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Abstract: Environmental comfort takes a central role in the well-being and health of people. In
modern industrial, commercial, and residential buildings, passive energy sources (such as solar
irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are
usually employed to achieve the required comfort. While passive strategies can effectively enhance
the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC
machines are often preferred to have direct control over the environment. Commonly, the working
parameters of such machines are manually tuned to a fixed set point during working hours or
throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption.
Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific
environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot
be applied on a large industrial scale. We address the problem from a different angle and propose an
adaptive and practical solution for comfort optimisation. It does not require the intervention of expert
personnel or any customisations around the environment while it implicitly analyses the influence
of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural
network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a
range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is
taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort
and, at the same time, minimises energy consumption. We validate our solution in a real-world
scenario and through software simulations, providing a performance comparison against the fixed
set point strategy and a greedy approach. The evaluation results show that our solution achieves
the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a
real environment.

Keywords: thermal comfort; energy efficiency; automated HVAC configuration; deep learning

1. Introduction

Governments, regulatory agencies, and public bodies have been promoting policies
and measures for healthy and energy-efficient buildings, issuing directives such as the
Directive (2018/844) [1] developed by the European Parliament. Despite these efforts, a
significant amount of energy is often wasted in industrial, commercial, and residential
buildings, causing uncomfortable conditions for occupants. Typical examples of such
inefficiencies are retail stores, in which energy managers struggle to find a good balance in
the tradeoff between optimisation of comfort and minimisation of energy consumption by
HVAC systems. Indeed, managers need customers to feel comfortable while shopping at
any time of the year and in all environmental conditions. Furthermore, they seek to gain
important indoor air quality (IAQ) certifications [2,3] in order to distinguish themselves
against their competitors.
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Currently, HVAC systems are often managed directly on site in buildings, manually
operating on thermostats to regulate thermal comfort with not enough attention to energy
efficiency. For instance, in commercial buildings, HVAC systems are often left active at the
end of the day, thus continuing to work and consuming unnecessary energy during the
night when shops are closed. Another common issue in the vast majority of buildings is
that whatever HVAC configuration in terms of ON/OFF and set point (i.e., desired target
temperature) is configured in the early morning is usually left unchanged throughout the
day. However, according to outdoor weather and its impact on the indoor environments,
it might be convenient applying different HVAC settings during the day (e.g., switching
the devices off). In such scenarios, automated systems capable of continuously optimising
HVAC devices over time have drawn the interest of managers. Indeed, these solutions aim
to address the aforementioned challenges, efficiently meeting the comfort requirements
throughout the day while reducing the energy footprint. This takes a central role in
scenarios where a large amount of geographically distributed and physically heterogeneous
sites are managed as each of them might require a different control strategy.

Multiple works from the literature deal with the topic of comfort maximisation jointly
with energy consumption minimisation in buildings. Despite the progress in this field
resulting in innovative solutions, e.g., based on advanced passive strategies [4,5] or model
predictive control (MPC) [6–9], their major drawback is the limited scalability. This refers to
the capability to replicate and automate a specific approach across different environments
regardless of their physical characteristics. These solutions often require a comprehensive
analysis of each building and the machinery installed therein to define tailored physical
or mathematical models (e.g., [4,5,8,10–12]), which typically need manual updates over
time. In parallel, other solutions use complex building-related information (e.g., [6,7,13,14])
and might require customisations within the monitored environment. While designing
smart and adaptive solutions using data collected from Internet of Things (IoT) sensors is
essential to optimise HVAC systems [15], it is crucial to ensure that their deployment and
replicability involve automated operations. This makes them attractive from a business
perspective, especially for managers who need to control tens or hundreds of buildings.
Finally, different works provide theoretical analysis techniques for comfort and energy
optimisation but lack real-world validation [16–18]. In this regard, Ngarambe et al. [19]
underline that experimental studies demonstrating the benefit of artificial intelligence (AI)
control strategies (e.g., MPC approaches) in real environments take a central role.

In this work, we propose a novel solution called energy-efficient comfort optimisation
(EECO) based on deep learning (DL) to regulate HVAC systems in an automated manner.
It does not require any intervention of expert personnel or prior information of buildings
(e.g., installed HVAC devices, layout, and materials) as it works on real data collected
from the environment. In this regard, our aim is to analyse how the different agents,
including passive phenomena, impact the parameters within the environment through
the collected data. This allows us to provide an adaptive solution for the monitored
environment that implicitly considers the influence of the different sources. From an
applicability perspective, the proposed solution holds the potential for being applied in
any building equipped with a control system capable of gathering environmental and
energy consumption data and interfacing with local HVAC devices. Basically, after an
initial configuration of the main parameters (e.g., the comfort interval throughout the day
and some parameters of the comfort model), the proposed solution can effectively work
just after its deployment, and it keeps up to date independently over time, resulting in
an automated and practical solution. The objective of HVAC optimisation is to guarantee
the comfort requirements, at least during opening hours, and then balance both thermal
comfort and energy consumption concerns. Indoor comfort is modelled by means of
predicted mean vote (PMV) [20,21], a thermal comfort index referenced by different indoor
comfort standards all over the world, including European Standard EN 16798. A shallow
1D convolutional neural network (CNN) is used as DL architecture to predict the short-
term evolution of future indoor environmental parameters (i.e., temperature, humidity,
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and carbon dioxide (CO2)) and the energy consumption of the HVAC system. The idea
behind the DL model is to predict the environmental and energy impact of a set of possible
device configurations (ON/OFF and set point) for m upcoming time periods. Basically,
a tree of possible actuation strategies that keeps track of the environment evolution in
the next future based on past (real or predicted) conditions is generated. Each branch of
the resulting tree is then evaluated to select the strategy that maintains the best expected
comfort at minimal energy cost.

Our work can contribute to reducing the carbon footprint of buildings caused by
HVAC systems, improving the comfort conditions to occupants and saving on operating
costs required to control thermal comfort. The designed approach has been tested during
the summer and winter periods in a real environment of a small production plant belonging
to a large retail company in northern Italy. Furthermore, an additional analysis based on
software simulations is proposed.

The main contributions of this work are the following:

• A practical solution, with no prior information of the local environment (e.g., in-
stalled HVAC devices and building features) or need for customisation or intervention
of expert personnel, capable of selecting an efficient HVAC configuration in terms
of ON/OFF and set point that aims to guarantee the given thermal comfort while
minimising energy consumption.

• An adaptive and continuous update of the actuations through short-term decisions
based on long-term predictions of the environment.

• A comparison analysis in terms of tradeoff between thermal comfort and energy
consumption with the manual approach, which sets a static set point temperature
throughout the day, and a greedy PMV-based solution, which configures the HVAC
devices according to the current environmental conditions.

The remainder of this paper is organised as follows. Section 2 describes the rele-
vant literature. Section 3 provides background regarding the neural network architecture
and predicted mean vote (PMV) index. Section 4 presents the proposed methodology.
Section 5 illustrates the experimental setup, while Section 6 describes and presents the
results. Section 7 discusses the limitations of the proposed solution. Finally, conclusions
are provided in Section 8.

2. State of the Art

In the recent scientific literature, a number of research works have been proposed
to achieve thermal comfort, trying to solve the problem of the tradeoff between comfort
maximisation and energy minimisation from different perspectives. In this regard, different
works [16–18] tackle the problem through Pareto analysis. This approach provides a set
of possible tradeoffs between comfort and energy consumption, each of which might be a
feasible solution for the deployment. However, the mentioned research works provide static
analysis with a limited number of software simulations and do not consider any prediction
in the future for proactive decision making. Additionally, they model the objective functions
through ad hoc mathematical models for the specific environment under evaluation, thus
limiting their applicability across multiple sites. Finally, while calculating the Pareto front
can be useful, a proper strategy is necessary to select a single configuration that guarantees
good comfort at a low cost, and this is missing in these works.

Other research initiatives have tackled the problem from another perspective: they
physically model the buildings through simulation software to provide either simulated en-
vironments for analysis or generate a large amount of data to train AI models [7,10–12]. For
instance, Gao et al. [12] propose a DL solution based on reinforcement learning validated by
means of a simulated building thermal environment and an HVAC system; a large amount
of hourly simulated data are used to train their AI models. Another solution based on
reinforcement learning is presented by Valladares et al. [11]. In their study, a reinforcement
learning model is first trained with 10 years of simulated data, following a similar approach
to Gao et al. [12], before being deployed in real environments to evaluate the performance.
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By means of training data collected over a large time interval, they achieve a balance
among indoor comfort, air quality, and the energy consumption of the air conditioning
and ventilation systems. Unlike the research works proposed by Valladares et al. [11] and
Gao et al. [12], a different solution based on model predictive control (MPC) is proposed by
Ascione et al. [10]. However, even in this case, it relies on simulation-based physical models
to optimise the hourly set point temperature for the next 24 h. Furthermore, Jing et al. [7]
propose a simple PMV-based approach to keep the environment within the comfort level
and overcome the typical temperature-based mechanism. Despite improvements in terms
of daily energy savings, the proposed solution only focuses on thermal comfort, with no
attention for a tradeoff between PMV index and energy consumption in the HVAC control
strategy. Additionally, the proposed solution is validated and analysed using simulation
models, without any validation in real environments. Finally, other works rely on advanced
passive strategies. For instance, Liu et al. [4] analyse the applicability and effectiveness of
these technologies in residential buildings through physical models, resulting in significant
energy savings. Additionally, de Araujo Passos et al. [5], in their study, define a mathe-
matical model to optimise a novel HVAC system by relying on passive energy sources
(e.g., solar irradiance and heat exchangers) as much as possible. Significant energy-saving
results have been achieved, demonstrating that over half of the energy demand can be
met passively.

All the research works described above are based on building modelling. In addition
to a significant manual effort to model various aspects of the environment (e.g., layout,
materials, location, and installed HVAC machinery), this approach provides clear limita-
tions. Firstly, detailed modelling of individual buildings impacts scalability, limiting their
replicability across multiple sites with limited effort. Secondly, the usage of simulated data
might hinder a faithful replication of real-world environments, which can be affected by
unexpected events (e.g., windows or doors being opened or rapid increases in occupancy).
In this regard, the validation of AI-control solutions in real environments is fundamental to
demonstrate their benefits in the intelligent control of HVAC systems [19].

Other approaches that do not rely on physical models of buildings are proposed
in the literature. Chen et al. [8] propose an MPC solution by modelling the building
through mathematical models. However, complex building-specific information is used
(e.g., conduction/convection coefficient, wall thickness, air mass flow rate, etc.). It is
worth noting that, in this work, feedback from occupants takes a central role to adapt the
thermal comfort based on personal perception, resulting in improved comfort outcomes.
In this regard, other studies based on MPC delve into how personal preferences affect
the optimisation of energy consumption and the well-being of occupants [9]. To address
the limitations of physical-based models, as per our goal, Manjarres et al. [13] introduce a
framework aimed at minimising energy consumption while ensuring indoor temperatures
remain within predefined ranges. The proposed framework outlines an optimal schedule
for HVAC ON/OFF and mechanical ventilation (MV) operation for the next 24 h. However,
it requires the installation of specific sensors (e.g., in the outlet conduct of the air handling
unit within the HVAC device). Additionally, it primarily considers indoor temperature
rather than thermal comfort (e.g., PMV index) and does not account for updates to the
operating schedule throughout the day in response to potential environmental changes.
Similarly, Yang et al. [6] propose an MPC approach designed to overcome the constraints
associated with physical models by integrating AI. Additionally, they introduce an update
mechanism over time to capture any possible environmental change. However, their
solution requires customisations within the environments in terms of advanced sensors
(e.g., combined temperature–humidity–pressure–lux (THPL) sensors) to be installed in
specific locations as well as detailed information regarding chilled water of HVAC devices.
This bounds their approach to the specific environment being evaluated. Another approach
that effectively keeps up with with environmental changes but includes complex building-
related information is proposed by Martell et al. [14]. Indeed, the authors propose a
multi-objective control architecture to estimate optimal set points where the computed
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Pareto front is updated hourly, thus selecting optimal temperature set points for each hour
of the day. Despite the update mechanism, even in this case, complex parameters closely
tied to the evaluated environment are considered. For instance, the authors use heat gains
resulting from different natural phenomena (e.g., convection, ventilation, and infiltration)
to model the indoor temperature behaviour, which might be different across different sites.

In summary, existing solutions for comfort optimisation present various limitations
that might impact their applicability to real-world scenarios. Indeed, they provide theoret-
ical analysis with no HVAC strategy selection and real-world validation [16–18], rely on
tailored physical (or mathematical) models [4,5,7,10–12], or use complex information of
the local environment [6,8,9,13,14]. Furthermore, no clear update mechanisms of HVAC
settings over time are taken into account, except in rare cases [6,10,14]. Our solution aims
to overcome the above limitations. On one hand, it does not require preliminary analysis
to define physical or mathematical models of the environment or gather building-specific
information. Instead, it adapts to the monitored environment by learning from the collected
data. On the other hand, we rely on long-term predictions to make short-term decisions
and continuously select the actuation strategy that optimises comfort and minimises energy
consumption over time.

3. Background

The solution proposed in this paper is grounded on a one-dimensional convolutional
neural network (CNN) [22] and on the predicted mean vote (PMV), a thermal comfort
index introduced by Fanger et al. [23].

3.1. Dataset

In Table 1, we report an overview of the variables used by the proposed solution. They
can be grouped into

• HVAC parameters (i.e., ON/OFF, SP, fan speed, operating mode), which are collected
for each device installed in the environment through Modbus protocol.

• Outdoor environment parameters (i.e., temperature, humidity), which are collected
from the OpenWeatherMap platform [24] through APIs.

• Indoor environment parameters (i.e., temperature, humidity, CO2, energy consump-
tion). Indoor temperature is sensed by the thermostats, while humidity and CO2
are collected through an IoT sensor installed in the environment. Finally, energy
consumption is collected from a smart energy meter. All these variables are collected
through Modbus protocol.

• Supporting variables (i.e., day of the week, hour of the day).

Table 1. Overview of the input variables.

Variable Type Description

ON/OFF Categorical ON/OFF of HVAC devices.

Set Point Number Set point temperature [◦C] of
HVAC devices.

Fan Speed Categorical
Fan speed of HVAC devices

(1 = low, 2 = high,
3 = very high).

Operating Mode Categorical
Operating mode of HVAC

devices, i.e., cooling
or heating.

Outdoor Temperature Number

Outdoor temperature [◦C]
collected from the
OpenWeatherMap

platform [24].
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Table 1. Cont.

Variable Type Description

Outdoor Humidity Number

Outdoor humidity [%]
collected from the
OpenWeatherMap

platform [24].

Indoor Temperature Number

Indoor temperature [◦C]
sensed by the thermostats,

which feed their readings to
the installed HVAC devices.

The mean value is used within
the algorithm.

Indoor Humidity Number
Indoor humidity [%] collected

through an IoT sensor
installed in the environment.

Indoor CO2 Number
Indoor CO2 [ppm] collected

through an IoT sensor
installed in the environment.

Energy Consumption Number

Energy consumption [kWh]
due to HVAC devices
collected from smart

energy meters.

Day of the week Number Information on the day of
the week.

Hour of the day Number Information on the hour of
the day.

All the above variables are collected every 15 min, with the exception of the outdoor
temperature and humidity, which are affected by a one-hour time granularity. In this case,
a linear interpolation has been applied to fill the missing quarters of hours. Furthermore,
before feeding the neural network, the values are normalised by defining a maximum and
minimum value for each of them. No missing values to be handled have been encountered
in the collected data.

3.2. Neural Network

A one-dimensional (in short 1D) CNN is a neural network model composed of one or
more 1D convolutional layers. Like in our previous work [25], we use 1D convolutions to
extract fine-grained information from one-dimensional data (such as indoor temperature,
humidity, or energy consumption) along the temporal dimension. Compared to 2D CNNs
and other DL models such as multi-layer perceptrons (MLPs) or recurrent neural networks
(RNNs), 1D CNNs are less computationally complex and can perform well even when
using shallow architectures [22].

3.2.1. Architecture

In this work, we propose a 1D CNN to predict future values of temperature, humidity,
CO2 level, and energy consumption with the objective to timely tune the HVAC system so
that the given comfort level is followed with minimal energy consumption. The architecture
consists of four layers, as sketched in Figure 1:

• Input Layer. The first layer takes as input an n × f array, where n is the duration
of the observation time window (expressed in quarters of an hour) and f is the
number of features. That is, an input sample consists of the values of f variables,
including temperature, humidity, and CO2, energy consumption, and timestamp
HVAC operating parameters, collected during a time window of n quarters of an hour.
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Each sample is normalised along the temporal axis by using the nominal minimum
and maximum values of each variable.

• 1D Convolutional Layer. Each sample is operated by a convolutional layer with k filters,
each filter of size h× f , with h being the height and f the width of the input sample
(i.e., the number of features). Each of these k kernels slides over the input matrix with
a step of 1 to extract the temporal properties of the f features. This layer outputs a
matrix of size (n− h + 1)× k, in which i-th column is a feature vector extracted by the
i-th filter. The rectified linear activation function (ReLU(x) = max{0,x}) is used to break
linearity in the model, as per convention for CNNs.

• Max Pooling Layer. The max pooling operation downsamples the temporal properties
extracted with the convolution by keeping only the largest values. This operation
involves a filter that slides along each feature map with a pre-defined step (also called
stride) and applies a maximum operator to a number of elements equal to the pool size
parameter. As we set stride equal to pool size, the size of the resulting matrix is equal to
((n− h + 1)/pool_size) · k.

• Flatten Layer. It reshapes the output of the max pooling operation into a one-dimensional
feature vector.

• Output Layer. The vector is processed by a final fully connected layer. The output
of this layer is a vector of four elements, with the predictions of indoor temperature,
humidity, CO2, and energy consumption for the quarter of an hour that follows the
input time window.

Dense LinearFlattenMax Pooling1D Convolution 
ReLU

h

k

n-h+1

n

f

k

(n-h+1)/ 
pool_size

k*[(n-h+1)/ 
pool_size] 

...

Figure 1. The designed neural network architecture.

3.2.2. Model Training

Table 2 reports the values of the main hyper-parameters of the AI model. Considering
the obtained performance, we use largely the same configuration reported in our previous
work [25], differing only in a couple of parameters: we define different loss weights for the
output variables with the aim to balance their contribution equally within the overall loss,
and we reduce the maximum number of training epochs to 1000.

Table 2. Model parameters.

Parameter Value

Time granularity of data 15 min
Quarters of an hour in a sample 8

Number of kernel filters, Convolutional layer 64



Energies 2023, 16, 7334 8 of 28

Table 2. Cont.

Parameter Value

Kernel size, Convolutional layer 3
Pool size, Max Pooling layer 2

Learning rate 0.001
Batch size 32
Optimizer Adam [26]

Loss function Mean squared error
Validation split 0.3

Loss weights
CO2: 0.1, indoor temperature: 100,
indoor humidity: 1, energy: 1000

Maximum number of epochs 1000
Patience 25

Every day after midnight, we train the AI model by using a window of data (i.e., mobile
window) collected over the last 30 days and handled in samples covering a window of eight
quarters of an hour. As reported under Sections 1 and 3.1, data are made available thanks
to a data collection system, which is necessary to regularly sense the environment through
sensors and smart energy meters. The objective of the update mechanism leveraging mobile
window [25] is twofold:

1. Enabling the model to learn the impact of actuations (ON/OFF, set point) on the
indoor environment and energy consumption over the recent period.

2. Keeping up with seasonal variations in environmental conditions. Indeed, the same
HVAC settings might lead to different effects on the environment under different
conditions, e.g., outdoor weather.

3.3. Predicted Mean Vote

The predicted mean vote (PMV) is a thermal comfort index introduced by Fanger [23]
and used by many research works to model the thermal comfort of the occupants. In
particular, as observed by Tartarini et al. [27], PMV computes the mean thermal sensation
vote of a large number of people according to a sensation scale ranging from −3 to +3,
respectively, from cold to hot passing through a value equal to 0, which means a neutral
condition. In this research work, the open-source Python library pythermalcomfort [28] is
used to compute the PMV index. This library comprises a range of functions for modelling
indoor environmental comfort and its associated parameters. In addition, we refer to
an online tool [27] to dynamically find the boundaries for the different thermal comfort
categories defined by the EN 16798 standard. The PMV index is computed as a function of
environmental and personal variables [20], in particular:

• Air temperature [◦C], the indoor temperature in the environment.
• Mean radiant temperature [◦C], defined as the temperature due to radiant heat ex-

change between a human body and a given environment [29]. For the sake of simplic-
ity, we assume the mean radiant temperature equal to the air temperature.

• Relative humidity [%], Indoor relative humidity in the environment.
• Metabolic rate [W/m2]. It is associated with the activity performed by the occupants

in the environment. We set it equal to 1.6, which corresponds to light activity in the
environment coherently with our real test case.

• Relative air velocity [m/s]. It includes the air speed within the considered environment
as well as the air speed due to body movement. It is computed by using function
v_relative(v, met) from library pythermalcomfort, with v equal to 0.15 m/s (heating) or
0.25 m/s (cooling) according to standard limits defined by ISO 7730 [30].

• Clothing insulation [clo]. It is the thermal insulation provided by clothing worn by
people in the environment. As estimating a single value for each person requires
advanced sensors as well as possible customisations within the environment, we
modeled such a parameter with a unique value. To cope with this task, we used
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the function clo_dynamic(clo, met) from library pythermalcomfort. In this case, clo is
computed by means of function clo_tout(tout, units=“SI”), which computes the daily
clothing insulation based on outdoor temperature at 6.00 a.m. In this way, we provide
a dynamic estimate of the clothing insulation throughout the year.

Standard EN 16798 ( [31]) defines specific categories for indoor comfort based on the
PMV, which are reported in Table 3:

Table 3. Comfort categories and the related PMV range.

Category PMV

I −0.2 < PMV < 0.2
II −0.5 < PMV < 0.5
III −0.7 < PMV < 0.7
IV −1 < PMV < 1

It is worth noting that negative ranges of PMV index are typical for heating mode,
while positive values are obtained when cooling mode is active.

As underlined by Yau et al. [20], the PMV index is an objective measure that can be
computed in any indoor environment regardless of installed HVAC systems and conditions
of the outdoor environment. Therefore, considering its widespread use in the literature as
well as its reference in different standards (e.g., ISO 7730, EN 16798), we have chosen to use
such methodology.

4. Methodology

In this work, we tackle the problem of energy-efficient comfort optimisation in indoor
environments. That is, we study and develop a methodology for the automated control of
HVAC systems so that the defined comfort requirements within the considered environ-
ment (e.g., by managers) during the day are respected with minimal energy consumption.
As introduced in Section 3.3, the thermal comfort index (PMV), as defined by Fanger [23],
depends on a set of parameters (such as air temperature and humidity of the environment),
which, in a real-world environment, can be influenced by the outdoor conditions. In this
regard, adapting the HVAC optimisation according to outdoor weather takes a central role
from a research perspective [32]. At first glance, a trivial greedy PMV-based mechanism
that activates the HVAC system when the thermal comfort level is outside the desired range,
similar to the approach proposed by Jing et al. [7], might be viewed as a viable solution.
However, such an approach, which makes decisions only considering the current state,
might not work as desired. In particular, let us first define four comfort states (represented
in Figure 2) based on the comfort interval defined throughout the day:

• No Comfort (NC): the shop is closed (e.g., at night or on Sundays).
• No Comfort then Comfort (NC-C): usually early morning before the opening.
• Comfort (C): the shop is open (e.g., during a working day).
• Comfort then No Comfort (C-NC): generally late afternoon before closing.

Indeed, a greedy approach might not be able to achieve the target comfort at the
beginning of the working time (NC-C state), i.e., when the comfort level is far from the
target value because of a long inactivity period (e.g., night closure, holiday, etc.). For the
same reason, it might activate the HVAC system when the store closure is approaching
(C-NC state), leading to inefficient energy utilisation.
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t08:00 20:00

NC

C

NC-C C-NC

00:00 23:59

Figure 2. Representation of the four control states throughout the day. In this example, the comfort
interval is defined between 8 a.m. and 8 p.m..

Based on these premises, we propose an AI-based solution called EECO, in which a
CNN is used to predict the future comfort level and energy consumption of the HVAC.
Specifically, given a range of possible HVAC configurations (meaning, ON/OFF, and SP),
the CNN predicts the effects of each choice on future comfort and energy consumption. At
every quarter of an hour, the system computes the predictions for the next m quarters of an
hour, generating an m-level tree of candidate sequences of HVAC configurations.

The ultimate goal of EECO is to select the branch of the tree (hence, a sequence of
future HVAC configurations), which, based on the CNN predictions, will minimise an
objective function defined as the weighted summation of thermal comfort index PMV
and energy.

In the remainder of this section, we describe the whole process of comfort optimisation,
including input/output of the CNN, the structure of the decision tree, and the logic behind
the choice on the HVAC settings. This process is described in Algorithms 1 and 2 and
illustrated in Figures 3 and 4.

Algorithm 1 Tree building

Input: Root node (n000), Historical data (X), Tree depth (m), Target comfort (C̄), Operating
mode (o)

Output: Tree (t)
1: procedure BUILDTREE(n000,X,m,C̄,o)
2: t← L0(n000) . Init tree node n000 at level 0
3: for i = 1, ..., m do . Loop over tree levels
4: Li ← ∅ . Init level i
5: Xi ← X[−n + i, i− 1] . Extract n-1 rows from X
6: for j = 0, ..., |Li−1| − 1 do . Loop over parents pij
7: Pij ← ∅ . Init list of children of parent node pij
8: Aij ← [(OFF, pij(SP))] . Init list of actuations
9: if C̄ 6= NC then

10: Aij ← Aij ∪ GETACT(pij(T), pij(H), C̄, o)
11: end if
12: for k = 0, ..., Kj − 1 do . with Kj = |Aij|
13: (ON/OFFijk, SPijk) = Aij[k]
14: Vij = [pij(T), pij(H), pij(CO2), pij(E))]
15: Xijk ← Xi ∪ [ON/OFFijk, SPijk, · · · , Vij]
16: nijk ← GETNODE(Xijk)
17: Pij.insert(nijk)
18: end for
19: Li.insert(Pij) . Add nodes of list Pij to level i
20: end for
21: t.insert(Li) . Add level i to the tree
22: end for
23: return t
24: end procedure
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Algorithm 2 Get actuations

Input: Current temperature (T), Current humidity (H), Target comfort (C̄), Operating
mode (o)

Output: List of actuations (A)
1: procedure GETACT(T, H, C̄, o)
2: A← ∅ . Init list of actuations
3: Tmin, Tmax ← GETRANGETEMPERATURE(T, H, C̄)
4: if Tmin <= T <= Tmax then
5: SP← T
6: if o = HEATING then
7: while SP <= Tmax and SP <= T + 1 do
8: A.insert((ON,SP))
9: SP← SP + 1

10: end while
11: else if o = COOLING then
12: while SP >= Tmin and SP >= T − 1 do
13: A.insert((ON,SP))
14: SP← SP− 1
15: end while
16: end if
17: else
18: if o = HEATING then
19: SPmin ← ceil(T)
20: A.insert((ON, SPmin))
21: else if o = COOLING then
22: SPmax ← f loor(T)
23: A.insert((ON, SPmax))
24: end if
25: end if
26: return A
27: end procedure

(ON/OFF000, SP000)

(ON/OFF101, SP101)(ON/OFF100, SP100)

Level 0 
[t0,t1] 

T000 
H000 

CO2000 
E000

(ON/OFF210, SP210) (ON/OFF211, SP211)(ON/OFF200, SP200) (ON/OFF201, SP201) (ON/OFF202, SP202)

Level 1 
[t1,t2] 
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[t2,t3] 

T000 
H000 

CO2000 
E000

T100 
H100 

CO2100 
E100

T101 
H101 

CO2101 
E101

Level 3 
[t3,t4] 

T100 
H100 

CO2100 
E100

T101 
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E101

T100 
H100 

CO2100 
E100

(ON/OFF320, SP320) (ON/OFF321, SP321)

T202 
H202 
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E202
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H202 

CO2202 
E202

. 

. 

.
Level m
[tm-1,tm] 

n000 

n100 n101 

n200 n201 n202 n210 n211 

n320 n321 

Figure 3. The decision tree. Node’s attributes are HVAC configurations (ON/OFFijk, SPijk), which
are labelled with 3−digit numbers: the level of the tree (i), the index of the parent node (j), and the
index of the node (k). Tijk, Hijk, CO2ijk, and Eijk refer to predicted values of temperature, humidity,
CO2, and energy consumption for node nijk at Level i in the time slot [ti, ti+1].
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t-n+2

time

t-n

t-1
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t1
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f

n

t2
T000 H000 E000

(ON/OFF10k, SP10k)

k = {0, ..., K1-1} 

...

...

t-n+1

k = {0, ..., K1-1} 

CO2000

(T10k,H10k,CO210k,E10k)

CNN

n10k 

Figure 4. The first step of the building decision process at time slot [t0, t1], during which a tree of
possible HVAC configurations is built iteratively from time slot [t1, t2] to time slot [tm−1, tm]. In this
example, k = {0, 1} for the two nodes at Level 1 of the tree (Figure 3).

The decision tree is built every quarter of an hour (or time slot) using the output from
the previous time slot as a root node. The process that builds the tree is formulated in
Algorithm 1 BUILDTREE. BUILDTREE takes as input the current root node n000, historical
data of HVAC settings, weather conditions, energy consumption, the target comfort value
C̄ (a PMV value), and the operating mode o (either heating or cooling). The root node’s
attributes include the current HVAC settings, i.e., the operational settings in time slot
[t0, t1] = [t0, t0 + 15 min]. In general, a node nijk of the tree is characterised by a 3-digit
label and range of attributes. The first digit of the label indicates the level of the tree to
which the node belongs, the second digit is the index of the parent node, and the third digit
is the index of the node. The attributes are the current HVAC settings at time ti, i.e., the
pair of values (ON/OFFijk, SPijk), fan speed, and operating mode. Node’s attributes also
include average energy consumption Eijk, indoor temperature Tijk, indoor humidity Hijk,
and indoor CO2ijk.

Figure 3 illustrates a portion of the tree built during time slot [t0, t1], starting from
Level 0, which consists of root node n000. Level 1 of the tree is populated with a set of
children nodes n10k, k = {0, · · · , K1 − 1}, each one defined with pair (ON/OFF10k, SP10k),
i.e., a set of possible HVAC configurations that could be applied during time slot [t1, t2]
(Level 1 in Figure 3). Like all the other tree levels, Level 1 includes the OFF actuation (line 8
of Algorithm 1) and a set of actuations that are computed with Algorithm 2 (called at line 10
of Algorithm 1) using the indoor temperature of the parent node (p00(T) = T000 for Level 1),
the indoor humidity of the parent node (p00(H) = H000 for Level 1), the target comfort
level C̄, and the HVAC’s operating mode o (either HEATING or COOLING). Algorithm 2
defines the temperature range to be within the desired target comfort C̄ and, based on that
information and HVAC’s operating mode o, selects the strategy to enter the comfort range
or move within that through a couple of actuations.

One of the nodes at Level 1 is the output of the process executed during time slot
[t0, t1] and contains the HVAC configuration for time slot [t1, t2]. Moreover, such a node
will be the root node when the process is executed in time slot [t1, t2]. Which is the right
node? The selection of the most appropriate node is completed by populating the tree up
to Level m using the predictions of the CNN to simulate the behaviour of the system in
different conditions over the time (until time slot [tm−1, tm]). The solution is the node at
Level 1 that belongs to the branch of the tree whose sequence of actuations guarantees the
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best comfort at the minimum energy consumption in the long term. The logic behind this
decision is explained in the following steps:

• Given a level Li, and a parent node pij, with j ∈ {0, · · · , |Li−1|} and |Li−1|, the
cardinality of Level Li−1, Aij is the list of possible HVAC actuations for time slot
[ti, ti+1] applied to the children nodes of parent pij (lines 8, 10). In Figure 3, A21 =
{(ON/OFF210, SP210), (ON/OFF211, SP211)}. For each HVAC configuration Aij[k] k ∈
{0, · · · , Kj − 1}, the system predicts the effects of such configuration on comfort and
energy consumption starting from the parent’s conditions Vij of indoor temperature
pij(T), indoor humidity pij(H), indoor CO2 pij(CO2), and energy consumption pij(E)
(line 14).

• As sketched in Figure 4, the prediction for node k is obtained by feeding the CNN with
an array of n− 1 rows of historical HVAC settings, environmental values, and other
features (see Table 1) observed from ti−1 to t−n+i. The nth line contains the node’s
attributes Aij and other features related to [ti, ti+1]. This operation is summarised at
line 16 with function GETNODE. Node nijk, generated using actuation Aij[k], is added
to the list of children nodes Pij of parent pij (line 17).

• The list of children nodes Pij is added to Level Li, which is then added to the tree
when all the parents of the previous Level Li−1 have been processed.

• The above steps are repeated until the maximum tree depth m is reached.

The result of the process is a set B of simulated sequences of HVAC configurations
from time t1 to time tm, which can also be viewed as a set of paths across the decision tree
(or branches) from the root node to the leaves. The final step consists of choosing the best
path, i.e., the path that minimises both PMV and energy values, as formally expressed in
Equation (1):

fα(Cb, Eb) = α · Cb + (1− α) · Eb
Emax ·m

∀b ∈ B (1)

The objective function fα(Cb, Eb) is the weighted sum of predicted comfort and energy
for branch b, where Cb is a sum of the predicted values of thermal comfort on each node
of the branch, while Eb is the sum of the predicted values of energy consumption. More
precisely, Cb and Eb are computed as follows:

Cb =
m

∑
i=0

(|Cb,i| − |C̄|) · βi Eb =
m

∑
i=0

Eb,i ∀b ∈ B (2)

where β is a positive number smaller than 1, so that βi (β at the power of i) decreases as the
tree level i increases to provide less importance to the nodes far from the root (i.e., far in
the future).

The energy is normalised with the estimation of the maximum energy Emax consumed
by the HVAC system in a quarter of an hour and multiplied by the number of time slots in
a branch (m). α controls the relative weight of comfort and energy values. In our analysis,
we focus on a scenario where comfort holds priority. In this regard, we set α = 0.9.

For a given value of α, the solution is represented by the branch b̄ ∈ B such that

b̄ = argmin
b∈B

fα(Cb, Eb) (3)

Hence, the output of the whole process is the HVAC configuration (ON/OFF10kb̄
, SP10kb̄

)

for the next time slot [t1, t2], i.e., the attributes of node kb̄ at Level 1 of branch b̄. The above
process is executed every 15 min.

5. Experimental Setup

The proposed solution has been tested in a real warehouse of about 250 m2 owned by
an international retail company in northern Italy where two HVAC devices are installed.
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The latter are interfaced through the Modbus protocol [33] and regulated with same settings
in terms of ON/OFF and set point.

The building under consideration, as reported in Section 1, is located in northern Italy
and generally experiences a Mediterranean climate, with outdoor temperatures ranging
from approximately 0 ◦C to 15 ◦C in the winter and between 18 ◦C and 35 ◦C in the summer.
Both real-world experiments and software simulations have been performed to validate our
algorithm, considering both winter and summer days to provide a performance overview
both in heating and cooling mode.

We have compared EECO, which dynamically sets the HVAC configuration to achieve
a tradeoff between thermal comfort and energy consumption, with other two approaches:

• The Fixed Set Point approach, which configures the same set point value throughout
the whole day.

• The PMV-based approach, a greedy strategy that controls the HVAC devices by just
analysing the current value of the PMV index. In this regard, the greedy approach
aims to achieve the best comfort conditions within the desired range (i.e., the lower
bound), switching the HVAC devices off once such objective is addressed.

All the operations in the real environment are performed on an Intel NUC [34] with
Intel Core i3 as CPU and 8 GB of memory. For all the experiments, we set a comfort
time interval of twelve hours between 8 a.m. and 8 p.m.in accordance with our partner’s
requirements. During this interval, a pre-defined comfort level needs to be guaranteed
(cf. Table 3). Due to lack of activities within the environment on the weekends, we per-
formed our experiments only from Monday to Friday. For evaluation purposes, we set the
tree depth m equal to 10, starting from the current quarter of hour. This enables us to align
the operational schedule of HVAC devices according to EECO with that of the fixed set
point strategy (from 6 a.m. to 8 p.m.), which is defined by the partner company.

6. Results

In this section, we present the benefits of EECO from different perspectives, both
through experiments in a real environment and by software simulation.

6.1. Indoor Environment Forecast

One of the strengths of eeco is the capability to predict the evolution of the indoor
environment and to make proper short-term decisions. To this aim, let us consider a
summer early morning scenario when the HVAC devices must be turned on in advance to
reach the desired comfort level at a given time (e.g., 8 a.m.). Also, let us select the category
III (cf. Table 3) as the target comfort, i.e., 0.5 <= PMV < 0.7 in cooling mode and α = 0.9
in Equation (1). With this experiment, we show the ability of our predictive methods in
activating the HVAC devices in advance so that the target comfort is achieved before 8 a.m..

Figure 5 shows the actuation strategy in terms of ON/OFF and predicted/actual
values of PMV index and energy consumption recorded during two overlapping time
intervals of two hours, one starting at 5:45 a.m. and the following one starting at 6:00 a.m.
From the plots in the figure, we can observe that the algorithm turns on the HVAC devices
at 6 a.m. and plans to keep them active over the following two hours to achieve the
comfort range on time (i.e., PMV < 0.7 before 8 a.m.). Indeed, as reported in Table 4,
such a configuration is expected to achieve a PMV value just below 0.7 at 8 a.m. Actually,
analysing the dashed line in the PMV plots, which corresponds to the actual comfort values
recorded every quarter of an hour, it is possible to notice that the environment meets the
comfort requirements from 7 a.m., resulting in a PMV value equal to 0.65 at 8 a.m. thanks
to an accurate prediction of the environment evolution (Table 4). It is worth noting that this
result would not have been possible with a basic greedy strategy, mentioned in Section 4,
which would have activated the HVAC devices starting from 8 a.m., thus leaving the indoor
comfort outside the required range at the beginning of the working day.
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Figure 5. Example of actuation strategy in terms of ON/OFF (left) and related predicted environment
evolution in terms of PMV index (middle) and energy consumption (right) in the early morning at
5:45 a.m. (top) and 6:00 a.m. (bottom) to achieve the comfort requirements at 8:00 a.m.

Table 4. Accuracy of the predicted environment in terms of energy consumption and PMV as well as
difference between the real PMV and the predicted value at 5:45 a.m. and 6:00 a.m., respectively.

Time Energy-RMSE PMV-RMSE Real
PMV-8 a.m.

Predicted
PMV-8 a.m.

5:45 a.m. 0.32 0.08 0.65 0.7
6:00 a.m. 0.37 0.07 0.65 0.68

6.2. Indoor Comfort and Energy Consumption Optimisation

In this experiment, our objective is to evaluate the sensitivity of our solution to term
α of Equation (1), which controls the relative weight between comfort and energy in the
HVAC strategy selection. To this aim, let us choose for this test α = {0.3, 0.5, 0.7, 0.9}, with
a target comfort level set to category I in cooling mode, i.e., 0 <= PMV < 0.2 (cf. Table 3).
In this regard, because of the consistently low outdoor temperatures observed during the
period of these experiments, the indoor environment would have exceeded the boundaries
set by comfort categories classified as II or III (which are more appropriate for this specific
scenario), regardless of the value of α, while keeping the HVAC devices off (as reported in
Section 4). This would have affected the performance analysis of our solution on different
values of α both in terms of energy consumption and thermal comfort. As a result, in such
conditions, category I (i.e., which is typically defined in environments with vulnerable
people) enables us to analyse the behaviour of our solution while varying the α parameter.

Figure 6 outlines the behaviour of the PMV index and total energy consumption at
different values of α. We can notice that, setting α = 0.9, the PMV value stays close to zero
for most of the day, which corresponds to optimal comfort conditions for the occupants. On
the other hand, this strategy impacts the building’s energy footprint as HVAC devices are
constantly activated to achieve maximum comfort. Decreasing the value of α to 0.7 impacts
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the comfort, especially in the morning. Nevertheless, equivalent performance to higher α
values is achieved in the late afternoon due to a decreasing trend in outdoor temperature.
Compared to α = 0.9, with these settings, the energy consumption is reduced by about 5
kWh. Finally, with lower values of α (i.e., 0.3, 0.5), we penalise the indoor comfort, resulting
in higher PMV values ranging between 0.1 and 0.2. We can notice that the reduction in
energy consumption is negligible compared to the tests performed with higher values of α.
As reported in Table 5, low values of α not only impact the daily comfort conditions but
result in higher PMV values the next early morning as they leave the environment in worse
comfort conditions at the end of the day. This means that HVAC devices will have to bring
the environment within the desired comfort level, with a consequent impact on the energy
footprint. As can be noticed in the last column of the table, higher values of α ensure the
desired comfort level from the early hours of the next day.
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Figure 6. Behaviour of (left) hourly PMV index and (right) total energy consumption as α parameter
changes.

Table 5. Average PMV, total energy consumption [kWh], and PMV at 6 a.m. the next day at different
α values.

α PMV Total Energy Consumption PMV 6 a.m.

0.3 0.15 24 kWh 0.27
0.5 0.13 24 kWh 0.22
0.7 0.08 25 kWh 0.09
0.9 0.04 29 kWh 0.12

6.3. Performance Comparison: Real Environment

The results of the previous analysis highlighted that our solution can effectively
achieve the comfort objective at different values of α. In this experiment, we focus on
guaranteeing a high comfort level with minimum attention on the energy footprint as well,
comparing our algorithm with α = 0.9 in Equation (1) and a manual approach, where the
set point is fixed to the same value throughout the day. We configure our algorithm with
category III as the target comfort, i.e., with 0.5 <= PMV < 0.7, and we consider both days
in heating and cooling mode.

Finally, we activate the HVAC devices at 6 a.m. in the manual approach to guarantee
the same operating interval between the two strategies (see discussion of the experiment in
Section 6.1).

The evaluation of the two strategies has been performed over 10 days, five days each,
in cooling mode, while we have considered 20 days, 10 days each, in heating mode.

6.3.1. Cooling Mode

In the manual approach, we set SP = 27 ◦C, i.e., the value typically set within the
considered environment during cooling periods when the indoor temperature is usually
higher. It roughly corresponds to category III of the target comfort according to Tartarini
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et al. [27] and the configured parameters of PMV index described in Section 3.3, which
define our evaluated scenario.

Figure 7 reports results in terms of average (a) PMV during opening hours, (b) total
energy consumption over the operational interval of HVAC devices against the average
daily PMV index, (c) indoor temperature, and (d) variation in PMV during opening hours
(i.e., the difference between PMV at 6 a.m. and PMV at the different quarters of hours).
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Figure 7. Average daily (a) PMV index, (b) total daily energy consumption against the average daily
PMV index, (c) indoor temperature, and (d) variation in PMV index compared to value at 6 a.m.
(PMV6AM-PMV) for both EECO and the Fixed Set Point approach in cooling mode.

In the case of PMV and indoor temperature, Figure 7 reports the confidence interval
bounded by the maximum and minimum values. From a comfort perspective, our solution
constantly keeps the PMV value close to the lower bound (i.e., 0.5), which corresponds to the
best possible indoor comfort conditions within the desired range (Figure 7a). The process
of comfort optimisation generally requires more activity by HVAC devices (Figure 7d),
hence affecting the total energy footprint (Figure 7b). However, such energy impact is
generally limited, with no relevant peaks on the energy footprint. A slight increase in
energy consumption can be noticed during the last two days (day four and five) due to a
slightly higher outdoor temperature.

On the other hand, the Fixed Set Point approach produces unstable results in terms of
thermal comfort (Figure 7a). Indeed, with static settings, the HVAC devices are activated
only based on the indoor temperature. However, the configured set point value (i.e., 27 ◦C)
might not be correct to constantly achieve the target comfort requirements, which, in the
evaluated scenario, represent a constraint of the problem; as reported in Section 3.3, PMV
index depends on a set of parameters. For instance, clothing insulation, whose value is
computed daily using the outdoor temperature at 6 a.m., affects the weight of the indoor
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temperature on the computation of thermal comfort. Obviously, this parameter is not
considered when using a static set point, possibly leading to discomfort conditions. For
instance, day four of the EECO experiment and day three of the Fixed Set Point experiment
are expected to have similar clothing insulation values. However, during the former, the set
point is automatically set to SP = 26 ◦C for a large part of the day. Meanwhile, with the Fixed
Set Point, the set point value is close to the indoor temperature of 27 ◦C, leaving the HVAC
devices in economic mode. The HVAC devices typically have a dead band equal to 0.5 ◦C
around the control set point, which keeps them active to maintain the target temperature
with no need for strong activity. In terms of energy consumption, if we compare the two
days in Figure 7b, we can observe that our solution consumed slightly more energy than
the Fixed Set Point configuration; as underlined previously, the Fixed Set Point configuration
never reached the required comfort range during that day due to the static set point value
that never changes during the day, while EECO was able to drive the HVAC devices in a
way that the comfort requirements were respected throughout the whole day.

In Figure 7b, we can notice a peak in energy consumption on day five of the Fixed
Set Point experiment. Compared to days one and two of the same experiment, day five
reaches a similar comfort level with a much higher energy consumption. The reason for
that is the high outdoor temperature, which requires higher and longer activity from the
HVAC devices to keep the indoor temperature close to the set point of SP = 27 ◦C. On
the other hand, on days one and two, the low outdoor temperature helped the cooling
operations, pushing the indoor temperature under the set point value with a lower impact
on the building’s energy footprint.

In conclusion, as reported in Table 6, in cooling mode, our solution guarantees a
slightly better comfort conditions approach with a minimal impact on the building’s energy
footprint compared to the Fixed Set Point approach.

Table 6. Overall performance of EECO and the Fixed Set Point approach in terms of PMV and energy
consumption in cooling mode.

PMV Energy Consumption

EECO 0.56 78 kWh
Fixed Set Point 0.63 77 kWh

Difference 11% −1%

6.3.2. Heating Mode

In the manual approach, we set SP = 21 ◦C, i.e., the value typically set within the
considered environment during heating periods when the indoor temperature is usually
lower and roughly corresponding to category III of the target comfort. Even in this case, we
refer to Tartarini et al. [27] and the parameters of PMV index described in Section 3.3 we
set for our scenario.

As in the previous subsection, Figure 8 reports results in terms of average (a) PMV
during opening hours, (b) total energy consumption over the operational interval of HVAC
devices against the average daily PMV index, (c) indoor temperature, and (d) variation in
PMV during opening hours (i.e., the difference between PMV at 6 a.m. and PMV at the
different quarters of hour).

From a comfort perspective, as depicted in Figure 8a, it can be noted that our algorithm
provides non-optimal results during the coldest days (days one, two, and three in both
approaches) unlike the Fixed Set Point approach. This behaviour is due to some shutdowns
of the HVAC devices configured by our approach throughout the day with the aim to
effectively achieve a tradeoff between the thermal comfort and the energy consumption.
However, due to the low outdoor temperature, just a shutdown for a quarter of hour
prevents our solution from achieving good PMV values in the long term like Fixed Set Point,
which constantly keeps the HVAC devices active at 21 ◦C as a set point value. Even if the
target temperature is not reached, the given comfort category is effectively achieved when
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the indoor temperature is between 20 ◦C and 21 ◦C. Despite such a scenario, the minimum
comfort requirements are satisfied with EECO at some point during the day (i.e., in the
afternoon), resulting in about 20 kWh on average of saved energy (Figure 8b).

When the average outdoor temperature is around 5–6 ◦C (from day four to seven in
both approaches), EECO generally provides better results in terms of thermal comfort com-
pared to the Fixed Set Point approach. Indeed, as depicted in Figure 8a, larger improvements
in PMV are performed by our approach in order to improve the comfort conditions within
the desired range. As a result, HVAC devices are forced to have a higher activity, resulting
in consuming a little bit more energy (Figure 8b) compared to the Fixed Set Point approach.
On the other hand, the latter struggles in such conditions from a comfort perspective
(e.g., day five provides out-of-comfort conditions). Indeed, the Fixed Set Point strategy is
driven only by the indoor temperature, which is always really close to the set point value
(i.e., 21 ◦C) throughout the whole day. This forces the HVAC devices to constantly work
in economic mode (as reported in the previous Section 6.3.1), limiting their energy con-
sumption but potentially compromising optimal comfort. In such conditions, achieving the
desired comfort levels typically requires setting a higher target temperature (e.g., 22 ◦C). In
this regard, EECO dynamically tunes the set point value to enhance comfort, resulting in
only a marginal increase in energy consumption compared to the Fixed Set Point approach.

During warmer winter days (from day eight to ten in both approaches), the higher
outdoor temperature values help the environment to achieve good comfort conditions
with both approaches. In such a scenario, our algorithm is capable of reducing the energy
footprint by almost 20% compared to the Fixed Set Point approach. In this regard, EECO not
only configures some strategic shutdowns of the HVAC devices to take advantage of the
high outdoor temperature to optimise heating operations but switches the HVAC devices
off when the lower bound of the expected comfort level (i.e., in our case, 0.5) is achieved.
In contrast, such behaviour is not included in the Fixed Set Point approach. Indeed, the
latter is driven solely by the indoor temperature with no attention for thermal comfort.
As a result, it always keeps the HVAC devices active, even after achieving the desired
thermal comfort level with the configured set point value, as observed on day eight. Such
behaviour results in a significant amount of wasted energy over the long term, which can
be effectively limited through an intelligent approach like EECO.

To sum up, as presented in Table 7, in heating mode, EECO provides slightly worse
overall performance in terms of thermal comfort compared to the Fixed Set Point strategy,
mainly due to cold days, as discussed previously. While a portion of the energy savings
equal to 16% can be attributed to the slightly higher PMV value, it is worth noting that,
considering the overall amount of energy saved, a better tradeoff between thermal comfort
and energy consumption is achieved.

In heating mode, we provide an additional analysis to compare the two approaches on
Mondays, which is a particular case in terms of thermal comfort and energy consumption.
This is because the initial environmental conditions in the early morning are often consider-
ably far from the desired range due to inactivity during the weekend, thereby requiring
the HVAC devices to operate more intensively throughout the day to ensure the desired
comfort level. Although both the approaches are not able to address this task, providing
out-of-comfort conditions, the Fixed Set Point achieves an average PMV value closer to the
upper bound of the range than our solution, as reported in Table 8. On the other hand,
EECO provides slightly worse environmental conditions but reduces the energy footprint
of the building by more than 40 kWh on average, as underlined by the results reported in
Table 9.
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Figure 8. Average daily (a) PMV index, (b) total daily energy consumption, (c) indoor temperature,
and (d) variation in PMV index compared to value at 6 a.m. (PMV6AM-PMV) for both EECO and the
Fixed Set Point approach on working days in heating mode.

Table 7. Overall performance of EECO and the Fixed Set Point approach in terms of PMV and energy
consumption in heating mode.

PMV Energy Consumption

EECO 0.67 79 kWh
Fixed Set Point 0.63 95 kWh

Difference −6% 16%

Table 8. Results of the Fixed Set Point approach during Mondays.

Days PMV PMV 6 a.m. Indoor
Temperature

Outdoor
Temperature

Energy
Consumption

Day 1 0.75 1.04 19.1 ◦C 2.8 ◦C 204 kWh
Day 2 0.77 1.07 19.2 ◦C 4.5 ◦C 125 kWh
Day 3 0.74 1.18 19.6 ◦C 9.1 ◦C 122 kWh
Day 4 0.77 1.14 20.6 ◦C 10.3 ◦C 82 kWh

Average 0.76 1.11 19.6 ◦C 6.7 ◦C 133 kWh
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Table 9. Results of EECO during Mondays.

Days PMV PMV 6 a.m. Indoor
Temperature

Outdoor
Temperature

Energy
Consumption

Day 1 0.81 1.03 19.1 ◦C 4.3 ◦C 84 kWh
Day 2 0.89 1.28 19.7 ◦C 4.8 ◦C 154 kWh
Day 3 0.82 1.09 19.9 ◦C 6.6 ◦C 61 kWh
Day 4 0.72 1.12 20.9 ◦C 12.5 ◦C 51 kWh

Average 0.81 1.13 19.9 ◦C 7.1 ◦C 87 kWh

6.4. Performance Comparison: Simulated Environment

The validation in real-world scenarios makes it difficult to compare our solution with
multiple approaches due to different reasons. Firstly, we are forced to complete experiments
only from Monday to Friday as the building is closed in the weekends, thus requiring many
weeks to collect a good amount of results for each approach. Secondly, even with a great
availability of experimental data, it is difficult to compare more strategies over multiple
days due to different outdoor weather conditions.

Considering the above limitations, we propose a comparison analysis among our
solution, the Fixed Set Point approach (in this case, we test it with two different set point
values) and the greedy PMV-based approach through software simulations. We simulate the
behaviour of each strategy throughout each selected day in order to simulate the response
of the environment upon the specific HVAC configuration at each quarter of an hour. We
leverage an AI model, which we call Global Model, based on 1D CNN trained by using all
the data collected from the warehouse during the evaluated operating mode (from June
to October in cooling mode and from November to February in heating mode). The idea
is to include as much information as possible to make the Global Model learn the response
of the environment under all the different situations (e.g., due to outdoor weather), thus
maximising the accuracy in the simulation.

In terms of results, we first demonstrate the reliability of the simulated environment
by emulating the HVAC settings (i.e., ON/OFF and SP) occurring in the real environment
during the day by means of the designed Global Model. Then, we simulate the three
different approaches i.e., EECO, PMV-based, and Fixed Set Point. Consistent with the
previous analysis in the real environment, we consider category III as the target comfort,
i.e., 0.5 <= PMV < 0.7. For a thorough comparison, we examine days in both cooling
and heating modes, selecting eight random days for each month under consideration.
Furthermore, we split the results between normal working days and Mondays, as in
Section 6.3.2. Finally, as observed in the manual approach outlined in Section 6.3, both for
the PMV-based and Fixed Set Point approaches, we activate the HVAC devices at 6 a.m., thus
ensuring the same operating interval of our solution.

6.4.1. Simulator Validation

In this subsection, we aim to validate the simulated environment. In this regard, we
analyse the accuracy of the Global Model mentioned in Section 6.4. To cope with this task,
we analyse the behaviour of the predicted environment (indoor temperature, humidity,
CO2, and energy consumption) at each quarter of an hour upon the actuations (ON/OFF,
SP) that occurred in the real environment. Basically, each time, we rely on the previous
predictions to forecast the future evolution of the environment for the next quarter of an
hour. This approach enables us to evaluate the reliability of the simulator by comparing
the simulated behaviour of the warehouse throughout each chosen day with the real one.

In Tables 10 and 11, we show the overall monthly results of the simulated environment
during the summer (cooling mode) and the winter months (heating mode), respectively.
To provide a detailed overview of the accuracy of our simulated environment, for each
variable, we report the root mean squared error (RMSE) between the predicted and real
values as well as the percentage error (i.e., the percentage difference between the mean
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of the predicted values and the real ones). Unlike the percentage error used by Mancini
et al. [35] in a similar scenario, the RMSE enables us to highlight possible deviations in the
behaviour of each variable.

Table 10. Simulator results during summer months.

Energy [kWh] Indoor Temperature [◦C] Indoor Humidity [%] CO2 [ppm]

Months RMSE % Error RMSE % Error RMSE % Error RMSE % Error

July 0.42 10.9 0.43 1.1 2.0 3.1 27.7 3.2
August 0.37 11.9 0.40 1.0 2.0 2.6 24.2 2.6

September 0.36 36 0.34 0.9 1.9 2.7 47.7 4.5

Average 0.38 kWh 19.6% 0.39 ◦C 1.0% 2.0% 2.8% 33.2 ppm 3.4%

Table 11. Simulator results during winter months.

Energy [kWh] Indoor Temperature [◦C] Indoor Humidity [%] CO2 [ppm]

Months RMSE % Error RMSE % Error RMSE % Error RMSE % Error

December 0.34 22.1 0.32 1.1 1.4 2.5 35.3 3.6
January 0.33 10.2 0.29 1.1 1.3 2.3 25.0 2.4

February 0.31 11.9 0.49 1.9 1.3 2.8 38.8 3.0

Average 0.33 kWh 14.7% 0.37 ◦C 1.3% 1.3% 2.5% 33.0 ppm 3.0%

To the best of our knowledge, few research works in the literature demonstrate the
goodness of their simulated environments in a systematic way. Nevertheless, we try to
compare the accuracy of our simulator with the results of other works in the same research
domain. Unlike the validation results presented by Mancini et al. [35], our simulated
environment provides better performance in terms of percentage error for all the output
variables (except for CO2, which was not considered by the authors). However, even in our
case, the energy consumption due to HVAC devices results in the most challenging variable
to be simulated. In this regard, an average percentage error between 14% and 20% results
in a slight underestimation or overestimation of the total predicted energy consumption
compared to the real behaviour. However, the same amount of error is expected among all
the evaluated approaches, guaranteeing a fair comparison between them. Nevertheless,
it is worth noting that the RMSE value is limited for all the variables, thus demonstrating
the capability of the simulator to simulate the environment throughout the day in an
accurate way.

6.4.2. Cooling Mode

In cooling mode, we have completed experiments from July to September. As depicted
in Figure 9, EECO provides slightly worse comfort conditions while reducing the energy
footprint by at least 6 kWh on average compared to all the other evaluated approaches. In
this scenario, the Fixed Set Point approach provides better thermal comfort conditions than
requested but impacts the energy footprint of the building more than EECO and the PMV-
based approach, as reported in Table 12. Such behaviour is particularly clear with a lower set
point value (e.g., 26 ◦C), which forces the HVAC devices to work more, especially during
very hot months such as July and August. Conversely, the greedy PMV-based approach
achieves PMV values close to the lower bound of the comfort range but consumes a little
bit more energy than EECO. Finally, comparable performance both in terms of thermal
comfort and energy consumption is achieved during Mondays, as reported in Table 13.
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Figure 9. Overall average behaviour of PMV index and energy consumption for the evaluated
approaches on working days.

Table 12. Average monthly behaviour of PMV index and energy consumption for the evaluated
approaches on working days.

Fixed SP-26 ◦C Fixed SP-27 ◦C PMV-based EECO

Months Energy PMV Energy PMV Energy PMV Energy PMV

July 131 kWh 0.51 123 kWh 0.57 126 kWh 0.57 117 kWh 0.65
August 112 kWh 0.44 113 kWh 0.50 115 kWh 0.54 105 kWh 0.63

September 67 kWh 0.25 60 kWh 0.33 56 kWh 0.43 56 kWh 0.42

Average 104 kWh 0.40 99 kWh 0.47 99 kWh 0.51 93 kWh 0.57

Table 13. Average behaviour of PMV index and energy consumption for the evaluated approaches
on Mondays.

Fixed SP-26 ◦C Fixed SP-27 ◦C PMV-based EECO

Energy PMV Energy PMV Energy PMV Energy PMV

114 kWh 0.46 108 kWh 0.52 109 kWh 0.53 108 kWh 0.54

To sum up the results from simulation data in cooling mode, Table 14 shows the
improvement of EECO compared to the other approaches both from a comfort and energy
perspective. In cooling mode, our solution guarantees 6% to 13% energy savings while
providing slightly worse comfort conditions in terms of distance from the lower bound of
the comfort range.

Table 14. Overall performance of EECO compared to the Fixed Set Point and PMV-based approaches
in terms of absolute PMV difference from the lower bound of the comfort range and percentage
difference in energy saving.

PMV Distance Energy Consumption

Fixed SP-26 ◦C 0.03 11%
Fixed SP-27 ◦C −0.04 6%

PMV-based −0.06 6%

6.4.3. Heating Mode

In heating mode, we have compared the different approaches in the period between
December and February. In such a scenario, as depicted in Figure 10, our solution is capable
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of guaranteeing similar comfort conditions compared to the Fixed Set Point and PMV-based
approaches but reducing the energy footprint by about 15 kWh on average, thus resulting in
significant energy savings. This is due to some shutdowns of the HVAC devices configured
by our approach at some quarters of hours during the day: this enables the environment
to guarantee the comfort category but limits the impact on the energy consumption. On
the other hand, such intelligence is not provided by the Fixed Set Point approach, which is
prone to energy inefficiencies if the set point value is not manually set properly, as reported
in Table 15. For instance, increasing the set point value from 21 ◦C to 22 ◦C does not
improve the expected thermal comfort while impacting the building’s energy footprint in a
significant way. The same behaviour, as reported in Table 16, can be noticed on Mondays
as well.
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Figure 10. Overall average behaviour of PMV index and energy consumption for the evaluated
approaches on working days.

As highlighted in cooling mode, better results in terms of PMV value are obtained
during the last evaluated month (i.e., February). This is due to December and January
being the coldest winter months. It is worth noting that heating operations within the
environment prove to be challenging, as underlined by the PMV values obtained during
the experiments.

Table 15. Average monthly behaviour of PMV index and energy consumption for the evaluated
approaches on working days.

Fixed SP-21 ◦C Fixed SP-22 ◦C PMV-based EECO

Months Energy PMV Energy PMV Energy PMV Energy PMV

December 71 kWh 0.64 79 KWh 0.62 76 kWh 0.62 56 kWh 0.68
January 65 kWh 0.62 71 kWh 0.61 69 kWh 0.61 48 kWh 0.67

February 72 kWh 0.54 79 kWh 0.53 69 kWh 0.57 60 kWh 0.58

Average 69 kWh 0.60 76 kWh 0.59 72 kWh 0.60 55 kWh 0.64

Table 16. Average behaviour of PMV index and energy consumption for the evaluated approaches
on Mondays.

Fixed SP-21 ◦C Fixed SP-22 ◦C PMV-based EECO

Energy PMV Energy PMV Energy PMV Energy PMV

85 kWh 0.79 92 kWh 0.78 90 kWh 0.78 75 kWh 0.83
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To summarise, as reported in Table 17, in heating mode, EECO guarantees roughly
the same comfort level provided by basic approaches, i.e., PMV-based and Fixed Set Point.
However, unlike these strategies, our solution achieves an amount of energy saving greater
than 20%. This confirms that these solutions have a limited overview of the problem as
they just follow a single objective function with no attention for the energy footprint. In
this regard, an intelligent approach such as EECO can guarantee a proper tradeoff between
the thermal comfort and energy consumption. It worth noting that such simulated results
confirm the results obtained in the real environment and described in Section 6.3.2.

Table 17. Overall performance of EECO compared to the Fixed Set Point and PMV-based approaches
in terms of absolute PMV difference from the lower bound of the comfort range and percentage
difference in energy saving.

PMV Distance Energy Consumption

Fixed SP-21 ◦C −0.04 20%
Fixed SP-22 ◦C −0.05 28%

PMV-based −0.04 24%

7. Discussion
7.1. Comfort Model

Despite the benefits described in the previous sections, the proposed solution is af-
fected by some limitations. For instance, some parameters of the PMV index (i.e., metabolic
rate, clothing insulation, and air velocity) have been configured in a static way. However,
some research works recommend dynamically adjusting comfort model parameters (e.g.,
air velocity [7] or clothing insulation [36]) in response to local environmental conditions.
Additionally, in the literature, some studies [8,9] underline that feedback from building
occupants takes a central role in meeting the requirements of a large number of people and
accurately modelling the comfort.

In this study, our primary emphasis has centered around refining the algorithm
responsible for the management of HVAC devices. While we delve into an extensive
examination of EECO performance using static PMV parameter values, we acknowledge
that the usage of dynamic values is beyond the current scope and does not impact the
designed methodology. Nevertheless, we consider these aspects as opportunities for further
investigation and exploration in the future.

7.2. Methodology

The proposed algorithm optimises a single comfort objective as the input. However,
different stakeholders might be present within the environment (e.g., local personnel
or customers), potentially leading to conflicting comfort requirements. In such cases, a
decision is needed because the algorithm lacks the capability to address multiple comfort
objectives simultaneously. In this regard, this solution particularly fits scenarios where
occupants have similar comfort needs or a preference for one stakeholder over the other is
exhibited. As a result, the solution’s applicability might be better suited to scenarios with a
less diverse environment of stakeholders.

Further improvements could also be integrated into the proposed solution; e.g., addi-
tional input variables could be considered. In this regard, different research studies in the
literature include solar irradiation in their solutions [9,12]. Such information, integrated
into the proposed algorithm, might allow for a more accurate selection of the HVAC config-
uration. This could indeed fine-tune the use of natural effects (passive methods) instead of
activating HVAC devices at certain times during the day.

7.3. Validation

We underline the possibility to validate the designed solution from other perspectives.
Indeed, our partner provided us strict constraints to test the proposed solution within a real
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production environment that includes human presence, preventing us from performing
different experiments. In this regard, for instance, specific tests need to be conducted to
evaluate the performance on days characterized by alternating comfort and no comfort
requirements (e.g., similar to the approach proposed by Yang et al. [6]) as opposed to solely
focusing on a single comfort interval throughout the day. Finally, it is fundamental to eval-
uate the effectiveness of the proposed solution across a number of buildings, encompassing
different sizes, layout, materials, and potentially featuring multiple distinct environments,
as analysed by Ascione et al. [10]. Additionally, the possibility to scale over multiple sites
with minimal effort needs to be validated. In contrast to the existing literature, which often
relies on complex physical or mathematical models tailored to the evaluated environment,
our solution is expected to be rapidly deployed (with only a few parameters to configure)
and adaptive to changes in terms of layout, HVAC machinery, outdoor weather, etc. as it
continuously learns from the environment.

8. Conclusions

In this paper, we have presented an automated solution that leverages AI to continu-
ously regulate HVAC devices with the aim to optimise comfort while minimising the energy
footprint. It does not require any preliminary information of the local environment or any
physical or mathematical modelling. Through the collected data, it implicitly evaluates
the effect of different agents, including building features (e.g., wall thickness, orientation,
and window presence) and passive phenomena (e.g., passive heating) on the monitored
parameters, thus adapting to the observed environment.

We have tested our approach in a real warehouse of a small production plant belonging
to an Italian retail company. Compared to a static approach where the HVAC set point is
fixed at a specific temperature, the evaluation results in the real environment show that our
solution can slightly improve the indoor comfort with minimal impact on the building’s
energy footprint in summer (i.e., cooling mode). On the other hand, during cold months
(i.e., heating mode), it achieves higher energy savings (up to approximately 16%) while
providing slightly worse comfort conditions.

Due to clear limitations in comparing multiple approaches in a real environment, we
have provided an additional comparison analysis based on software simulations between
our solution and two other approaches (i.e., the fixed set point and a greedy PMV-based
approach). In this regard, the simulated results show significant improvements during
the winter months compared to the summer period, confirming the results obtained in
the real-world scenario. Indeed, the simulations show slightly reduced performance in
terms of comfort requirements but underline substantial energy savings (exceeding 20%).
Despite the promising results in our evaluated scenario, the application of our solution
on a large scale is subject to overcoming some limitations mentioned in the previous
section. Nevertheless, in contrast to non-intelligent approaches that follow a single objective
function, the obtained results demonstrate the capability of our solution to guarantee a
tradeoff between the comfort level and the energy consumption by dynamically selecting
the configuration (ON/OFF and set point) of the HVAC devices.
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