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Abstract: The energy feedback system (EFS) is widely accepted to utilize the regenerative braking
energy (RBE) in an urban rail traction power supply system (TPSS). However, the sharing relationship
of RBE between EFS, traction trains and on-board braking resistors is not clear. In addition, the impact
of EFS operation on the sharing of RBE has been rarely studied. This paper proposed a hierarchical
operation optimization method for improving the utilization of shared RBE in TPSS through the
EFS. An optimizing model for the dynamic start-up voltage threshold of EFS is established, with
the objective of minimizing TPSS power consumption. A fast prediction model of train operation
information is developed to analyze the steady-state power flow in advance. The optimal solution
is searched using a salp swarm algorithm (SSA) on a per second basis. A microsystem of three
traction stations and two trains is analyzed. Compared to the conventional constant voltage operation
scheme, the optimal solution achieves a maximum additional energy-saving efficiency improvement
of 2.44%. Efficient sharing of RBE is identified as the key to achieving energy savings. Regarding the
local control part, system stability analysis is verified. Real-time simulation results indicate that the
dynamic operating mode of EFS efficiently distributes RBE.

Keywords: urban rail traction power system; energy feedback system; regenerative braking energy;
hierarchical operation optimization; real-time simulation

1. Introduction

Recently, significant progress has been made in the utilization of regenerative braking
energy in urban rail TPSS [1–3]. These achievements include the implementation of practical
engineering solutions such as energy feedback systems (EFSs), bidirectional converter
devices (BCDs), energy storage systems (ESSs), and on-board braking resistors (OBRs) [4,5].
However, with the continuous increase in electricity consumption due to development, it
is essential to deeply consider the operational optimization of urban rail TPSS. Figure 1
shows a typical block diagram of an urban rail TPSS with EFSs. Notably, the EFSs are
integrated in parallel with conventional diode rectifier units (RUs) at the traction substation
(TS), inverting the DC 1500 V to AC 35 kV power supply. The main substations (MS)
are powered by the grid and transform AC 110 kV to AC 35 kV. The energy-saving and
cost advantages of the EFS made it widely accepted in the industry [6–8]. This paper will
primarily focus on the urban rail TPSS with EFS, disregarding friction braking.

According to the statistics, the RBE can reach approximately 35% of traction power
consumption. Thus, improving its utilization is an important means for urban rail transit
to contribute to the goal of “carbon peaking and carbon neutrality” [9]. EFSs are applied
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to invert RBE to the AC side, while also stabilizing the DC catenary network voltage.
As shown in Figure 1, the trains and TPSS operate independently, with trains running
according to the timetable, and the TPSS flowing freely [10]. All EFSs are decentralized
in substations after being sited and sized by engineering experience or intelligent algo-
rithms [11,12]. Numerous studies have been conducted on the design of a traction power
supply system with an EFS [13–16], including the capacity and cost optimization of the
EFS, transmission loss, and the catenary network voltage fluctuation analysis. However,
EFSs face challenges in terms of system control and energy management. Inappropriate
start-up voltage thresholds can lead to the frequent triggering of on-board resistors (if set
too high) or unbalanced energy sharing between traction trains (if set too low), negatively
impacting the RBE utilization [17]. RBE utilization plays an important role in urban rail
TPSS energy saving [18]. Hence, it is necessary to find an effective operational optimization
method for urban rail TPSS with EFSs, which can allocate the RBE reasonably between
trains and traction substations.
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Figure 1. Typical block diagram of the urban rail TPSS with EFS. 
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Figure 1. Typical block diagram of the urban rail TPSS with EFS.

To improve energy savings in TPSS, the transformation of traction power supply
equipment is often implemented, which can be costly. However, an alternative approach
is proposed in [19], which suggests the use of a smart real-time operation control sys-
tem. This system combines an ESS, power controller system, and real-time software to
efficiently capture and reuse the RBE. By optimizing the operating characteristics of the
equipment without changing the infrastructure, the cost of energy-saving investment can
be significantly improved [20]. Research indicates that the optimization of the operating
characteristics of the EFS can greatly enhance the utilization of the RBE [21–24]. The typical
operating characteristics of an inverter in urban rail TPSS were illustrated in [23,24]. It
was found that constant voltage control with power limitation is commonly used, but it
leads to an unbalanced distribution of the RBE. To solve this issue, a hybrid TPSS inte-
grating a photovoltaic (PV) system and an EFS was proposed in [25], aiming to achieve
multi-objective coordinated control using different voltage thresholds. However, during
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the braking stages, the DC catenary voltage fluctuates significantly. Another study [26]
optimized the operating characteristics of an inverter by incorporating virtual resistance
into droop control. Simulation results demonstrated that droop control achieves better
energy distribution compared to constant control, providing valuable insights for dynamic
control of EFS. In our previous works [4,27], we further verified the energy-saving effect of
dynamic droop characteristics in urban rail TPSS. However, it was observed that droop
control can result in voltage deviations that negatively affect system stability, and it can be
challenging to adjust the droop ratio for different metro lines [28].

It should be mentioned that the distributed hierarchical operation optimization meth-
ods for modular multilevel converter (MMC) are proposed, which combines control strate-
gies with the optimization model to build energy management systems [29,30]. By using a
coordinated multilayer control and load prediction, local controllers can regulate power
at the inverter level. This approach enhances the accuracy of the energy system control
and facilitates techno-economic energy management in microgrids [31]. In [32], a smart
railway station with an energy management system is illustrated. Monte Carlo simulations
and the k-means algorithm are utilized to improve the calculation speed. Additionally, the
use of intelligent search algorithms and simplified model scenarios is crucial for energy
management modeling. To actively manage the sharing of RBE in urban rail TPSS with an
EFS, the above correlation analysis can be an effective reference.

Furthermore, there is currently insufficient information integration between the train
and the ground operation control center (OCC). While ref. [1] analyzed the impact of
optimizing timetables on the RBE, it did not study the flow of the RBE in the TPSS. Ref. [8]
suggested that the inverter should work immediately at the braking moment, but it ig-
nored the braking positions outside of the train station. In addition, ref. [17] analyzed
the correlation between system energy efficiency and headway time but did not provide
a specific operating method for EFS. The mathematical relationships between operation
information of the train and RBE are complicated [33]. Train operation information such as
speed, current, and traction force are important for analyzing TPSS power flow in advance,
which can guide EFS operation and optimize the RBE distribution. Nevertheless, the TPSS
operation optimization method based on train-ground information integration has not
been investigated. The main contributions of this paper can be summarized as follows:

(1) For operating characteristics of an EFS, an operation method based on a discrete-time
dynamic start-up voltage threshold is proposed. The key to achieving energy savings
in the TPSS focuses on the efficient sharing of RBE.

(2) A Grey–Markov model is proposed to quickly predict train traction information in a
short period, which can analyze the TPSS power flow at a discrete time in advance.

(3) An optimizing model for the dynamic start-up voltage threshold of EFS is established,
with the objective of minimizing the TPSS consumption. The steady-state power flow
calculation is combined with an intelligent algorithm to search for the solution per
second.

(4) A control strategy for EFS is developed based on the integration of train-ground
information. This hierarchical operation optimization method for TPSS with an EFS
can guide the development of intelligent-green rail transit operations.

The rest of the paper is organized as follows: Section 2 introduces the operating charac-
teristics and optimization model in TPSS with an EFS, which contains the simplification of
train kinematics through mathematical prediction. A simplified case analysis is conducted
to assess the feasibility of this model. In Section 3, the common main circuit of EFS is
introduced, and a hierarchical control method based on steady-state optimization results is
proposed. The stability of the control method under dynamic start-up threshold is analyzed.
In Section 4, a typical urban rail case based on the three-substation and two-train system is
analyzed, which is tested on a digital real-time simulation platform. The energy-saving
efficiency is compared between constant voltage control and dynamic voltage control in
TPSS with an EFS. Finally, the conclusion and further plans are provided in Section 5.
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2. Operating Characteristics Optimization in TPSS with EFS
2.1. Operating Characteristics of EFS

The conventional operating characteristic curve of TPSS with an EFS is shown in
Figure 2a. Udi and Idi denote the catenary network voltage and current in traction substa-
tion. i denotes the location number of the traction substation. The right droop characteristic
denotes the RU, and Ud0 is the no-load voltage of TPSS. For the EFS working in the invert-
ing area, Uref,0 denotes the initial start-up voltage threshold of EFS, Uref,max is the threshold
limitation. Uresistor_on is the start-up threshold of OBR.
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operating characteristic curve of TPSS with EFS.

The dynamic operating characteristic curve is shown in Figure 2b. Ut
ref[i] is the

dynamic threshold, t is the discrete time, which refers to the per second in this paper. During
the dynamic operating mode, the start-up voltage threshold of each EFS dynamically
changes at the discrete time. When the traction network voltage exceeds Ud0, it signifies
that the RBE is being utilized in the TPSS. However, the RBE will freely flow between the
traction trains and TPSS without the engagement of EFS. The dynamic start-up voltage
threshold of EFS Ut

ref[i] is proposed to actively influence the allocation of RBE.

2.1.1. Constant Voltage Working Area

Traditionally, as seen by the yellow line in Figure 2a, the EFS will operate in the
constant voltage area, when the DC catenary network voltage arrives at Uref,0. Hence, the
characteristic curve resembles the voltage source model. It can be expressed as (1):

Udi = Uref, 0 (1)

2.1.2. Dynamic Start-Up Voltage Threshold Working Mode

As seen in the shadowed area of Figure 2b, before the EFS starts, RBE flows freely be-
tween the traction trains and the DC catenary network. In order to improve RBE utilization,
when the headway time is short, the RBE should be shared among the trains, otherwise, it
should be feedback by the EFS [17]. If Uref,0 is higher like curve A to C, the OBR will be
easily triggered to waste RBE. Similarly, if Uref,0 is lower like curve A to B, this causes not
only a decrease in energy sharing between traction trains but also a rise in energy feedback
to the MS.

Clearly, the equivalent circuit of the single rail operation scenario, including traction
and braking trains, is shown in Figure 3. Rd is the equivalent inner resistance of RU, ib
is the current of RBE, which flows in four directions: ib1 is consumed on the OBR, ib2 is
absorbed by traction train, and ib3 and ib4 are fed back to TS1 and TS2, respectively. Rl1,2,3
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are the transmission impedance, Utrain1,2 are the voltage of trains. The system actual energy
consumption at discrete time Pt

T_act can be defined as (2):

Pt
T_act =

[
Pt

T[1] + Pt
T[2]− ( Pt

F[1] + Pt
F[2] ) + Pt

R
]

(2)

where Pt
R is the energy feedback to the MS, and Pt

T[i] and Pt
F[i] are the energy consumption

of traction substation and the energy saving of EFS, respectively.
Pt

T[1] = Ut
d[1] · i

t
d[1]

Pt
T[2] = Ut

d[2] · i
t
d[2]

Pt
F[1] = Ut

ref[1] · i
t
d[1]

Pt
F[2] = Ut

ref[2] · i
t
d[2]

(3)
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The sharing categories of RBE on the traction train, EFS and OBR are summarized in
Table 1, and Ud0 and Uresistor_on are fixed. The discrete time dynamic correction coefficient
ξt[i] is defined to adjust the start-up voltage threshold of EFS between Ud0 and Uresistor_on
see as in (4). This allows for actively managing the sharing of RBE and achieving system
energy savings by searching for the lowest Pt

T_act at all times.

Ut
ref[i] = Ud0 + ξt[i] · (Uresistor, on −Ud0) , ξ ∈ (0, 1) (4)

Table 1. The sharing of RBE on traction train, EFS and OBR.

Category Catenary Network Voltage Flow of RBE

1 Ud1 < Uref,0, Ud2 = Uref,0 Sharing in the trains completely
2 Ud1 < Uref,0, Ud2 = Uref,0 Sharing between trains and nearby EFSs

3 Ud1 = Uref,0, Ud2 = Uref,0
Sharing between trains and all EFSs in the

constant voltage area

4 Ud1 = Uref,0,
Uref,0 < Ud2 < Uon

EFS in the constant power area

5 Uref,0 < Ud1, Ud2 < Uon,
Uref,0 < Utrain,i < Uon

Sharing between trains and all EFSs in the
constant power area

6 Uref,0 < Ud1, Ud2 < Uon,
Utrain,i = Uon

Sharing between trains, all EFSs and OBRs

2.1.3. Constant Power Working Region

As seen the black curve in Figure 2, if the RBE is large enough, the EFS will operate at
the maximum power before the OBR is activated. PEFS, max is the capacity limitation of the
EFS. The EFS will be protected from over-voltage when the DC catenary network voltage
exceeds Uref, max. The voltage remains fixed at Uresistor_on during OBR operating. Hence,
the characteristic curve resembles the power source model, which can be expressed as (5).
Pac is the active power of the grid side, which can be expressed by the d-axis voltage ed and
the d-axis current id as (6).
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Neglecting the transmission loss and the impedance of the converter, the DC power
Pdc is equal to Pac [26]. PEFS, Max can be controlled by limiting id.

Pdc = PEFS,max = Udi Idi (5)

Pac =
3
2

edid (6)

2.2. Operating Characteristics of Trains

The train is prone to being modeled as the time-related power source load. Train
operating information is commonly obtained using systems like automatic train supervision
(ATS) [34] or the traction calculations method in [4]. However, traditional calculation
methods do not allow for immediate updates to train operation information in the case of
timetable changes.

2.2.1. The Fast Prediction Model of Train Operation Information

The Grey–Markov (GM) model for train operation information based on the time
series is proposed to analyze the power flow in TPSS in advance [35,36], which helps to
search for the optimal solution to ξ t[i] at a discrete time. The Grey–Markov model takes
as input a train history dataset obtained from ATS, with a time length of T seconds. This
dataset is a sliding time window that updates the next new data per second. For the train
current at per second, the prediction with residual correction is shown as (7):

Î0
(t+1)∗′ = Î0

(t+1)∗ + λt · ê0
(t+1)∗, t = 2, 3, . . . , T

λt =

{
1 (I0

t − I0
t∗ > 0)

−1 (I0
t − I0

t∗ < 0)
(7)

where Î0
t is the real-time recording of train historical data time series collected using ATS,

which is shown in (8). I0
t is the train historical data at per second, which are the only inputs

to the model. 
Î0

t =
{

I0
1, I0

2, . . . , I0
t}, t = 1, 2, . . . , T

I1
t =

t
∑
1

I0
t, t = 1, 2, . . . , T

(8)

The predicted current of train I0
(t+1)* is derived as (9), and the residual correction

e0
(t+1)* is derived as (10):

I0
(t+1)∗ = Î1

t+1 − Î1
t = (1− eâ)[I0

2 − b̂
â
]e−ât, t = 2, 3, . . . , T (9){

e0
t = I0

t − I0
t∗, t = 2, 3, . . . , T

e0
(t+1)∗ = ê1

t+1 − ê1
t = (1− eâ′)[e0

2 − b̂′
â′ ]e
−â′t, t = 2, 3, . . . , T

(10)

where a is the development coefficient, b is the proportion of grey effect, and I0
(t+1)*’ is the

predicted correction value.
The small error probability p and the posterior error ratio c are calculated to evaluate

the prediction accuracy of the Grey–Markov model, as can be seen in (11):

p = P(êt
0 − êt

0| < 0.6745s1)
c = s2

s1

(11)

where s1 is the original sequence variance, s2 is the residual sequence variance, êt
0 is the

average of the residual sequence, and P is the conditional probability.
The prediction effect of Grey–Markov model can be determined through the pre-

diction data accuracy standard Table 2. The progress of the GM model for train oper-
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ation information in TPSS can be seen in Figure 4. H is the length of prediction time,
H = tdelay1 + tprediction & optimizing + tdelay2.

Table 2. The prediction data accuracy standard.

Accuracy Standard p c

High quality ≥0.95 c ≤ 0.35
Can be improved 0.80 ≤ p < 0.95 0.35 < c ≤ 0.50

Must be improved 0.70 ≤ p < 0.80 0.50 < c ≤ 0.65
Not applicable p < 0.70 c > 0.65
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2.2.2. Analysis of Prediction Model Accuracy

Here, the posterior error test method is used to analyze the feasibility of the current
prediction [35,36]; the historical train current for a certain period on Guangzhou Metro
Line 14 is shown in Figure 5.
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A 30 s period is used for the sliding predicted window for I0
t (t = 1:30), and the

prediction of traction current and braking current is shown in Figure 6. P is the small error
probability, which is higher than 0.95. c denotes the posterior error ratio, which is lower
than 0.35. Hence, the Grey–Markov model is suitable for quickly predicting the trend of
the train operation information at a discrete time.
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2.3. Optimization Model for Predicting EFS Dynamic Start-Up Voltage Threshold
2.3.1. Optimization Objective Function

As mentioned above, the Pt
T_act can be reduced by the utilization of RBE sharing, and

the Ut
ref[i] of the EFS affects the sharing of the RBE. The power flow in TPSS with an EFS is

analyzed in Figure 7.
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An optimization model for the dynamic startup threshold of the EFS is built for
searching the lowest system actual energy consumption WT_act, which can be seen as (12).

min f (x̂) = {WT_act(x̂)}
s.t. x̂ ∈ E

(12)

where WT is the total energy consumption in TPSS. Wtrac is the actual traction consumption
of trains, including action load Wk, auxiliary power Waux, and the RBE of trains Wreg.
Wreg-trac is the energy shared by the trains. Wres is the energy consumption in the OBR. WF
is the energy saving by the EFS. WR is the energy feedback to the MS. T denotes the discrete
time. F(x̂) is the optimization objective. X is the optimization variable, which denotes the
dynamic start-up threshold of all EFSs at discrete times.
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The calculation of Wtrac is shown in (13). To solve the objective function, the constraints
are added as shown in (14).

where


WT_act = WT −WF + WR

WT_act(x̂) =
∫ T

0

[
N
∑

i=1
(Pt

T[i]− Pt
F[i]) + Pt

R

]
dt, i = 1, 2, . . . , n

x̂ =
{

Ut
ref[1], Ut

ref[2], . . . , Ut
ref[i]

}
, t = 1, 2, . . . , T

(13)


Utrain,min ≤ Utrain,i ≤ Utrain,max
Ud,min ≤ Ud[i] ≤ Ud,max
Uref,min ≤ Uref[i] ≤ Uref,max

(14)

2.3.2. Solving Progress by Salp Swarm Algorithm (SSA)

SSA is a heuristic algorithm that follows a mathematical model of the salp swarm
to search for the food source (global optimum Pt

T_act) by the leaders and followers [37].
We verified that the SSA has faster convergence performance than the particle swarm
optimization (PSO) and genetic algorithm (GA) [2], making it suitable for solving large-
scale optimization problems. The steady-state calculation of the hybrid AC/DC power
flow in urban rail TPSS was summarized in [4,27].

By using SSA, the best fitting position of the food source (optimization variable Ut
ref[i])

is chosen, which is defined as the individual with the best fitness (the lowest actual energy
consumption WT_act) among all individuals. The solving flowchart of the EFS dynamic
start-up voltage threshold can be seen in Figure 8, and the steps are summarized as Step 1
to Step 4:

• Step 1. The initialization of the salp population. The optimal variable Ut
ref[i] denotes

the salp individuals, and the salp swarm is composed of M salp individuals at discrete
time t. All individuals are random variables. The initialized population is shown
in (15). EFSs are situated in all traction substations. Based on the AC/DC power
flow calculation, the individual Ût

ref,M with the lowest fitness WT_act in per second is
selected as the leader.

.
U

t
M×i =


Ut

ref,1[1] Ut
ref,1[2] . . . Ut

ref,1[i]
Ut

ref,2[1] Ut
ref,2[2] . . . Ut

ref,2[i]
. . . . . . . . . . . .

Ut
ref,M[1] Ut

ref,M[2] . . . Ut
ref,M[i]


M×i

Ût
ref,M =

{
Ut

ref,M[1] Ut
ref,M[2] . . . Ut

ref,M[i]
}

, M = 1, 2, . . . , n

(15)

where i denotes the position of traction substation. T starts at the 1st second.
• Step 2. The position update of the salp population. The movement direction of the

slap leader is shown in (16), and the update of the salp followers are shown in (17).
Sorting the fitness again, and l = l+1 where FM is food source, l and L are the current
and total iterations, respectively, and c1, c2, c3 are shown as (18), where c2 is a random
number between 0 and 1.

• Step 3. The update of the optimal food source FM.
• Step 4. Repeat Step 2 and Step 3 until L iterations to search for the optimal Ut

ref,1, and
the discrete time dynamic correction coefficient ξt[i] can be confirmed.

Ut
ref, l [i] =

{
FM + c1 · [(Uref,max −Uref,min) · c2 + Uref,min], c3 ≥ 0
FM − c1 · [(Uref,max −Uref,min) · c2 + Uref,min], c3 < 0

l (16)

Ut
ref,M[i] =

1
2
(Ut

ref,M−1[i] + Ut
ref,M[i]), M ≥ 2 (17)
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{
c1 = 2e−(

4l
L )

2

c3 =
Uref,max+Uref,max

2 −Uref[i]
(18)
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3. Hierarchical Operation Control Method of TPSS with EFS
3.1. Principle of Hierarchical Control Based on Train-Ground Information Integration

EFS widely adopts a two-level or three-level voltage source converter [17]. A hierarchi-
cal operation control method is proposed to improve the utilization of RBE in TPSS, which
achieves the train-ground information integration. The system level optimization model
predicts the dynamic start-up voltage threshold of the EFS at discrete times firstly, and
then, all EFS controllers operate in real-time. The detailed configuration of the hierarchical
control method for TPSS with an EFS in Figure 1 is depicted in Figure 9. Where the DC
voltage loop and dq current loop continue to use traditional dual closed-loop control [38].
U*dc,i denotes the continuation of the EFS discrete start-up voltage threshold, and the
discrete error compensation ∆Vi is defined as a buffer between Ut

ref[i] and Uref,0, as shown
in (19). KPδi and KIδi are the proportional and integral coefficients of the PI controller,
respectively.

∆Vi = (Ut
ref[i]−Uref,0) · (KP∆i +

KI∆i
s

), ∆Vi ∈ [∆Vmin, ∆Vmax] (19)

where ∆Vmin and ∆Vmax are the amplitude limiting to avoid transmission noise affecting
system stability.
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3.2. System Stability Analysis of Hierarchical Control

The state space model was built to analyze the stability of the system by describing
the root-locus under a dynamic start-up voltage threshold of the EFS.

3.2.1. System State Space Model

The conventional dual closed-loop control structure is simplified, the current loop
is equivalent to a delay time, GI(s) ≈ (3Teq + 1) – 1 and Teq = 3TI + TV, where TI is the
current loop sampling period, TV is the voltage loop sampling period, and Teq is the system
sampling period. Ceq is the equivalent capacitance of the EFS in the DC side. A control
simulation structure diagram with three traction stations is built in Figure 10. The power
supply distance in the metro is short, so the impedance changes during train movement
are ignored. Establish the system state space equation as shown in (20). The state variables
x(t) can be discretized using the forward Euler method [39], the system state space model
can be obtained as follows (21):

dx1,i(t)
d(t) = 3

2
ed,i

U∗dc,i

1
Ceq,i
· x2,i(t)

dx2,i(t)
d(t) = −KPVi

Teq,i
· x1,i(t) − 1

Teq,i
· x2,i(t) + 1

Teq,i
· x3,i(t) + KPVi

Teq,i
· ui(t) +

KPVi
Teq,i
·wi(t)

dx3,i(t)
d(t) = −KPVi

TV,i
· x1,i(t) + KPVi

TV,i
· ui(t) +

KPVi
TV,i
·wi(t)

dx4,i(t)
d(t) = + 1

T∆i
· x4,i(t)− 1

T∆i
· ui(t)

(20)

{
x(k + 1) = Φx(k) + Gu(t) + Jw(t)
y(k) = Hx(k)

,
dx(t)
d(t)

=
x(k + 1)− x(k)

T
(21)

where Φ = I+TA, G = TB, J = TD, H = C. A, B, C, and D are the state matrix, input matrix,
output matrix, and disturbance matrix. X(t), u(t), w(t), y(t) are the state variables, input
variables, disturbance variables, and output variables.

3.2.2. System Stability Analysis

The system stability of the hierarchical operation control method using the dynamic
start-up threshold during the utilization of the RBE is being analyzed based on the root-
locus of Formula (21). The case of an urban rail TPSS with three traction substations and
two trains is considered, as shown in Figure 11. The system parameters are listed in Table 3.
It can be seen from Figure 12 that the closed-loop dominant poles vary as the start-up
voltage threshold changes between 1700 V and 1760 V (10 V-steps). Nevertheless, all closed
poles are always located within the unit circle of the discrete z-plane. As a result, the
hierarchical control system using dynamic start-up threshold is guaranteed.
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locus of Formula (21). The case of an urban rail TPSS with three traction substations and 

two trains is considered, as shown in Figure 11. The system parameters are listed in Table 
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Table 3. System parameters of simulation platform. 

Category Parameters Value 

Traction Substations 

Transformer ratio of TS 35,000/1180 

Transformer ratio of EFS 35,000/1000 

Ud0/V 1650 

Capacity of RU/kVA 2500 × 2 

Capacity of EFS/kW 500 × 8 

EFS 
Uref,0/V 1750 

Duty cycle limitation 0.25 

Figure 10. The control simulation structure diagram with three traction stations.
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Table 3. System parameters of simulation platform.

Category Parameters Value

Traction Substations

Transformer ratio of TS 35,000/1180
Transformer ratio of EFS 35,000/1000

Ud0/V 1650
Capacity of RU/kVA 2500 × 2
Capacity of EFS/kW 500 × 8

EFS
Uref,0/V 1750

Duty cycle limitation 0.25
Ceq/F 0.02 × 8

Railway Catenary Network Ω/km 0.0173
Rail Ω/km 0.0365

OBR
Uresistor_on/V 1850

L 5
M 10

SSA
Uref,max/V 1760
Uref,min/V 1700

f sw/Hz 2000

EFS Controller
System simulation steps/us 50
Simulation frequency/MHz 1
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4. Simulation Verification
4.1. Design of Simulation Platform and System Parameter

Based on the system structure mentioned in Figure 11, a simulation platform was
developed to model a system with three substations and two trains. This platform uti-
lizes Speedgoat real-time simulators [40,41] in conjunction with a host computer (HC), as
depicted in Figure 13. The HC simulates the ground operation center (OCC), which is
responsible for energy management through system-level steady-state optimization and
searching for the Ut

ref[i] at discrete time intervals (per second). The Speedgoat simulates
a real system that operates the TPSS with three substations and two trains in real-time
(with 50 us steps) and communicates with HC via the Ethernet. Additionally, the EFS
controller prototype utilizes FPGA/IO (with 1us steps), following the principles of the
Shannon sampling theory [42].
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prioritize sharing with the left traction train. This indicates that during periods with a 

Figure 13. Simulation platform based on Speedgoat real-time simulators and personal computer.

The system parameters of the simulation platform are shown in Table 3. It was
adopted based on a real urban rail system in China. Furthermore, the power distance is
6 km. A single train operates for 340 s, with two trains running from the left and right
sides according to the timetable. The predicted train current based on the ATS is shown
in Figure 14.
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4.2. Case Study
4.2.1. The Steady-State Optimizing Solutions

In this subsection, we divide the optimization progress into 340 discrete times for the
steady-state power flow calculation based on the predictions of train operation information
in Figure 14. The optimal start-up voltage threshold solutions of all EFSs at each discrete
time are found using SSA, as shown in Figure 15. When the EFS is not working, the
start-up threshold is reset to Uref,0. The steady-state power flow progress at discrete times
is analyzed as in Figure 16. Five cases are built in (a)~(d), where energy saving differences
are compared between EFS using the dynamic start-up voltage scheme and fixed start-up
voltage schemes of 1700 V, 1720 V, 1740 V, and 1760 V, respectively.
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Figure 15. The optimal start-up voltage threshold solutions of all EFSs at each discrete time.

Figure 15 shows that the EFS mainly operates during the time periods of 100~125 s,
250~260 s, and 310~330 s. During 175~205 s, the RBE from the right braking train tends
to prioritize sharing with the left traction train. This indicates that during periods with
a large number of RBE, such as 310~330 s, where adjacent trains cannot fully absorb it,
the EFS should actively feedback RBE in advance so that the level of catenary network
voltage can be maintained and the waste of RBE by the OBR can be avoided. Otherwise,
the operation of the EFS should be delayed, such as 175~205 s, and the RBE should be fully
shared between traction trains. Furthermore, the unsuitable 1760 V scheme is eliminated
by the SSA.

The steady-state calculation results are shown in Table 4. The values are the average
values of five schemes, and they are energy consumption per hour. It can be seen that
there is a linear relationship between the fixed start-up voltage threshold and WF, but this
does not affect the actual system consumption WT_act. The microsystem with three traction
substations and two trains makes it difficult to fully absorb RBE, so the WR is obvious.
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The real-time simulation of the dynamic start-up threshold scheme and the fixed 1750 

V start-up threshold scheme is run, and the transient simulation results of the DC side 

catenary network voltage of TS1, TS2, and TS3 are analyzed as shown in Figure 18a–c. It 

can be seen from Figure 18 that the Ud,i_range of the dynamic start-up threshold scheme is 

Figure 16. (a) Comparison between Case1 dynamic scheme and Case2 fixed 1700 V; (b) comparison
between Case1 and Case3 fixed 1720 V; (c) comparison between Case1 and Case4 fixed 1740 V;
(d) comparison between Case1 and Case5 fixed 1760 V.

Table 4. Hourly energy results (kWh).

Schemes Wtrac WT WF WR

Case1 (Dynamic Ut
ref[i]) 1578.8 1670.8 183.2 91.2

Case2 (Fixed 1700 V) 1607.7 1692.5 171.2 86.4
Case3 (Fixed 1720 V) 1611.3 1686.3 159.8 84.8
Case4 (Fixed 1740 V) 1608.1 1674.7 147.2 80.6
Case5 (Fixed 1760 V) 1618.3 1680.2 133.6 71.7

By integrating the discrete results of all schemes, the hourly actual energy consumption
WT_act is obtained, as shown in Figure 17. Case1 saves 1.79%, 2.01%, 1.81%, and 2.44%
energy compared to Case2, Case3, Case4, and Case5, respectively. The metro operates
for 17 h every day in China (6:30–23:30), and with a charge of CNY 0.75 per kWh, an
additional CNY 184 thousand can be saved throughout the year. On the other hand, the
energy consumption curve from Case2 to Case5 indicates that there is no linear relationship
between WT_act and EFS start-up voltage variation. Hence, the dynamic scheme of the EFS
can effectively reduce the actual traction energy consumption.



Energies 2023, 16, 7268 16 of 20

Energies 2023, 16, x FOR PEER REVIEW 16 of 21 
 

 

0 200 340 1800

0.0

1800

3600

5400

300100

 720

720

1440

2160

0 80 160 240 320 340

0.0

 

t/s

t/s

 Energy Saving DifferenceP t
T_act /kW

 Case1 Dynamic Start-up

Case4 Fixed 1740V 

P
 t

T
_

a
ct

 /k
W

 

 

 720

720

1440

2160

0.0

 

0 200 340 1800

0.0

1800

3600

5400

300100

t/s

 

0 80 160 240 320 340

t/s

P t
T_act /kW

Case1 Dynamic Start-up

Case5 Fixed 1760V 

 Energy Saving Difference

P
 t

T
_

a
ct

 /k
W

 
(c) (d) 

Figure 16. (a) Comparison between Case1 dynamic scheme and Case2 fixed 1700 V; (b) comparison 

between Case1 and Case3 fixed 1720 V; (c) comparison between Case1 and Case4 fixed 1740 V; (d) 

comparison between Case1 and Case5 fixed 1760 V. 

By integrating the discrete results of all schemes, the hourly actual energy consump-

tion WT_act is obtained, as shown in Figure 17. Case1 saves 1.79%, 2.01%, 1.81%, and 2.44% 

energy compared to Case2, Case3, Case4, and Case5, respectively. The metro operates for 

17 h every day in China (6:30–23:30), and with a charge of CNY 0.75 per kWh, an addi-

tional CNY 184 thousand can be saved throughout the year. On the other hand, the energy 

consumption curve from Case2 to Case5 indicates that there is no linear relationship be-

tween WT_act and EFS start-up voltage variation. Hence, the dynamic scheme of the EFS 

can effectively reduce the actual traction energy consumption. 

1570

1590

1610

1578.8

1607.7

1611.3

1608.1

1618.3

1580

1600

1620

WT_act

W
T

_
a
ct

 /k
W

h

Case1

EFSs start-up voltage  schemes

Case3 Case4 Case5Case2

 

Figure 17. The comparison of the hourly actual energy consumption among all schemes. 

4.2.2. Analysis of Real-Time Simulation Results 

In order to verify the effectiveness of the proposed hierarchical operation optimiza-

tion method, the real-time simulation of three traction substations and two trains in TPSS 

with an EFS is studied in this subsection. The proposed control method is activated by the 

catenary network voltage during the simulations. The simulation runs in real-time for 340 

s, and the PC denotes the actual OCC to send discrete dynamic startup voltage thresholds 

Utref[i] to all EFSs in real-time via ethernet communication. 

The voltage fluctuation index Ud,i_range means the difference between the smallest ca-

tenary network voltage of the traction substation and the highest catenary network volt-

age of the traction substation. 

The real-time simulation of the dynamic start-up threshold scheme and the fixed 1750 

V start-up threshold scheme is run, and the transient simulation results of the DC side 

catenary network voltage of TS1, TS2, and TS3 are analyzed as shown in Figure 18a–c. It 

can be seen from Figure 18 that the Ud,i_range of the dynamic start-up threshold scheme is 

Figure 17. The comparison of the hourly actual energy consumption among all schemes.

4.2.2. Analysis of Real-Time Simulation Results

In order to verify the effectiveness of the proposed hierarchical operation optimization
method, the real-time simulation of three traction substations and two trains in TPSS with
an EFS is studied in this subsection. The proposed control method is activated by the
catenary network voltage during the simulations. The simulation runs in real-time for 340 s,
and the PC denotes the actual OCC to send discrete dynamic startup voltage thresholds
Ut

ref[i] to all EFSs in real-time via ethernet communication.
The voltage fluctuation index Ud,i_range means the difference between the smallest

catenary network voltage of the traction substation and the highest catenary network
voltage of the traction substation.

The real-time simulation of the dynamic start-up threshold scheme and the fixed
1750 V start-up threshold scheme is run, and the transient simulation results of the DC side
catenary network voltage of TS1, TS2, and TS3 are analyzed as shown in Figure 18a–c. It
can be seen from Figure 18 that the Ud,i_range of the dynamic start-up threshold scheme
is smaller than the fixed 1750 V start-up threshold scheme Ud,i_range, and the on-board
braking resistors of the train are not activated.
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Furthermore, the train current flow between the TS1 and TS2 power supply sections
has been analyzed, indicating that the system can operate stably. The DC side current Id1,2
of the TS1 and TS2 are shown in Figure 19, where the severe fluctuations that occur during
the initial simulation are the charging process of the support capacitor on the EFS and the
stabilizing capacitor of the OBR, which does not affect the subsequent simulation results.
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To analyze the impact of the dynamic starting voltage on RBE sharing, the power flow
progress of TS1, TS2, and TS3 is presented in Figure 20a–c. In this case, there are only two
trains with a sparse headway time, suggesting that RBE sharing may not be significantly
affected by traction train sharing. However, the red circles in Figure 20a indicates a notable
phenomenon: the traction power consumption Pt

T [1] of the discrete dynamic scheme is
lower than that of the fixed scheme during the traction mode of 100~120 s. This indicates
that the EFS using the dynamic start-up threshold scheme can guide the RBE sharing
between traction trains, reduce the traction consumption, and achieve active distribution
of the RBE. Another red highlight during the 250~275 s period indicates that when the
RBE is high, appropriately reducing the start-up voltage threshold of EFS can improve the
energy saving. Figure 20 demonstrates that the EFS dynamic start-up threshold control
method can effectively reduce the actual energy consumption WT_act of the system, thereby
significantly improving the energy-saving efficiency compared to conventional constant
voltage control.
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5. Conclusions

This paper introduces a hierarchical operation optimization method for regenerative
braking energy utilization in urban rail TPSS with EFS, which is beneficial for the intelligent
and environmentally friendly urban rail transit operation. To address the issue of improving
RBE utilization, a dynamic start-up voltage threshold working mode is added to enhance
the controllable operating characteristics of the EFS. Additionally, a fast prediction model
of train operation information is developed to analyze the steady-state power flow in
TPSS and search for the optimal dynamic start-up voltage threshold in advance. The
optimization objective function considers the actual traction power consumption of TPSS.
The SSA algorithm is utilized to search for optimal solutions at discrete time intervals. To
validate the effectiveness of the proposed method, a real-time transient simulation system
with three substations and two trains is utilized. The experimental results confirm the
benefits of the distributed hierarchical operation control method. The following conclusions
can be summarized from this work:

• By comparing the actual data from Guangzhou Metro, we observed that the predicted
data have a posterior error ration of less than 0.35 and a small error probability of
higher than 0.95. Therefore, Grey–Markov model exhibits a high quality in predicting
short-term trends in train data.

• The hourly actual energy consumption of the fixed 1720 V scheme is 3 kWh higher
than the fixed 1740 V scheme, indicating no linear relationship between the start-up
voltage threshold of the EFS and energy consumption. It is difficult to fix the start-up
voltage scheme by comparing the energy consumption.

• The steady-state results indicate that the dynamic start-up threshold method, com-
pared to the conventional operation method in TPSS with an EFS, can achieve an
additional energy-saving efficiency improvement of 2.44%.

• The real-time simulation results indicate that the RBE can be efficiently distributed by
the dynamic operating mode of the EFS. This method adjusts the feedback of the RBE
or reduces the output of the traction substation based on the load demand of trains in
real-time.

In future research plans, this study will be improved in both the system modeling
and control objective by using this hierarchical operating control method in urban rail
transit. For the system modeling part, more train loads and different timetables on actual
metro lines will be considered to demonstrate the excellent energy-saving effect of dynamic
operation schemes. The analysis will be conducted on the impact of the predicted results
of the model on the utilization of the RBE when encountering sudden load changes. This
optimization method can be applied not only in TPSS with an EFS, but also in TPSS with
a BCD or ESS. The microsystems of three traction stations and two trains will be further
expanded to approach real metro lines. With respect to the control part, the multi-objective
coordinate control will be more complex, and the dynamic consensus algorithm will be
studied to optimize communication between multiple traction stations.
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OBR On-Board
ESS Energy
RU Rectifier
TS Traction
MS Main
MMC Modular
OCC Operation
HC Host

References
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