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Abstract: This work aims to contribute to studies on the geometric optimization of thermoelectric
generators (TEGs) through a combination of the reduced variables technique and supervised machine
learning. The architecture of the thermoelectric generators studied, one conventional and the other
segmented, was determined by calculating the cross-sectional area and length of the legs, and
applying reduced variables approximation. With the help of a supervised machine learning algorithm,
the values of the thermoelectric properties were predicted, as were those of the maximum electrical
power for the other temperature values. This characteristic was an advantage that allowed us to obtain
approximate results for the electrical power, adjusting the design of the TEGs when experimental
values were not known. The proposed method also made it possible to determine the optimal values
of various parameters of the legs, which were the ratio of the cross-sectional areas (Ap/An), the
length of the legs (l), and the space between the legs (H). Aspects such as temperature-dependent
thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) and the
metallic bridge that connects the legs were considered in the calculations for the design of the TEGs,
obtaining more realistic models. In the training phase, the algorithm received the parameter (H) and
an operating temperature value as input data, to predict the corresponding value of the maximum
power produced. This calculation was performed for conventional and segmented systems. Recent
advances have opened up the possibility of applying an algorithm for designing conventional and
segmented thermocouples based on the reduced variables approach and incorporating a supervised
machine learning computational technique.

Keywords: thermoelectric generator design; dimensional parameters; maximum power; supervised
machine learning

1. Introduction

The design of thermoelectric generators (TEGs) using geometric optimization tech-
niques is the topic of interest in this work. Here, we describe some advantages of this type
of design. First, it allows us to make better use of the thermoelectric material; to date, the
best materials have been inorganic compounds (such as Bi2Te3), which have a relatively
low abundance on Earth, and their manufacture requires a highly complex vacuum process.
It is also possible to gradually adjust the dimensions of the system according to the space
available for its coupling to a heat source. One parameter used in the geometric method is
the cross-sectional area of the leg [1]. For example, it is possible to maximize the output
power of the TEG as a function of the variable cross-section; in fact, in [2], it was stated that
“The geometry of the TEG has a vital impact on the thermal resistance and the electrical
resistance, influencing its integral performance”.
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Another aspect that motivated the development of this work is the emergence of
new manufacturing techniques, such as additive manufacturing, which allow customizing
thermoelectric systems according to the requirements of the field of application (from
low-power applications, medical and wearable devices, Internet of Things, and wireless
sensor networks; to high-power applications, industrial electronics, automotive engines,
and aerospace). However, as rightly mentioned in [3], “little knowledge exists about
which shapes are beneficial in applications with different thermal conditions”. This author
analyzed the effect of different thermoelectric leg designs on device performance. The
authors in [4] proposed an optimized design of legs with special geometric shapes and
their manufacture using 3D printing to increase the output power of TEGs.

In [2], two relevant aspects were mentioned: (a) in the current literature, there are still
few studies on the optimization of the geometry of TEGs, especially for the shape of the
legs; (b) recently, algorithms have been used to design optimal devices by simultaneously
analyzing two or more geometric parameters.

The idea of geometric optimization comes from the structural aspect of the thermoelec-
tric generator, which in its most elementary form (thermocouple) is composed of two legs of
semiconductor material (for example, BiTe or SiGe), one n-type and the other p-type, which
are electrically connected in series by means of a metallic bridge (for example, copper)
(Figure 1); these legs have a rectangular prism shape. Then, two geometric parameters
present in each leg are identified, the cross-sectional area (A) and the length (l). These
geometric parameters are linked to two properties of thermoelectric materials, thermal
conductance (K) and electrical resistance (R). This relationship between the geometric
parameters and the thermoelectric properties is useful for adjusting the shape and size of
the thermocouple. To achieve this dimensioning, a useful technique is the analysis of the
electrical power produced by the TEG, in terms of the geometric parameters.

Figure 1. Design obtained for the conventional thermocouple.

The main motivation for carrying out this work arose from identifying that currently,
in the thermoelectricity field, there is a growth in the amount of researchers interested in
developing TEGs devices for harvesting energy from waste heat sources [5,6]. To achieve
the maximum use of this heat, it is essential to analyze the geometric characteristics of the
device. As previously mentioned, geometric optimization methods require knowledge of
thermoelectric properties, which are linked to the dimensional parameters and that also
vary with temperature. These conditions require knowledge of property measurements
to achieve the best adjusted TEG design for the requirements imposed by the heat source,
the available space, and the load resistance of the system that will use the power produced
by the TEGs. However, not all researchers attempting to design TEGs have a materials
laboratory or the equipment required to prepare samples and measurements. At present,
a useful resource is simulation software to study the properties of materials and design
TEGs; even so, depending on the type of software, investment in licensing is required, in
addition to high-end computer equipment.
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Seeking to develop an affordable alternative for the community intending to design
TEGs, in this work, we propose developing a methodology built on three principles:

(I) Use data from experimental measurements found in publications by specialists in
thermoelectric materials; (II) Use a formalism or an approximation that allows the imme-
diate use of the data obtained from the literature to obtain the leg dimensions (An, Ap, l);
(III) Merge the selected formalism or approximation with a prediction algorithm that allows
us to generate the design best adjusted to the operating conditions of the environment.

The three previous principles guided us toward combining the reduced variables
technique with supervised machine learning (SML) in a design process that consists of the
following steps: (a) take advantage of the qualities of the reduced current approximation to
obtain the architecture of the thermoelectric generator by calculating the parameters (cross-
sectional area and length of its legs); (b) with the help of an algorithm (SML), the values of
the thermoelectric properties and the maximum electrical power (P) are predicted for any
temperature value; and (c) the values obtained in the prediction are useful for adjusting the
design for the operating conditions. In addition, the algorithm has the outstanding feature
of simultaneously analyzing and determining various parameters related to the geometry
of the legs that maximize (P). These parameters are the cross-sectional area ratio (Ap/An),
length (l), length n ratio (ln2/ln1), length p ratio (lp2/lp1) (in the case of a segmented
TEG), and the space between legs (H).

The results provide useful information for the construction of optimal devices and
their possible applications. The scope of this work was extended to a new training phase,
in which it is possible to introduce values of the parameter H and of the temperature,
managing to predict the corresponding value of the maximum power. Of course, this study
has limitations, which are discussed in later sections; however, these first results allowed
us to determine that it is possible to obtain an algorithm for the design of conventional and
segmented thermocouples based on a reduced variables approach fused with a supervised
machine learning calculation model, trained for various thermoelectric materials. The
utility and scope of the method are shown when confronted with a computerized and
experimental model in Section 6.

Notes on the State of the Art

The reduced variables approach is a strategy that can be applied for the optimization of
power, efficiency, and even the coefficient of performance, modifying the current flow in the
legs by adjusting the cross-sectional area. This feature allows us to model the architecture
of the TEG, managing the size of the cross-sectional area and length of the legs. The scope
of this tool was reported in the works of [7–10].

On the other hand, in the field of thermoelectricity, machine learning has been applied
for the prediction of material properties and for the design of new materials. As [11] rightly
mentioned, “the machine learning technique can provide a powerful discovery tool for
thermoelectric materials with respect to the new chemical composition, nanostructural
design, stoichiometry optimization, etc.”. Specifically, supervised machine learning, which
is based on algorithms that learn from an input dataset and a training dataset and manage
to predict unseen data or future values—divided into two categories of classification and
regression [12]—has been applied to carry out the synthesis of a new material spin-driven
thermoelectric effect (STE) [13].

2. Related Work

In the search for a sustainable society and world, thermoelectric generators are an
alternative that can contribute to the economic and social development of regions where it
is possible to take advantage of the products generated by biodiversity; for example, in [14],
the coupling of a thermoelectric generator in a lignin biorefinery was reported (which is a
heteropolymer that is part of the cell wall of the vascular tissue of plants, one of the main
components of the biomass that can be used to obtain renewable products as raw material
for biofuels). The use of thermoelectric generators for the recovery of waste heat from
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biomass stoves was reported in [15]; in this work, the voltage produced by a thermoelectric
generator placed between the hot wall of a stove and a heatsink was investigated. The
voltage produced by this system was measured and compared for different biomass fuels,
such as wood chips, walnut shells, cobs of corn, and coconut shells. Their results showed
that each biomass fuel had its own combustion characteristics that allowed the TEG to
generate a high voltage at specific values. It is also very interesting to comment on the
work of [16], in which a self-powered marine mammal condition monitoring system was
proposed based on the hybrid energy-harvesting mode of a triboelectric nanogenerator
(TENG) and a thermoelectric microgenerator (MTEG). Table 1 below shows some very
interesting works on the design of TEGs that are related to the one presented in this article.

Table 1. Related work.

Reference Characteristics

[1]
A thermal-electric coupled mixed-method algorithm that predicts TEG performance

and optimizes the crosssectional area along the leg length in order to optimize
power output or thermal conversion efficiency

[2]

This work proposes an optimization study to maximize the output power of
variable cross-section TEGs for solar energy utilization by coupling finite element
method (FEM) and optimization algorithm. Six geometric variables along with the
external load resistance are optimized by genetic algorithm (GA) and particle swarm

optimization (PSO).

[3]

Various leg shapes (rectangular prisms, prisms with interior hollows, trapezoids,
hourglass, and Y-shape) were modeled numerically to determine their thermal and

electrical performance under constant temperature and heat flux boundary
conditions. Two thermoelectric materials, bismuth telluride and silicon germanium,

were modeled to capture both low and high temperature application
cases, respectively.

[4]

This work proposes a new geometric design concept to improve the output voltage
and power of the TE legs in RTGs based on increasing side area to enhance heat

dissipation caused by convective heat transfer and radiative heat transfer.
Helix-shaped and spoke-shaped TE legs with different geometrical shapes

are designed.

3. Materials and Methods
3.1. Conventional Thermocouple
Dimensional Parameters

The parameters used for the design of thermoelectric legs were the cross-sectional area
(An), (Ap) and the length (lp = ln = l). Snyder [10] rigorously formulated the reduced
variable approximation. A critical parameter of this approximation is the reduced (relative)
current, defined as:

u =
J

κ∇T
(1)

where κ is the thermal conductivity and T is the absolute temperature.
Snyder [10] proposed an iteration equation to calculate the numerical values of the

quantity (uκ) required for calculations. The (uκ) values were obtained from tables con-
sulted in [10] for different temperature values. This quantity is the kernel of the integrals
that appear in Equations (4) and (12), which were used to calculate the cross-sectional area
and length of the legs. Below is the detailed procedure for calculating (An), (Ap), and (l),
applying reduced variable approximation, which are the main parameters for TEG design.

The first step in the reduced variable procedure is to establish the equal lengths of
both legs; that is, (lp = ln):

I = Jp Ap = Jn An (2)
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if the current density (J) is defined as follows:

Jl =
∫ Th

Tc
κudT (3)

where κ is the thermal conductance and u is the reduced current density. For a complete
understanding of the equations of the reduced variable formalism used in this article,
we suggest consulting reference [10]. Combining Equations (2) and (3), the following
relationship is obtained:

Ap

An
=
−Jn

Jp
=
−
∫ Th

Tc
unκndT∫ Th

Tc
upκpdT

(4)

To calculate the integrals of Equation (4), data from Table 2 are required; these were
obtained from the literature; see reference [10].

Table 2. Numerical data (uκ), material (Bi2Te3).

T (K) upkpdT (A/cm) unkndT (A/cm)

T0 = 298 upkp(T0) = 0.8132 unkn(T0) = −0.4966
T1 = 323 upkp(T1) = 0.8350 unkn(T1) = −0.5206
T2 = 348 upkp(T2) = 0.8424 unkn(T2) = −0.5679
T3 = 373 upkp(T3) = 0.8435 unkn(T3) = −0.6312
T4 = 398 upkp(T4) = 0.8466 unkn(T4) = −0.6933
T5 = 423 upkp(T5) = 0.8603 unkn(T5) = −0.4454

The integrals−
∫ Th

Tc
unκndT and

∫ Th
Tc

upκpdT are calculated applying the Newton–Cotes
method (fourth order). The results for each integral are shown:

−
∫ Th

Tc
unκndT = −57.78 (5)

∫ Th

Tc
upκpdT = 83.82 (6)

The area ratio is

Ap

An
= 0.69 (7)

Now, it is possible to calculate the current densities in the legs;

Jp =
Utotal−h

Atotal

1 + An
Ap

Φp−h −Φn−h
(8)

Φp−h and Φn−h are the thermoelectric potentials at temperature Th = 423 K;

Utotal−h
Atotal

= 20 (W/cm2)

Φph = 0.37(V)

Φnh = −0.49(V)

(9)

At these values, the current density in the p-type leg is

Jp = 57.32 mA/cm2 (10)
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For the current density in the n-type leg, the value Jp and quotient (7) are used;

Jn = 39.51 mA/cm2 (11)

Now, it is possible to know the length (l), for which the following equation is applied:∫ Th

Tc
kn,pun,pdT = Jn,pln,p (12)

The next value of l is obtained;

l = 1.46 (mm) (13)

To calculate the cross-sectional areas Ap and An, Atotal is defined as the total area. For
calculation purposes, Atotal = 1 mm2 is selected. The results are

Ap = 0.41 mm2

An = 0.59 mm2 (14)

Now, the thickness (lmetal) of the metal bridge is added. Figure 1 shows a sketch of
the design obtained:

This first system can be used as a basic unit for the design of a thermoelectric module
composed of several thermocouples.

4. Temperature-Dependent Thermoelectric Properties and Supervised
Machine Learning

Integrals [5,6] could be calculated thanks to the fact that we know the measurements of
the thermoelectric properties at the temperatures in Table 2, generating a first TEG design
with their respective parameters (An, AP, l). However, the system obtained is specific for
that temperature range, in such a way that it is not possible to adjust the design for a wider
or narrower range. Trying to make a new design may require preparing a new material
sample for new measurements or perhaps using advanced software for numerical design
and simulation; there is a possibility that researchers do not have some of these resources.
This difficulty can be overcome with the implementation of a supervised machine learning
algorithm that allows predicting the values of the Seebeck coefficient, α; electrical resistivity,
ρ; and thermal conductivity, κ, properties at any temperature value. Table 3 shows the
measurements of these properties for the BiTe material.

The data in Table 3 were used to train the prediction code, for which an 80/20 rule
was used; that is, 80% of the data were used for the training set and 20% for the test set.
The code was generated using the Wolfram Mathematica 13.2 software using a predictive
function that has the advantage of automatically selecting the most appropriate prediction
model according to the behavior of the experimental data used for training. Specifically,
the algorithm was applied to obtain a set of 50 data points for each thermoelectric property;
however, more data can be predicted for any established temperature range. The distance
between the data was reduced to 2.5 K. Figure 2 shows a spreadsheet containing the
prediction results of the thermoelectric properties generated by the algorithm for each of
the materials selected for the design of the conventional generator.
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Table 3. Experimental data of the thermoelectric properties of the Bi2Te3 material.

T (K) αp (µV/K) ρp (10−3 Ωcm) κp (mW/cm K)

T0 = 298 173 0.927 9.63
T1 = 323 185 1.015 9.85
T2 = 348 194 1.198 9.87
T3 = 373 200 1.415 9.79
T4 = 398 203 1.632 9.70
T5 = 423 204 1.834 9.71

αn (µV/K) ρn(10−3 Ωcm) κn (mW/cm K)

−209 2.38 8
−213 2.61 8.23
−210 2.79 8.72
−201 2.90 9.8
−187 2.94 10.92
−171 2.92 12.07

Figure 2. Spreadsheet containing the 50 data generated by the prediction algorithm.

This algorithm helps predict a material’s thermoelectric property value for any operat-
ing temperature value. As shown below, it is possible to calculate the maximum electrical
power of a conventional system for any T value within this range.

4.1. Segmented Thermocouple

As a result of efforts to take advantage of heat in a wide temperature range, the
segmentation technique was developed. It consists of joining segments of various thermo-
electric materials and allowing thermal and electrical contact between them; its principle is
based on the fact that each of the segments will be subjected to the temperature range in
which it reaches its highest figure of merit value.

4.1.1. Design of a Segmented Thermocouple

The materials selected were Bi2Te3 and Zn4Sb3 (p-type) and Bi2Te3 and CoSb3 (n-
type).The operating temperatures selected were TC = 398 K and TH = 573 K. Tables 4 and 5
show the values of the product uk of the materials Bi2Te3 and Zn4Sb3 (p-type), respectively.
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Table 4. Numerical data of the uκ product of the material Bi2Te3.

T (K) uκBi2Te3 (1/V)

398 0.8466
423 0.8603
448 0.8932
473 0.3339

Table 5. Numerical data of the uκ product of the material Zn4Sb3.

T (K) uκZn4Sb3 (1/V)

482 0.3167
498 0.4999
523 0.5107
548 0.5257
573 0.5430

Tables 6 and 7 show the values of the product uk of the materials Bi2Te3 and CoSb3
(n-type), respectively.

Table 6. Numerical data of the uκ product of the material Bi2Te3.

T (K) uκBi2Te3 (1/V)

398 −0.6933
423 −0.4454

Table 7. Numerical data of the uκ product of the material CoSb3.

T (K) uκCoSb3 (1/V)

440 −0.7948
448 −2.4649
473 −2.4387
498 −2.4164
523 −2.3984
548 −2.3855
548 −2.3783
573 −2.3783

Applying the treatment defined in the previous sections, the following parameters of
the segmented thermocouple were obtained:

Table 8 contains the design parameters of the segmented thermoelectric generator. A
design sketch is shown in Figure 3.

Table 8. Current density and dimensional parameters of the segments.

Parameter Bi2Te3 (p) Zn4Sb3 (p) Bi2Te3 (n) CoSb3 (n)

J (mA/cm2) 29.16 29.16 96.96 96.96
l (mm) 1.76 1.56 0.10 3.21

A (mm2) 0.77 0.77 0.23 0.23
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Figure 3. Design obtained for the segmented thermocouple.

Figure 4 shows a diagram that represents the interaction between the components in
the system.

Figure 4. Sequence diagram showing the interaction between segmented thermocouple components.

Again, the prediction algorithm was applied to obtain 50 data points for each of the
thermoelectric properties. For each of the materials selected in the design, the distance
between the data points was reduced to 2.5 K. Figure 5 shows a spreadsheet containing the
prediction results of the thermoelectric properties generated by the algorithm for each of
the materials selected for segmented generator design.

This algorithm helps predict the values of the materials’ thermoelectric properties
for any operating temperature value within the range of 398–573 K. As shown below, it
is possible to calculate the maximum electrical power of the segmented system for any T
value within this range.



Energies 2023, 16, 7263 10 of 27

Figure 5. Spreadsheet containing the 50 data points generated by the prediction algorithm for the
segmented thermocouple.

4.1.2. Evaluation of the Feasibility of the Segmented Thermocouple by Means of the
Compatibility Factor

An important aspect to remember in the design of segmented thermocouples is that
only certain combinations of materials are appropriate, because there is a risk of building a
thermocouple with a low efficiency, even lower than that of a conventional thermocouple. A
useful resource for evaluating combinations of materials is the compatibility factor (S) [10],
defined as

S =

√
1 + ZT − 1

αT
(15)

Applying Equation (15), it can be confirmed that the materials selected in the system
studied in this work were correct for the segmentation; see Table 9. In this table, it can be
observed that the values of S between p-type and n-type materials differed by a factor not
greater than 2, as indicated by the rule.

Table 9. Values of the compatibility factor S for each of the materials selected for segmentation.

Material S

Bi2Te3 (p) 4.22
Zn4Sb3 4.383

Bi2Te3 (n) 2.27
CoSb3 2.26

5. Results and Discussion
5.1. Maximum Electrical Power of a Conventional Thermocouple

As is well known in the field of thermoelectricity, the maximum power (Pmax) of the
generator is reached with the condition Rload = Rinternal . In this work, an analysis of the
maximum power of generators, conventional and segmented,was conducted for various
physical conditions established for the dimensional parameters (cross-sectional area, length
of the legs, space between the legs). First, the maximum power analysis is shown for the
conventional system and later for the segmented system.

The maximum power of a conventional TEG is

Pmax−conventional =
(αp − αn)2(TH − TC)

2

4
(

Rn + Rp + Rmet
) . (16)
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Pmax−conventional was analyzed for three conditions, as a function of (a) the space
between the legs (H), (b) the ratio of cross-sectional areas (Ap/An), and (c) the length of
the legs (l). Equation (16) was written for each of these parameters using relationships
Rn = ρn l

An
, Rp =

ρp l
Ap

, and Rmetal =
ρmetal l
Ametal

.
The electrical resistance (R) metal used in this study is presented in Table 10. Notice

that for calculation purposes, a thickness of the metal bridge of 0.01 cm was selected.

Table 10. Electrical resistance metal bridge.

Component Electrical Resistance (R)

Metal 0.00002(0.01)
Ametal

We have chosen not to present the equations, since our main objective was to analyze
the behavior of the power curves. The results obtained for each one are shown below.

5.1.1. Maximum Power of the Conventional Generator: Space between the Legs

The space between the thermoelectric legs is considered a variable parameter; see
Figure 6.

Figure 6. H: space between the thermoelectric legs.

Figure 7 shows the maximum electrical power as a function of the space between the
legs for different values of temperature using the prediction algorithm. The values 298 K,
318 K, 348 K, 398 K, and 418 K were selected.

Figure 7 shows that the maximum power increased significantly in the range from
0 to 1 cm, after which the variation was insignificant. This is because the closer the legs are
together, the greater the temperature difference between the hot and cold sides of the gen-
erator. It was also observed that the power values increased as the temperature decreased.
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1 2 3 4 5
Hcm

0.026

0.028

0.030

0.032

PW

Figure 7. Maximum electrical power of the conventional thermoelectric generator as a function of the
space between the legs, H.

5.1.2. Maximum Power of the Conventional Generator: Area Ratio

It is also helpful to observe how the maximum power varies concerning the ratio of
areas, to determine the optimum value of the Ap and An areas, which must be maintained
for the system to achieve the highest possible power value.

Figure 8 shows the region of rapid increase in each electrical power curve. The
electrical power quickly grew until reaching close to 0.5; after that point, the variation was
insignificant. Again, the maximum power was more significant for temperatures close to
298 K.

0.5 1.0 1.5 2.0

Ap

An

1 10 9

2 10 9

5 10 9

PW

Figure 8. Maximum electrical power of the conventional thermoelectric generator as a function of
area ratio (Ap/An).
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5.1.3. Maximum Power of the Conventional Generator: Length of the Legs

From the variation in the maximum power as a function of the length of the legs, it
was possible to determine the optimum length for the highest performance of the thermo-
electric generator.

Figure 9 shows that for the selected temperatures, length values less than 0.1 cm would
be appropriate to achieve the maximum performance.

0.1 0.2 0.5 1 2
l cm

5 10 9

1 10 8

2 10 8

PW

Figure 9. Maximum electrical power of the conventional thermoelectric generator as a function of the
length of the legs.

5.2. Maximum Electrical Power of a Segmented Thermocouple

The maximum power produced by a segmented thermoelectric generator is defined
using the following equation:

Pmax−segmented =
(αp−e f f ective − αn−e f f ective)

2(TH − TC)
2

4
(

Rn1 + Rn2 + Rp1 + Rp2 + Rmet
) (17)

Note that the effective Seebeck coefficient can be defined for each of the n-type and
p-type segmented legs as

αp−e f f ective =
κp1αp2 + κp2αp1

κp1 + κp2
(18)

αn−e f f ective =
κn1αn2 + κn2αn1

κn1 + κp2
(19)

The electrical power produced by the segmented thermoelectric generator was an-
alyzed for four conditions, which were (a) as a function of the space between the legs,
(H), (b) as a function of the ratio of cross-sectional areas, (Ap/An), (c) as a function of
the ratio of the lengths of p-type materials (lp2/lp1), and (d) as a function of the ratio of
lengths of n-type materials (ln2/ln1). Similarly to the case of the conventional thermocou-
ple, Equation (17) was written for each of the four parameters. Again, the key was the
electrical resistance values, which in this case were (Rn1), (Rn2), (Rp1), (Rp2), and (Rmet).
Thus, the power curves for each were generated.
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5.2.1. Maximum Power of the Segmented Thermoelectric Generator: Space between
the Legs

Figure 10 shows that the system’s maximum power was practically constant as the
space between the legs changed, but this depended dramatically on the selected tempera-
tures. It can also be seen that the temperature that produced the highest power was 510 K.
This is interesting news for researchers and engineers who are working on developing new
ways to generate power. The results of this study suggest that by carefully controlling the
temperature, we could produce a constant and reliable source of power, regardless of the
distance between the legs of the system. This could have a major impact on the development
of new technologies, such as portable electronics and renewable energy sources.
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Figure 10. Maximum electrical power of the segmented thermoelectric generator as a function of the
space between the legs (H).

5.2.2. Maximum Power of the Segmented Thermoelectric Generator: Area Ratio (Ap/An)

Figure 11 shows the maximum power for the segmented thermoelectric generator
as a function of the area ratio. An attractive characteristic is the different intersections of
the curves in the interval from 0 to 0.5. These intersection points are essential because
they represent the same maximum power at different temperatures and at the same area
ratio. This behavior results from the segmentation because, as it is well known, certain
thermoelectric materials are more efficient than others at different temperatures. As the
values of the area ratio after that interval increased, all the curves remained without notable
changes. This analysis shows that the maximum power output of a segmented TEG can be
increased by increasing the area ratio and operating the TEG at a temperature of 510 K.

5.2.3. Maximum Power of the Segmented Thermoelectric Generator: n-Type Length Ratio

In the case of the conventional thermocouple, analyzing the power variation as a
function of the leg lengths is a simple task because lp = ln. However, for the case of a
segmented TEG, the lengths are different for each segment; that is, a set of four lengths
is formed (ln1, ln2, lp1, and lp2). A practical method is to analyze the electrical power as
a function of the length ratios (ln2/ln1) and (lp2/lp1). Figure 12 shows the power of the
segmented system as a function of the ratio (ln2/ln1) at different temperatures. The power
was maximum for small values of (ln2/ln1) or when (ln2 < ln1), but it decreased when
this ratio increased; that is, (ln2 > ln1). The temperature that showed the highest power
value was T = 426 K. This result suggests that the segmented system was more efficient at
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generating power at small values of n-type length ratio. Notice that the electrical power
decreased rapidly from the value 0.5.
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Figure 11. Maximum electrical power of the segmented thermoelectric generator as a function of the
area ratio (Ap/An).
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Figure 12. Maximum electrical power of the segmented thermoelectric generator as a function of the
n-type leg ratio (ln2/ln1).

5.2.4. Maximum Power of the Segmented Thermoelectric Generator: p-Type Length Ratio

Figure 13 shows the maximum power as a function of the ratio (lp2/lp1) for different
temperatures. An important feature is that the electrical power decreased rapidly for all
intervals of values of the p-type leg ratio (lp2/lp1). This is because longer legs have more
resistance, which limits the current flow and therefore the power output. Notice that
the maximum power values of the system in this case were lower than those achieved
with the quotient (ln2/ln1). These results suggest that for maximum electrical power,
semiconductors should be segmented in n-type legs. This can reduce the resistance of the
legs and allow for more current to flow, resulting in a higher power output. The highest
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maximum power output was achieved at temperatures around 398 K. The electrons in the
semiconductor were more mobile at higher temperatures.
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Figure 13. Maximum electrical power of the segmented thermoelectric generator as a function of the
p-type leg ratio (lp2/lp1).

When comparing the two systems, conventional and segmented, regarding the space
parameter (H) between the legs, the changes in maximum power values are more no-
ticeable in the curves of the conventional thermocouple. In contrast, for the segmented
thermocouple, the variations are minimal. The maximum power stabilized after reaching a
maximum value at some specific value of H, because this parameter is related to the area
of the metal bridge; thus, when H increased, the resistance of the metal bridge decreased
and approaches zero. In this way, the maximum power value approached a constant value.
In the case of the segmented thermocouple, it can be seen from Figure 10 that a smaller
value of H (0 ≤ H ≤ 1) was required to reach the maximum power and stability, compared
to the value of H required for the conventional thermocouple (1 ≤ H ≤ 2); see Figure 6.
When analyzing the variation in power as a function of (Ap/An), both systems reached
maximums at similar points (Ap/An ≈ 0.5), after which it was no longer necessary to
continue increasing the ratio. It is very interesting to observe the intersections between the
power curves in Figure 11; it is possible that this was a consequence of the segmentation
technique used (remember that each segment of thermoelectric material reached its maxi-
mum performance value for a specific temperature). Moreover, the intersection point of
two or more of these curves indicates that at those temperatures the TEG was operating
with the segments at maximum efficiency. For example, in the interval 0 < Ap/An ≤ 0.5,
the power curve at 559 K intersects with the curves at 398 K, 426 K, and 450.5 K. When com-
paring the points of intersection with the temperature values of Tables 4–7, the following
correspondence is found: “for a ratio of (Ap/An = 0.5), the optimal temperature values of
each material are shown in Table 11”.

Table 11. Optimum temperature values for each segment.

T (K) Material

559 Zn4Sb3 (p)
450.5 CoSb3 (n)
426 Bi2Te3 (p)
398 Bi2Te3 (n)
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For the analysis of the maximum power as a function of the leg length (conventional
TEG) or the ratio of lengths (segmented TEG), the Figures 9, 12 and 13 suggest that small
values of these parameters favor the performance of the systems, because it is possible to
reduce the electrical resistance.

The analysis of the temperatures in each case mentioned above showed that for the
conventional thermocouple, the dominant temperature was 298 K. This result confirmed
that the BiTe material reached its maximum figure of merit value at an operating tempera-
ture between 200 and 300 K. On the other hand, regarding the segmented thermoelectric
generator, Figures 10 and 11 show that the temperature that produced the highest power
was 510 K. However, in Figure 12, the segmented system produced the highest maximum
power value at 426 K, while Figure 13 shows that at T = 398 K, the system generated a high
maximum power value. These peculiarities show that, unlike the conventional thermocou-
ple, in the case of the segmented thermocouple, there was a greater sensitivity to changes
in the operating temperature, in a specific way concerning the condition established for
certain dimensional parameters.

6. Model Building and Experimental Setup

In order to verify the validity of the proposed methodology, in this section, we consider
the results of the work of Crane et al. [17], who created a design using a computerized
model and performed an experiment with the built prototype of a system called a three-
couple TEG engine; see Figure 14 [17].

Figure 14. TEG engine system designed and built by Crane [17].

The test carried out for this work consisted of using the information from the ex-
perimental measurements to design a conventional TEG; however, unknown data were
necessary to correctly develop the design. The source of the known information was the
data provided by Crane’s paper [17], shown in Table 12.

Table 12. TEG engine data [17].

Material Bi2Te3

Tc 20 ◦C = 293.15 K

Th 150 ◦C = 423.15 K

Figure 15 shows the power curves against the electric current for certain values of Th,
obtained through the computerized model made by authors in [17]. It is observed that they
coincide with the experimental curves.
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Figure 15. Power and voltage versus current curves to validate the computer model with experimental
data taken from Crane et al. [17].

Next, we sought to design a three-couple TEG engine system applying the reduced
variables methodology with supervised machine learning, to obtain a graph like the one
shown in Figure 15. In addition to the data shown in Table 12, it was required to know
the properties and dimensions Ap, An, lp, ln, ρp, ρn, Ametal , lmetal , and ρmetal not provided
by [17], so it was necessary to calculate them.For this purpose, a first attempt was made,
in which the Seebeck coefficient and electrical resistivity data from Table 3 were used to
obtain the graph of power at temperature Th = 150 ◦C = 423.15 K, presented as the yellow
curve in Figure 15. In this case, the six temperature values that are provided in Table 3
were the real values taken from the measurement and, as can be seen, the extreme values
Tc = 298 K = 24.85 ◦C and Th = 423 K = 149.85 ◦C were only approximate to the values
actually required for the design (Tc = 293.15 K = 20 ◦C and Th = 423.15 K = 150 ◦C). With this
information, the reduced variables technique was applied to obtain a first design for the
three-couple TEG engine, for which the graph of electrical power as a function of electrical
current is shown in Figure 16.

A comparison between Figure 16 and the yellow curve in Figure 15 shows that the
design obtained in this first attempt deviated from Crane’s model by approximately 50%,
which is a very high margin. It was therefore necessary to adjust the six temperature values
from Table 3 to the correct range of Tc = 298 K = 24.85 ◦C and Th = 423 K = 149.85 ◦C. The
following table shows the adjustment.

5 10 15 20 25 30
Current (A)

0.2

0.4

0.6

0.8

1.0

P(W)

Figure 16. Power vs. current three-couple TEG engine at Th = 150 ◦C.
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The values uκn, uκp, αn, αp, ρn, and ρp (Tables 2 and 3) were used as training data
for the supervised machine learning code implemented in this work and thus generated
appropriate data from these properties for the temperature values from Table 13. The
results are shown in the following Table 14.

Table 13. Adjusted temperatures for the design of the TEG engine.

T (K)

T0 = 293.15 = 20 ◦C
T1 = 319.15
T2 = 345.15
T3 = 371.15
T4 = 397.15

T5 = 423.15 = 150 ◦C

Table 14. Values Bi2Te3 thermoelectric properties obtained by supervised machine learning model.

T (K) upκpdT (A/cm) αp (µV/K) ρp (10−3 Ωcm)

T0 = 293.15 = 20 ◦C 0.8278 193 1.3975
T1 = 319.15 0.8278 193 1.3976
T2 = 345.15 0.8278 193 1.3976
T3 = 371.15 0.85345 194 1.3977
T4 = 397.15 0.85345 194 1.3978

T5 = 423.15 = 150 ◦C 0.85345 193.5 1.3979

T (K) unκndT (A/cm) αn (µV/K) ρn (10−3 Ωcm)

T0 = 293.15 = 20 ◦C −0.5507 −209 2.7573
T1 = 319.15 −0.5507 −209 2.7574
T2 = 345.15 −0.5508 −210 2.7574
T3 = 371.15 −0.5508 −210 2.7575
T4 = 397.15 −0.5508 −187 2.7575

T5 = 423.15 = 150 ◦C −0.5509 −171 2.7576

Using the data from column two and applying the methodology with the set of
Equations (2)–(12), the geometric parameters of the couples of the TEG engine were ob-
tained, see Table 15.

Table 15. Geometric parameters obtained for the design of the TEG engine of Bi2Te3.

Parameter Numerical Value

ln = lp 1.85 mm
Ap 1.73 mm2

An 2.67 mm2

Subsequently, with the data from the third and fourth columns, the averages of
the quantities αn, αp, ρn, and ρp in the temperature range (Tc = 293.15 K = 20 ◦C and
Th = 423.15 K = 150 ◦C) were obtained. The results are shown in Table 16.

Table 16. Averaged Seebeck coefficient and electrical resistivity, TEG engine design.

Property Averaged Value

αn 193.499 (µV/K)
αp −201.111 (µV/K)
ρn 2.75749 ρp (10−3 Ωcm)
ρp 1.39773 ρp (10−3 Ωcm)
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The data obtained for the legs of the TEG engine (Tables 15 and 16), as well as the data
of the metallic bridge (Table 10), were used in combination with the following equation for
the power produced by the TEG engine.

PTEG−engine = n
[
(αp − αn)(Th − Tc)I −

(
ρnln
An

+
ρplp

Ap
+

ρmetal lmetal
Ametal

)
I2
]

(20)

where PTEG−engine is the power produced by the TEG engine; n is the number thermocou-
ples, which in this case is n = 3; and I is the electric current (which is the independent
variable and is measured in amperes). The other quantities that appear in Equation (20)
have already been indicated above. The graph of the electrical power produced by the
three-couple TEG engine is shown in Figure 17.
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Figure 17. Power vs. current, three-couple TEG engine at Th = 150 ◦C, applying a supervised machine
learning model.

In Figure 17, it can be seen that the graph obtained adjusted well to the original Crane
curve at Th = 150 ◦C (curve in yellow); see Figure 14. It can be seen that the same maximum
value was reached below 0.6 W around 8 A in a range of 0–15 A. Therefore, it is evident that
the methodology (which combined the reduced variables method with supervised machine
learning) proposed in this work managed to reproduce the three-couple TEG engine model
and the experiment of Crane et al. [17] .

7. Conclusions

This work has shown that the fusion of supervised machine learning with the reduced
variables technique can be a useful tool for designing TEGs and adjusting them to the
conditions imposed by the operating environment of the system, specifically when facing
the challenge of knowing a reduced set of measured values. Thanks to its ability to calculate
geometric and prediction parameters, it is possible to

(a) Approximate values of thermoelectric properties (α, ρ, κ) for any temperature value;
(b) Generate new data from few experimental values, even when it is not possible to

perform a new experiment;
(c) Design TEGs for any range of temperature; if the value of a thermoelectric property

for a specific temperature is not known experimentally, it is possible to predict it with
(MLS) (Figures 2 and 5) and use it for design calculations;
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(d) Analyze power simultaneously with respect to various parameters for any temper-
ature value and determine optimization conditions.

The previous characteristics were verified through the design and analysis of the
power of the conventional TEG (Section 3.1), segmented TEG (Section 4.1), and TEG
engine (Section 6) systems.

When conducting the power analysis, one of the outstanding findings was the result
shown in Figure 11, indicating that the curve that corresponded to the highest temperature
intersected with the curves of the other temperatures. Each intersection point specifically
corresponds to the maximum performance of a segment. These intersection points occur
very close to the value (Ap/An) in which the power of the segmented TEG is maximized.

As shown throughout this work, the proposed methodology was translated into a
code in mathematics; its usability is now evaluated in terms of the following ten techno-
economic aspects:

(1) The calculation scheme will be updated soon, to introduce a procedure based on
heat transfer and to consider the physical aspects of the heat source;

(2) From an economic point of view, although Wolfram is a licensed software, it
currently allows the user a free basic plan account, in which the code notebook could
be published and shared with those interested in designing thermoelectric systems with
this methodology;

(3) The code automatically selects the appropriate prediction method according to the
training data. For the study of conventional and segmented systems, the methods that the
code selected to predict the values were linear regression, decision tree, and first neighbors;

(4) The methodology could be transferred in code to another type of software that is
freely available; for example, it could be implemented in python. In that case, there would
be the advantage of being able to modify the prediction method and make more robust
codes that can be better adjusted to the training data;

(5) This methodology may allow for the design of TEGs, taking advantage of the
results of experimental measurements reported in various papers. This aspect is very useful
for researchers who want to design TEGs and who do not have a laboratory, the equipment
to develop experiments, or specialized software for design and simulation;

(6) So far, the code has been tested with the thermoelectric materials Bi2Te3, Zn4Sb3,
and CoSb3. Currently, there are new materials, for example, organic materials or new alloys;
thus, tests must be carried out using the properties of these new materials, to adapt the
code to the needs of new TEG applications.

(7) In addition to what is mentioned in point (5), the designed code does not require
high-end computing equipment compared to specialized design software. In the case of
the calculations developed in this work, an AMD Ryzen 3 processor with Radeon Vega
Mobile Gfx 2.60 GHz, with 8 GB RAM, was used;

(8) The methodology has only been applied for constant cross-sectional areas with
a quadrangular geometry. The code should be extended to include the design of TEGs
with cross-sectional areas with geometries other than quadrangular, for example, circular.
Variable cross-sectional areas regarding leg length could also be included. This could be
achieved by reformulating Equations (16) and (17) in terms of An and Ap;

(9) The code does not send any warning in the event that the user makes some type of
error when capturing the information for the design; this still depends on the skills and
knowledge of the user regarding the specifications of the system to be designed, but it
is intended that soon some kind of table with reference values will be added to act as a
design guide;

(10) It would be very useful to link this code with an interface that collects data in real
time from experiments carried out in various laboratories around the world. This would
allow various thermoelectric material research groups to make a quick evaluation of the
possibility of developing new TEGs devices.
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Artificial Intelligence Applied in Thermoelectrics

Supervised machine learning (which is an area of AI) has been used to predict values
of thermoelectric properties and the electrical power produced; the input values are the
operating temperature and the space between the legs. The application of this powerful
computational tool is novel in the field of thermoelectric devices, as seen in [18]. Artificial
neural networks were applied to model a thermoelectric generator’s maximum energy
generation and efficiency. The authors concluded that neural networks demonstrated
an extremely high prediction accuracy, greater than 98%, and they can operate under a
constant temperature difference and heat flux. The physical model considered contact
resistance, electrical, surface heat transfer, and other thermoelectric effects.

Furthermore, Chika Maduabuchi’s paper [19] presented the first AI-enabled opti-
mization of a TEG performed using deep neural networks (DNN). The effects of strategic
parameters on TEG power output, efficiency, and thermal stress performance were investi-
gated. The parameters were hot and cold junction temperatures, heat transfer coefficients,
incident heat flux, external load resistance, span height TE, area, and area ratio.
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Appendix A

Finally, it is worth mentioning that the algorithm is currently in training to advance
the knowledge of the value of maximum power when introducing any parameter value
(H, Ap/An, l, ln2/ln1, or lp2/lp1) and any operating temperature value. Figures A1 and A2
show the first advance obtained by training the algorithm by providing maximum power
values at temperatures 298, 323, and 348 K with H = 0.25 and maximum power values
at temperatures 373, 398, and 418 K with H = 0.5. After executing the algorithm, a test
was conducted, introducing the values of 298, 323, and 348 K with H = 0.5 and 373, 398,
and 418 K with H = 0.25 in the code. Then, observing Figure A1 for the conventional
case, from left to right, the predicted results of maximum power when performing the test
are observed first, and then the values that were previously known from the spreadsheet
are observed. Similarly, this is evident for the case of the segmented system (Figure A2).
It can be noted for both systems, that in this first training, the results obtained with the
algorithm maintain an acceptable approximation with the spreadsheet results, which were
obtained using experimental measurements of the thermoelectric properties reported in
the literature.
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Figure A1. From left to right, the maximum power values predicted using the algorithm are shown
first and then the power values calculated in a spreadsheet using experimental data (yellow color).
Conventional thermoelectric generator.

The first results allowed us to determine that it is possible to obtain an algorithm for
designing conventional and segmented thermocouples based on the reduced variables
approach fused into a supervised machine learning calculation model trained for various
thermoelectric materials. The reduced variables technique helps obtain the dimensions of
the generator, cross-sectional area, and length of the legs. However, there is the possibility
that the values of the thermoelectric properties are only known for certain temperatures.
This is a situation that could arise for a researcher who does not have the equipment to
carry out experimental measurements. One solution is to use a dataset obtained from the
literature to generate a more extensive dataset, applying a supervised machine learning
resource. In this work, this was helpful, because it allowed us to generate the values of
the thermoelectric properties for any temperature and then calculate the corresponding
maximum electrical power.
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Figure A2. From left to right, the maximum power values predicted using the algorithm are shown
first and then the power values calculated in a spreadsheet using experimental data (yellow color).
Segmented thermoelectric generator.

Appendix B. Details about the Supervised Machine Learning Algorithm Applied in
This Work

The algorithm was developed with the Wolfram Mathematica software, and its basic
operation consists of receiving a set of values (experimental data); the predictor function
was used, which analyzes the data and automatically selects the prediction method that
best fits the training data. Part of the experimental data was used for training the algorithm,
and the other data was used for verification.The model was compared with the results of
the work of Mamoozadeh et al. [1], in which they applied a mathematical–numerical model
to optimize the cross-sectional area and length of thermoelectric legs to maximize power
and conversion efficiency. Figure A3 shows a graph generated with our model. Figure A4
belongs to the abovementioned work, where the blue curve is the power.
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Figure A3. Power curve as a function of the length of the thermoelectric leg, obtained using the
algorithm developed in this work.

Figure A4. Power curve as a function of the length of the thermoelectric leg, in blue, obtained by [1].

Although the relationship between thermoelectric properties and temperature is not
linear, the implemented algorithm works using a predictive function, which improves
the degree of approximation in each iteration. The algorithm was tested using a group of
certified values of the Seebeck coefficient (reference [20], Figure A5). It can be seen that the
algorithm managed to predict the Seebeck coefficient values for temperatures of 350, 450,
550, 650, and 850 K with an acceptable approximation (Figure A6).
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Figure A5. Certified Seebeck coefficient values obtained from reference [20].

Figure A6. Seebeck coefficient values generated by the algorithm developed in this work.
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