and furniture waste. These are generated in the course of
renovation services. Due to a number of chemical additives, they are not inert to the
environment as waste [1–6]. Hence, there is a problem with their proper transformation.
The most common method of managing waste flooring and furniture joinery is incineration
or co-incineration [7–11]. According to the idea of the circular economy, waste management
should be consistent with the waste hierarchy [12–16]. Thus, the aforementioned methods
of thermal treatment of selected refurbishment waste are the least desirable by law. For
several years, there has been a tendency to reuse wood-based waste, e.g., HDF, for the
production of new floorboards. Although this is in line with the principles of the circu-
lar economy and sustainable development, it cannot be repeated indefinitely. Returned
materials wear out and cannot be reused or recycled.

The circular economy is inextricably linked to the protection of natural resources. It
refers to reducing resource consumption, reuse, and recirculation. In circular economy
terms, pyrolysis may be a noteworthy solution, which fits into the 3xR hierarchy (reduce,
reuse, recycle). Pyrolysis is the process of decomposition of a complex molecule of a
chemical compound under the influence of sufficiently high temperatures in an anaerobic
environment [14,17–21]. The pyrolysis process is represented by Reaction [22] (1):

CnHmOp(Biomass) HEAT→ ∑
liquid

CxHyOz + ∑
gas

CaHbOc+H2O + C(Char) (1)
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Depending on the temperature used, a distinction is made between low-temperature
pyrolysis up to 600 ◦C and high-temperature pyrolysis up to 1000 ◦C. The products of
waste pyrolysis are char, liquid water–tar–oil fraction, and pyrolysis gas (CO2, CO, CH4,
CnHm, H2, H2S, dust, and trace impurities). The qualitative and quantitative properties of
the pyrolysis products are determined, among other things, by the type of waste pyrolyzed,
the type of reactor, the preparation of the waste feed, the grinding, the residence time of
the waste in the reactor, the heating method, and the process temperature [21–25].

Due to the heating rate of the fuel particles (biomass), two main pyrolysis mechanisms
can be distinguished, i.e., slow and fast pyrolysis. Carbonization is a slow pyrolysis process.
The biomass is heated slowly over a longer period of time, with no access to oxygen
and a relatively low temperature of about 400 ◦C. The dominant product is char [21,22].
According to [21], when the wood temperature increases from 147 to 167 ◦C, transient
moisture is released. In the temperature range from 247 to 267 ◦C, water chemically bound
in the cellulose structure, CO2, CO, small amounts of condensing vapours of acetic acid,
methanol, and wood tar are released. Above 267–277 ◦C, methanol, acetic acid, acetone,
lighter hydrocarbons, wood tar, and small amounts of hydrogen are strongly released,
and the amount of CO2 and CO released decreases. Above 397◦, quasi-graphite layers are
formed and the transformation of wood into charcoal (char) is completed. In turn, the goal
of fast pyrolysis is the maximum yield of liquid or gaseous products. The heating rate
should be from 1 to 10 ◦C/min and the temperature should be lower than 650 ◦C in order
to obtain bio-oil, or higher than 1000 ◦C if the dominant product is to be gas [22].

The pyrolysis of biomass [26–32] and PVC is a well-researched issue [33–38]. Accord-
ing to [39,40], biochar obtained as a result of low-temperature pyrolysis of biomass waste
can have a wide range of applications, e.g., in the energy industry, as a substrate for the
production of activated carbon, and as a pollutant sorbent. Moreover, the authors of [40–44]
indicate the possibility of using biochar as activated carbon for the filtration of wastewater
from pollutants. It is estimated that by 2025 the demand for activated carbons will reach
2,707,000 Mg. This is dictated by the constantly growing awareness of the need to care for
the environment [21]. Biochar rich in elements can be used in agriculture as an additive
improving soil quality, increasing the improvement of crops [45]. As reported in [46–48],
there are reasons to use biochar in the metallurgical, steel, and coking industries. Research
on the use of biochar in energy storage technologies is ongoing [40,49]. In the literature,
one can find a lot of information about the pyrolysis and co-pyrolysis of PVC, including
with biomass or other plastics [11,35,50–55].

In contrast, the pyrolysis of wood- and vinyl-based wastes and the derivation of
utilisable products from them is only at the stage of discernment. The current topic
represents a developing field of research and is a field for scientific analysis.

This article presents research into low-temperature pyrolysis as one of the options for
managing waste from flooring and furniture joinery. It is an example of chemical recycling,
and the activities described in the article are in line with the idea of a circular economy
in both ecological and economic terms. As a result of pyrolysis, problematic waste is
transformed into useful products, thus contributing to a reduction in the consumption of
natural resources. These are char, oil, and gas. The pyrolysis process can be optimized to
promote the synthesis of a specific product of interest. Low-temperature pyrolysis was
chosen for two reasons. Firstly, ecological and economic aspects were taken into account
and the lowest possible temperature was adopted for the planned tests. Secondly, as the
pyrolysis temperature increases, the oil yield increases and the char yield decreases. The
authors’ research priority is to focus on the use of chars, hence the choice of pyrolysis at a
lower temperature. Currently, the authors are working on the thermal activation of chars
in an inert gas atmosphere and the chemical activation of chars using potassium hydroxide,
with simultaneous observation of the morphology and structure of chars before and after
activation using electron microscopy methods (SEM, TEM, SAED, and EDS). The research
is an attempt to obtain, through pyrolysis, activated carbon acting as an adsorbent. Such
material can be used in both water and exhaust gas purification techniques.
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A study of the literature shows that many scientists are engaged in research describing
the pyrolysis process. In the literature [21,22,24,30], this process is explained in detail,
but there is no in-depth analysis of the migration of individual elements between the
main products of the process. The authors’ works will allow for a better understanding
of the pyrolysis process of various substances. Knowledge of the migration of acidic
elements (S and Cl) will allow for a more effective design of individual devices included
in pyrolysis installation in terms of their resistance to the corrosive effects of pyrolysis
products. Moreover, this knowledge will allow the utilitarian use of the raw materials.
When indicating the application routes of the resulting pyrolysis products, attention should
be paid to the possibility of migration of the elements present in the waste composition into
the individual products [23,25,28,56,57]. Hence, the main objective of this article is to assess
the degree of migration of sulphur and chlorine into the pyrolysis products obtained.

2. Material Characteristics and Methods
2.1. Materials

The tests of sulphur and chlorine migration in the low-temperature pyrolysis process
were carried out on:

• Waste floor panels made of HDF fibreboard;
• Waste furniture made of MDF fibreboard;
• Waste furniture made of chipboard;
• Waste floor planks made of natural wood;
• Energy willow chips;
• Waste floor panels made of vinyl board.

All the waste was obtained in the form of cuttings during the renovation of houses
and flats. The exception was energy willow chips, which were obtained from plantations
and used in the study for comparative purposes. The examined wood-based waste consists
of wood and is loaded with impurities in the form of urea–formaldehyde resins, adhesives,
laminates, veneers, and varnishes to varying degrees. Vinyl panels, on the other hand,
consist mostly of polyvinyl chloride (PVC). Depending on the manufacturer, it is reinforced
with glass or mineral fibres. The additives used in the tested materials can have a significant
impact on the course of the pyrolysis process and on the quantity and properties of the
obtained pyrolysis products. The comparison of biomass with waste materials based on
biomass with the addition of binders and vinyl panels was intended to verify the similarities
and differences in the tested materials.

Before carrying out the analysis, samples were cut into 2–3 cm pieces. Low-temperature
pyrolysis was carried out. Then, the substrates and char were ground in an IKA laboratory
mill into fractions not exceeding 2 mm.

2.2. The Test Stand for Carrying out the Pyrolysis Process

The tests of the low-temperature pyrolysis process were carried out on a test stand
consisting of a pyrolysis chamber housing with heaters and insulation, a proper pyrolysis
chamber with a volume of 25 dm3, and a pyrolysis gas cooler made of a DN 25 pipe with a
length of 1000 mm. The main chamber was electrically heated. The temperature in the bed
was measured with a T1 thermocouple and the temperature of the pyrolysis gases with a
T2 thermocouple. The stand is shown schematically in Figure 1.

A single experiment consisted of placing a test sample of waste weighing about
1000 g in a chamber at ambient temperature, carefully closing the chamber (in order to
cut off the air supply) and starting a set of built-in heaters. After the start of the pyrolysis
process inside the chamber, the gas pressure increased above atmospheric pressure. This
increase enabled the flow of pyrolysis gas through the cooler–separator system. The heating
process of the chamber was completed when the temperature inside it reached 425 ◦C. The
maximum process temperature was not determined randomly. It was determined on the
basis of previously conducted pyrolysis tests using thermogravimetric analysis (TG-DTG),
which is discussed in more detail in the Results section.
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Figure 1. Scheme of the test stand for carrying out the pyrolysis process (author: Waldemar Ścierski).

In the cooler, the temperature of the pyrolysis gas was lowered to the ambient temper-
ature. At the same time, the pyrolysis oil accumulating in the separator was collected from
the cooler. The pyrolysis gas was removed to the atmosphere through the process gas clean-
ing system. The process was terminated when no generation of process gases was found.
During the tests, the weight of the samples used, the products obtained (char and oil), the
temperature, and the duration of the process were also measured. Measurements were
read at 10 min intervals. The amount of gas was determined from the balance equations
(according to the law of the conservation of mass).

The substance balance for a steady-state process is presented in Equations (2) and (3)
below [58]:

Gdi = Gwi (2)

mSW = ∑mP = mCh + mPO + mPG (3)

where:

Gdi—amount of substance fed to the pyrolysis chamber, kg;
Gwi—amount of substance removed from the pyrolysis chamber, kg;
mSW—mass of waste sample, kg;
mP—mass of pyrolysis products, kg;
mCh—mass of char, kg;
mPO—mass of pyrolysis oil, kg;
mPG—mass of pyrolysis gas, kg.
The mass of the gas was determined from Equation (4):

mPG = mSW − (mCh + mPO) (4)

By analogy, the balances of the S and Cl elements are as follows ((5), (6)) [58]:

mS_SW = mS_Ch + mS_PO + mS_PG (5)

mCl_SW = mCl_Ch + mCl_PO + mCl_PG (6)

where:

mS_SW; mCl_SW—mass of sulphur/chlorine in the waste sample, g;
mS_Ch; mCl_Ch—mass of sulphur/chlorine content in the char, g;
mS_PO; mCl_PO—mass of sulphur/chlorine content in pyrolysis oil, g;
mS_PG; mCl_PG—mass of sulphur/chlorine content in the pyrolysis gas, g.
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From the equations of the balance of elements, the elementary composition of this gas
was determined.

The resulting char was taken directly from the pyrolysis chamber after it had been
cooled down to ambient temperature (Figure 2).
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Małgorzata Kajda-Szcześniak).

Figure 3 shows examples of pyrolysis products. As a result of the low-temperature
pyrolysis process, three products were obtained, i.e., char, pyrolysis oil, and pyrolysis
gas. After 24 h from the end of the process, the separation of the oil fraction into oil and
contaminated water was observed.
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2.3. Sulphur and Chlorine Analysis

The aim of the analysis was to determine the elements S and Cl in the substrates and
pyrolysis products. The study was performed using the standards PN-ISO 351:1999 [59]
and PN-ISO 587:2000 [60].

The total sulphur content was determined using the high-temperature combustion
method and calculated according to Formula (7) [59]:

S =
(V a −Vb)× 0.0008× 100

m
, % (7)
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where

Va—the amount of NaOH used to titrate the waste sample, (cm3);
Vb—the amount of NaOH used for the titration of the blank, (cm3);
0.0008—mass of sulphur corresponding to 1 cm3 of 0.05 n sodium hydroxide solution, (g/cm3);
m—mass of the waste sample, (g).

The chlorine content was determined using the Eschka mixture and calculated accord-
ing to Formula (8) [60]:

Cl =
3.545× c× (Va −Vb)

m
, % (8)

where

Va—the amount of AgNO3 used to titrate the waste sample, (cm3);
Vb—the amount of AgNO3 used for the titration of the blank, (cm3);
c—concentration of silver nitrate(V) solution (0.05), (mol/dm3);
m—mass of the waste sample, (g).

3. Results and Discussion
3.1. Pyrolysis Process Parameters

The first research step was to determine the parameters of the pyrolysis process,
including temperature. For this purpose, TG/DTG analysis was used, which is designed
for the waste discussed in this work. Figures 4 and 5 show an example thermogravimetric
analysis for two samples: waste floor panels made of HDF fibreboard and waste floor
panels made of vinyl board [4,11]. A similar order of magnitude of mass loss was recorded
in TG/DTG tests and in tests performed on a laboratory scale. The greatest weight loss
was found for HDF panels in the second stage of the pyrolysis of the material, from
approximately 160 to 400 ◦C. For the vinyl panel, the largest loss was also recorded in the
second stage, from approximately 350 to 450 ◦C.

During the experiment, the weight of the samples used, the products obtained, the bed
temperature, the temperature of the pyrolysis gas, and the process duration were measured.
The results are presented in Figures 6–11 and in Table 1.

A single pyrolysis process carried out in laboratory conditions lasted 200 min. It
was found that regardless of the pyrolyzed material used in the apparatus, the maximum
assumed temperature was (425 ◦C) achieved between 80 and 100 min of the experiment.
For the vinyl panel, the maximum assumed temperature was achieved in the 100th minute
of the experiment. Further temperature fluctuations result from the adopted heating control
process of the device (following and tracking system). The temperature difference between
the bed and the gas at the chamber outlet was in the order of 100–150 ◦C for the five cases
considered, with the exception of trial 6—for vinyl panels the difference was approximately
60 ◦C. The onset of oil condensation was recorded for five biomass-based trials at 40 min
of the experiment. However, for the vinyl record, the beginning of oil condensation took
place in the 60th minute of the experiment.

The mass of char ranged from 334 g to 684 g, pyrolysis gas from 194.24 g to 378 g, and
oil from 121.76 g to 296.00 g. After 24 h, the pyrolysis oil was stratified into an oil fraction
(23.76–77.24 g) and water contaminated with an oil fraction (98–242.47 g). Attention was
paid to the several times lower oil yield from vinyl records (121.76 g of oil from 1000 g of
input) compared to the other tested samples (224 g to 296 g from 1000 g of input).
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Figure 7. Monitored process parameters for waste furniture made of MDF fibreboard.
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Figure 8. Monitored process parameters for waste furniture made of chipboard.
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Figure 9. Monitored process parameters for waste floor planks made of natural wood.
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Table 1. Masses of substrates and products, g.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 1000.00 334.00 218.76 77.24 370.00
MDF furniture board 1000.00 418.00 192.14 31.86 358.00
Chipboard furniture 1000.00 356.00 242.47 41.53 360.00
Natural floor plank 1000.00 346.00 229.73 46.27 378.00

Energy willow 1000.00 360.00 221.12 42.88 376.00
Vinyl floor panel 1000.00 684.00 98.000 23.76 194.24

3.2. Migration of Acidic Elements (S and Cl)

Based on the low-temperature pyrolysis process, a mass balance was prepared for
individual wastes. The results are presented in Table 2. Energy willow and wood-based
waste had a similar product mass distribution. It was found that the char constituted
approximately 1/3 of the input. The least char was obtained for HDF floor panels at
the level of 33.40%, and the highest for furniture made of MDF fibreboard at the level of
41.80%. Differences in the pyrolysis gas balance between the tested samples amounted to
a maximum of 2%. Pyrolysis gas accounted for 35.80% of the input for furniture made of
MDF fibreboard and 37.80% for natural wood planks.

Table 2. Results of mass balance calculations, %.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 100.00 33.40 21.88 7.72 37.00
MDF furniture board 100.00 41.80 19.21 3.19 35.80
Chipboard furniture 100.00 35.60 24.25 4.15 36.00
Natural floor plank 100.00 34.60 22. 97 4.63 37.80

Energy willow 100.00 36.00 22.11 4.29 37.60
Vinyl floor panel 100.00 68.40 9.80 2.38 19.42

As a result of the pyrolysis, pyrolysis oil and water contaminated with oily substances
were also obtained. For the tested wood-based waste, pyrolysis oil constituted less than
4.63% of the input, while twice as much oil, i.e., 7.72%, was recorded for HDF floor panels.
Water contaminated with oil constitutes approximately 20% of the load. A different nature
of mass distribution was found for vinyl panels. There are clear differences in the quantities
of products obtained. In relation to the tested waste, for vinyl panels, the amount of char
was twice as high, amounting to 68.40%, and the amount of pyrolysis gas was twice as
low, amounting to 19.42%. Pyrolysis oil and water contaminated with it constituted 2.38%
and 9.80% of the input, respectively. These were the lowest recorded values among the
tested samples.

The sulphur content was determined in all fractions—Table 3. The exception was
pyrolysis gas, for which balance calculations were performed. The tested waste had a
sulphur content below 0.65%. In the char from HDF panels, the sulphur content was the
highest and amounted to 0.34%, and it was the lowest in the char from natural floors,
at 0.015%. For the oil fraction from wood-based waste, sulphur was at a very low level,
below 0.08%. Only for the oil fraction from the vinyl panel, a sulphur content of 3.31% was
recorded. In the case of pyrolysis gas, the highest sulphur content was found in gas from
natural floorboards, which amounted to 1.69%.
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Table 3. The results of the pyrolysis process in terms of sulphur content, % by mass.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 0.24 0.34 0.08 0.07 0.28
MDF furniture board 0.45 0.22 0.05 0.08 0.95
Chipboard furniture 0.21 0.06 0.10 0.05 0.45
Natural floor plank 0.65 0.015 0.03 0.03 1.69

Energy willow 0.22 0.05 0.00 0.05 0.53
Vinyl floor panel 0.29 0.23 0.35 3.31 0.09

The same research was presented in [25] where the sulphur content in waste plastics
and their pyrolysis products was determined. A different trend of sulphur migration was
found in the case of contaminated foils compared to wood-based waste. The foils had a
higher sulphur content of 0.74%. The char had a much higher sulphur content of 0.51%. The
sulphur content in the oil fraction was also several times higher, around 2.18%, compared to
wood-based waste. The pyrolysis gas, however, contained several times less sulphur than
the tested samples, approximately 0.11%. A similar tendency of sulphur decomposition can
be seen with waste vinyl panels. For comparison, the authors of [56] state that the typical
sulphur content in tires is about 1.6%. The authors of [61] report that the sulphur content in
tire char ranged from 2.3% to 2.6%, and in the pyrolysis oil from 1.0% to 1.4%.

Table 4 lists the mass of sulphur in the pyrolysis substrates and products. The highest
mass of sulphur was recorded in MDF boards at the level of 4.49 g and in the natural
floor at the level of 6.50 g. The mass of sulphur for other waste did not exceed 3 g. The
distribution of sulphur is the smallest in the oil fraction. For wood-based waste, it did not
exceed 0.23 g. For HDF panels and vinyl panels, the most sulphur was found in the char,
1.14 g and 1.61 g, respectively. In turn, for the remaining tested waste, the migration of
sulphur into the pyrolysis gas was found to be the highest. The most sulphur was removed
from the pyrolysis gas for the natural floor, at the level of 6.37 g.

Table 4. Mass of sulphur in pyrolysis substrates and products, g.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 2.40 1.14 0.17 0.06 1.04
MDF furniture board 4.49 0.94 0.10 0.03 3.40
Chipboard furniture 2.10 0.23 0.23 0.02 1.62
Natural floor plank 6.50 0.05 0.06 0.02 6.37

Energy willow 2.20 0.19 0.00 0.02 1.99
Vinyl floor panel 2.90 1.61 0.34 0.79 0.17

Table 5 shows the results of sulphur migration calculations. Based on the results
obtained for wood-based waste and willow, it was found that most of the sulphur was
removed with the pyrolysis gas. Values ranged from 43.20% to 98.05%. The least amount of
sulphur was immobilized in the oil fraction, between 0.23% for natural floorboards and
2.29% for HDF floor panels. In the case of vinyl panels, only 5.69% was removed with gas,
55.43% with char, 27.12% with oil fraction, and 11.76% with contaminated water.
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Table 5. The results of sulphur migration calculations, % by mass.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 100.00 47.32 7.20 2.29 43.20
MDF furniture board 100.00 20.87 2.23 0.58 76.30
Chipboard furniture 100.00 10.85 11.03 0.97 77.15
Natural floor plank 100.00 0.80 0.92 0.23 98.05

Energy willow 100.00 8.51 0.00 0.88 90.61
Vinyl floor panel 100.00 55.43 11.76 27.12 5.69

According to [25], for contaminated foils, sulphur migration is as follows: 2.67% is
discharged with pyrolysis gas, 13.00% with char, and 84.33% with pyrolysis oil. It shows
the opposite distribution compared to wood-based waste.

Table 6 shows the chlorine content in the tested waste and pyrolysis products. Chlorine
was determined analytically in feedstocks, chars, and oil fractions. For pyrolysis gas, the
presented results come from balance calculations. Chlorine content below the detection
limit was recorded in HDF floor panels and their pyrolysis products. The chlorine content in
the remaining tested wood-based loads was below 0.73%, which translates into a relatively
small amount of chlorine in the pyrolysis products.

Table 6. The results of the pyrolysis process in terms of chlorine content, % by mass.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 0.00 0.00 0.00 0.00 0.00
MDF furniture board 0.67 1.18 0.06 0.09 0.44
Chipboard furniture 0.30 0.08 0.00 0.00 0.75
Natural floor plank 0.73 0.09 0.00 0.07 1.84

Energy willow 0.08 0.08 0.00 0.07 0.13
Vinyl floor panel 12.55 10.61 2.27 8.83 25.02

Noteworthy is the high chlorine content in the vinyl panel, at 12.55%. This value is
several times higher than in wood-based waste. At the same time, high chlorine content
was found in the pyrolysis products of vinyl panels. In the char it was 10.61%, in the oil
fraction, 8.83%, and in the pyrolysis gas, 25.02%.

The work [23] discusses the content and migration of chlorine in contaminated foils.
The chlorine content in the substrate was approximately 1% and was higher than in wood-
based waste. In the char, it was several times higher, around 3%, while in the case of
waste vinyl flooring, it was three times lower. For oil, it was about 0.25% and for gas 1.6%.
According to [23], recycled plastics had a high content of chlorine (8.66%), char (6.65%), oil
(3.42%), and gas (19.36%). The distribution is similar for the tested vinyl floor.

Table 7 shows the mass of chlorine in both the tested substrates and pyrolysis products.
Considering wood-based waste first, the highest amount of chlorine was found in the
MDF board and natural floor, at 6.66 g and 7.30 g, respectively. Very small amounts of
chlorine in the pyrolysis oil were recorded in these wastes, below 0.12 g. The highest mass
of chlorine was found in the char MDF panel, of the order of 4.93 g. For the rest of the
tested wood-based samples, the most chlorine was removed with the pyrolysis gas, and the
amount of chlorine did not exceed 6.95 g. In HDF panels and their pyrolysis products, the
chlorine content was below the determination level. Vinyl panels were discussed separately,
with 125.5 g of chlorine recorded. Very high masses of chlorine were also recorded in their
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pyrolysis products: char—72.52 g, pyrolysis oil with contaminated water—4.32 g, and
pyrolysis gas—48.61 g.

Table 7. Mass of chlorine in pyrolysis substrates and products, g.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 0.00 0.00 0.00 0.00 0.00
MDF furniture board 6.66 4.93 0.12 0.03 1.58
Chipboard furniture 3.00 0.29 0.00 0.00 2.71
Natural floor plank 7.30 0.32 0.00 0.03 6.95

Energy willow 0.80 0.29 0.00 0.03 0.48
Vinyl floor panel 125.50 72.57 2.22 2.10 48.61

The above tests were necessary to perform chlorine migration calculations, and the
results are summarized in Table 8.

Table 8. The results of chlorine migration calculations, % by mass.

Type of Waste Input Char

Pyrolytic Oil
Pyrolytic

Gas
Oil-

Contaminated
Water

Oil

HDF floor panel 0.00 0.00 0.00 0.00 0.00
MDF furniture board 100.00 74.07 1.73 0.43 23.76
Chipboard furniture 100.00 9.55 0.00 0.00 90.45
Natural floor plank 100.00 4.41 0.00 0.44 95.15

Energy willow 100.00 36.00 0.00 3.75 60.25
Vinyl floor panel 100.00 57.83 1.77 1.67 38.73

Taking into account the above results, chlorine migration is varied and is as follows:
for MDF furniture, most of the chlorine is immobilized in the char (74.07%), 23.76% is
removed via the pyrolysis gas, and 0.43% with the liquid fraction. For natural flooring and
furniture based on chipboard, over 90% goes to the pyrolysis gas, and the remaining part
goes to the char (less than 10%) and pyrolysis oil (less than 1%). In the case of vinyl panels,
the migration of chlorine is as follows: 57.83% is discharged with the char, 38.73% with the
pyrolysis gas, 1.67% with the oil fraction, and 1.77% with water contaminated with oils.

The authors of [23] noted the migration of chlorine for the foil. The most chlorine was
removed from the char, at 61.5%, and the least from the oil, at 7.9%. For recycled plastics,
the least amount was discharged with oil (9.1%), and the most with gas (75.2%), similar to
vinyl waste.

4. Conclusions

In the adopted research methodology and using the existing equipment, a single
pyrolysis process lasted 200 min. During this time, the temperature in the bed of the
tested substance increased from the ambient temperature to the maximum temperature
value adopted, based on previous thermogravimetric tests, among others. The value of
this temperature was assumed to be 425 ◦C. As this temperature increased, the process of
thermal decomposition of the tested substance began. Its beginning was assumed to be the
appearance of the first drops of pyrolysis oil in the receiver. For the vinyl record, this took
place in the 60th minute of the experiment at a bed temperature of 380 ◦C and a vapour
temperature of 200 ◦C. For the remaining samples, this took place at 40 min and at a bed
temperature between 180 and 250 ◦C, with a vapour temperature of 100 ◦C.
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It has been shown that the elements contained in the waste migrate during the low-
temperature pyrolysis process to individual process products. The research was carried
out in terms of the migration of acidic elements, i.e., sulphur and chlorine. Due to their
reaction, they may cause the corrosion of devices. Therefore, it is important to know the
migration of these elements in order to propose specific design solutions in installations for
processing this type of waste.

It was found that sulphur in the tested wood-based waste and energy willow migrates
mainly to the pyrolysis gas, with the exception of HDF panels, for which sulphur migration
is at a comparable level in the char and pyrolysis gas. For vinyl panels, the most sulphur
was recorded in the char, and the least in the pyrolysis gas.

For MDF boards and vinyl panels, the highest migration of chlorine to the char was
recorded, and the lowest migration to the pyrolysis oil. For HDF panels, the chlorine
content was below the determination threshold, hence the degree of migration of this
element could not be determined in this case. For the remaining tested samples, the greatest
migration observed was to the pyrolysis gas.

Further research is planned into the use of pyrolysis products, with particular emphasis
on char and pyrolysis oil. In the next research step, the char will be subjected to thermal
and chemical activation in order to obtain activated carbon. Therefore, in order to select
the appropriate activation method and its conditions, tests were carried out, including
the migration of sulphur and chlorine, which may affect the activation process. In turn,
pyrolysis oil can be used as fuel. The tests carried out will allow for the determination of
the maximum concentrations of SO2/HCl gaseous pollutants, and thus for the optimal
selection of devices responsible for the exhaust gas treatment system (after-combustion
chamber, wet and dry adsorption).

In summary, the most important conclusion of the study is to highlight the phe-
nomenon of acidic element migration in the individual products of the pyrolysis process,
depending on the input substance to the process. In the samples with a higher content
of natural substances (HDF, MDF, natural flooring, chipboard, and energy willow), the
elements mostly migrated to pyrolysis gases. In the case of a vinyl panel (without natural
substances), the migration of these elements into the char was observed. This information
allows for optimal design of pyrolysis equipment at the technical scale. They also highlight
problems that can occur when managing/using pyrolysis products in other processes. For
example, the high content of acidic elements in vinyl record char may cause problems with
its use as activated carbon.
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published version of the manuscript.

Funding: The publication was funded by a subsidy allocated for 2023 (08/030/BK_23/0116).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders did not play any role in
the design of the study plan.

References
1. Roffael, E.; Schneider, T.; Dix, B.; Buchholz, T. Zur Hydrophobierung von mitteldichten Faserplatten (MDF) mit Paraffinen. Teil 1:

Einfluss der chemischen Zusammensetzung des Paraffins und des Emulgatortyps auf die Hydrophobierung von MDF. Holz. Als.
Roh.-Und. Werkst. 2005, 63, 192–203. [CrossRef]

2. Wan, H.; Wang, X.M.; Bary, A.; Shen, J. Recycling wood composite panels: Characterizing recycled materials. BioResources 2014, 9,
7554–7565. [CrossRef]
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