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Abstract: New technologies, such as electric vehicles, rooftop solar, and behind-the-meter storage,
will lead to increased variation in electrical load, and the location and time of the penetration of these
technologies are uncertain. Power quality, reliability, and protection issues can be the result if electric
utilities do not consider the probability of load scenarios that have not yet occurred. The authors’
approach to addressing these concerns started with collecting the electrical load data for an expansive
and diverse set of distribution transformers. This provided approximately two-and-a-half years of
data that were used to develop new methods that will enable engineers to address emerging issues.
The efficacy of the methods was then assessed with a real-world test dataset that was not used in
the development of the new methods. This resulted in an approach to efficiently generate stochastic
electrical load forecasts for elements of distribution circuits. Methods are also described that use
those forecasts for engineering analysis that predict the likelihood of distribution transformer failures
and power quality events. 100% of the transformers identified as most likely to fail either did fail or
identified a data correction opportunity. The accuracy of the power quality results was 92% while
allowing for a balance between measures of efficiency and customer satisfaction.

Keywords: monte carlo simulations; distribution transformer; hot-spot temperature; random forests;
logistic regression; differential entropy

1. Introduction

The traditional electrical system is evolving, with customers adopting electric vehicles
(EVs) and distributed energy resources (DER). This will increase the complexity and
uncertainty of load patterns. If not quickly identified and addressed by utilities, these
changes could result in many issues, including outage and non-outage events for customers.

To prevent these issues from impacting customers, damaging equipment, or leading to
other negative outcomes, utility engineers need new tools that leverage the more expansive
datasets available from automated meter infrastructure (AMI) and other modern technology
deployments. These new data sources offer great promise, but because of the boundless
volume of data, they can also overwhelm engineers. To avoid that result, new tools need
to focus on turning the vast amount of data into actionable information for engineers to
use. Machine learning approaches coupled with engineering principles provide the bridge
between raw data and actionable information.

With those challenges in mind, this manuscript builds on the method presented in [1]
to answer the following questions:

• How can the method be implemented to perform the contemplated Monte Carlo
simulations in an efficient and scalable way?

• Does the method maintain its value when applied with Engineering Analysis?
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• How can the stochastic load forecasts from the Monte Carlo simulations be used and
validated in Engineering Analysis to avoid outage and non-outage events for customers?

• How can the method be practically deployed for a wide-scale implementation with a
large variety of distribution transformers?

This manuscript will demonstrate positive results for all these questions with real-
world applications and data, and by doing so, it provides new methods to help engineers
obtain the actionable information they need. The specific novel contributions to the overall
body of knowledge included in this manuscript are as follows:

(1) A computationally efficient process is presented to generate hourly stochastic electrical
load forecasts for up to five months on distribution circuit equipment.

(2) A method is described that proactively identifies transformer failures before they
impact customers and validates those results with real-world data.

(3) The variation in the key parameters required for determining transformer hot-spots
is investigated for the practical and wide-scale implementation of the transformer
failure prediction method.

(4) Power quality concerns are predicted to allow engineers and field crews to address
those cases before customers are impacted. The results are compared to actual cases ex-
perienced and evaluated with consideration of overall accuracy, customer satisfaction,
and efficiency.

The remainder of this manuscript is arranged by the following sections: A review
of the State of the Art is presented in Section 2; Section 3 describes the authors’ work to
efficiently create Monte Carlo simulations; Section 4 presents Engineering Analysis using
the Monte Carlo simulations; and Section 5 summarizes the research findings and future
opportunities. A Nomenclature section and References are also included at the end of
this document.

2. State of the Art

Section 2.1 considers the research that has been completed and is available in the
literature. Section 2.2 summarizes the authors’ work from [1], on which this manuscript
builds, and the new contributions of the work presented in this document.

2.1. Literature Review

This section reviews the research relevant to this manuscript. It is presented in three
areas of significance: electrical load forecasting, load-related transformer failures, and
power quality events.

2.1.1. Electrical Load Forecasting

As described in [1], electric utilities typically perform annual peak load assessments
on major electrical infrastructure. Research has considered forecasting horizons in four
categories [2]:

• Very-Short-Term Forecasts (VSTFs)—up to 1 h
• Short-Term Forecasts (STFs)—1 h to 2 weeks
• Medium-Term Forecasts (MTFs)—2 weeks to 3 years
• Long-Term Forecasts (LTFs)—3 years to 30 years

The focus of research has been on either VSTFs and STFs for small to large areas or
MTFs and LTFs for large areas. The authors of [3] focus on an hourly day-ahead STF of
Germany and the city of Johor by using a parallel neural network architecture. Reference [4]
uses the Transformer machine learning approach to forecast 12 to 36 h ahead for 20 different
data streams from utilities in the United States. Reference [5] focuses on week-ahead hourly
electrical load forecasts for 370 houses. The authors of [6] use a dataset from 25 households
in the United States to forecast approximately two days ahead. Reference [7] uses a thermal
representation of a transformer with several load prediction models focused on the next 24 h
period. Forecasting the load two days into the future in Ontario, Canada, is the focus of [8].
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The work presented in [9] is an instance of an LTF. In this case, the load for over a year in
advance is forecast for the entire PJM area. Reference [10] clusters the load on feeders from
a substation in Thailand as a first step to forecast load. Completing LTFs on distribution
circuits for distribution planning purposes is the focus of [11]. Reference [12] provides
day-ahead forecasts for six states in the New England area in the United States. The authors
of [13] complete a day-ahead forecast for a modified version of the PJM load, which ranges
from approximately 1 GW to 3 GW. The authors of [14] use a publicly available dataset of
residential appliances over an approximately five-month period in 2011 to forecast a week
ahead. Reference [15] presents a method of predicting and reducing energy consumption
of buildings’ HVAC systems leveraging various protocols and methods.

Traditional practices and research have led to a highly reliable electrical system. How-
ever, increasing penetrations of EVs and customer deployments of DERs will require a
greater understanding of electrical load with a focus on greater spatial and temporal res-
olution than previously studied. This will be critical to address the risks of reliability
deterioration, equipment damage, and power quality events.

In addition to the need for electrical load forecasts with greater spatial and temporal
resolution, the evolving electrical distribution system requires consideration of scenarios
that have not yet been experienced with a view of how likely those scenarios are to occur.
There has been some research on developing and using stochastic electrical forecasts.
Reference [16] uses distributions of electric load and wind power to determine optimal
power flow with 95% confidence intervals for the Electric Reliability Council of Texas
(ERCOT). Reference [17] anticipates the impact of EVs on electrical distribution system
transformers. It uses variations in inputs, such as vehicle weight, state of charge, and
usage patterns, to add EV load to existing load on transformers. Reference [18] uses Monte
Carlo methods to simulate the mobility behavior of EVs to determine charging strategies in
different microgrid configurations. The authors of [19] present a stochastic approach and
use the probabilistic charging patterns of EVs to minimize costs. Reference [20] compares
analytical, simulation, and artificial intelligence methods to present an improved Monte
Carlo sampling technique for more efficiently determining the reliability impact of different
power system configurations. A day-ahead statistical load forecasting model is presented
in [21]. It presents a promising method of using Monte Carlo simulations to assess different
levels of uncertainty with the developed forecasts. The Backward Induction Framework
is developed for power system applications in [22] to consider uncertainty, such as EV
deployments, when utilities are making system decisions.

2.1.2. Load-Related Transformer Failure Events

Increasing the load in the evolving electrical distribution system will increase the
stress on electrical equipment. This can lead to unexpected equipment failures and outages
for customers if not actively managed by utilities. This section considers the research that
has been completed in this area.

The data from 125 residential services in Canada from 2014 to 2016 are used by the
authors of [23] to determine standard load shapes for different weather conditions with
K-Means Clustering. These data are then used with IEEE Standard C57.91-2011, which
provides a method of determining the impact of load on transformer life and is [24], to
advise on the number of services per transformer based on economic criteria. Reference [25]
explains and compares different methods of determining transformer aging. Reference [26]
proposes using a Cumulative Moving Average (CMA) with sensory data and IEEE Standard
C57.91-2011 to continuously determine the remaining life of a transformer under various
weather conditions. Reference [27] uses an older version of IEEE Standard C57.91-2011
to analyze the impact of loading on the life expectancy of a transformer. Reference [28]
presents a study of the impact of quick charging EVs on the life of a 50 MVA 115/22 kV
power transformer in the Provincial Electricity Authority of Thailand (PEA). The authors
use the calculations described in IEEE C57.91-2011 to evaluate the impact of the load on the
transformer’s life.
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2.1.3. Power Quality Events

More volatile load from the adoption of EVs and customer-owned DER in the evolving
electrical distribution system has the potential to increase power quality events if not
predicted and proactively addressed by utilities. This section presents some of the research
in this area.

Reference [29] couples a model that includes a 3 × 3 matrix of impedances with Monte
Carlo simulations of customer demand to determine voltage drops in various networks.
Reference [30] discusses the impact of power quality disturbances on increasingly more
electronic-based loads. It considers the impact of voltage fluctuations, phase imbalance,
frequency changes, and ultra-high harmonics. Reference [31] predicts the location of power
quality events. It starts by identifying historical power quality events with consideration
for weather data. These data are then used to create Hidden Markov Models that lead to the
predictions. Reference [32] uses convolutional neural networks with space phasor module
representations of three-phase voltages to categorize power quality events. Reference [33]
uses an expert system and machine learning algorithms to classify voltage sags and deter-
mine their origins. Reference [34] examines how new technologies can help manage the
electrical distribution system considering the uncertainty of new customer demands.

2.1.4. State of the Art Summary

Existing electrical load forecasting research is primarily focused on either shorter-term
solutions for smaller to larger areas or longer-term forecasts for larger areas only. Consider-
ing customers’ changing electrical needs, the objective must be to forecast further into the
future, and those forecasts must be for the elements of distribution circuits. Deterministic
approaches also must be moved aside and replaced by stochastic methods to consider
the variation in electrical load and the probability of previously unrealized events. These
results must be predicted at least months in advance and on distribution circuit elements.
There are several methods to determine the impact of load on transformers, and IEEE
C57.91-2011 describes a method that has been successfully applied. However, the scale and
time horizons of these applications have been limited. Predicting power quality events has
less well-established methods, but this will be a growing need as customers’ requirements
evolve. The following bullet points summarize the current challenges with the state of
the art.

• The focus of research has been on either VSTFs and STFs for small to large areas or
MTFs and LTFs for large areas. Stochastic forecasts are similarly limited.

• Utilities’ existing practices are predominantly focused on deterministic approaches.
• Wide-scale applications of distribution transformer failure prediction models have

been limited for a number of reasons, including the parameters needed have not been
developed and tested.

• Predicting power quality events has been limited, and the applications do not consider
a practical and balanced approach to evaluating the results.

Addressing these opportunities is the focus of this work. The evolving electrical
system requires efficiently developed stochastic electrical load forecasts on distribution
circuit elements for at least months into the future. The authors have developed the needed
method and prepared an efficient technique to implement it. Methods for Engineering
Analysis are also needed to proactively use those stochastic electrical load forecasts to
determine the effect on equipment to avoid customers from being impacted by outages
and power quality events. This manuscript presents an approach to complete the needed
Engineering Analysis for wide-scale deployment and considers a balanced set of measures,
including overall accuracy, engineering efficiency, and customer service.
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2.2. Previous Work and New Contributions

This section describes the authors’ previous relevant work, how the work described
in this document builds on those previous efforts, and the new contributions included in
this manuscript.

2.2.1. Previous Work

The work described in this manuscript builds on the authors’ efforts presented in [1].
Reference [1] provides hourly forecasts for up to five months on distribution circuit equip-
ment, and it provides a framework to be used with Monte Carlo methods. It describes
a four-step process that starts with a Weather Clustering element to classify days based
on key weather measures. Next, it completes a Load Clustering element, which develops
preliminary forecasts for each day’s classification. The third step is to use the regularity
with which transformers have comparable load shapes with different day classifications
with Community Detection algorithms to identify transformers with similar load pat-
terns across all day-types. Finally, the method combines all the previous elements in an
attention-focused neural network in a Neural Network Refinement element. It uses the
Load Clustering element forecast with attention methods and community-based transfer
learning to produce a final load forecast for each transformer.

2.2.2. Building on Previous Work and New Contributions

Reference [1] provided the framework for providing stochastic electrical load fore-
casts on circuit elements months into the future, and it contemplated use cases for those
Monte Carlo simulations. Reference [1] did not provide the method to implement the
required Monte Carlo simulations in a time-efficient manner, and it did not develop the
use cases. This manuscript builds on [1] by first providing an efficient method to create
the needed stochastic forecasts. It then uses those forecasts to test several applications
of IEEE C57.91-2011, which is [24], to predict load-related transformer failures. Those
predictions are compared against real-world results to determine the efficacy of the overall
method. Finally, the forecasts are used with several classification models that provide the
information to proactively address power quality events for customers.

The datasets used in [1] were also used for the work described in this manuscript.
Over 1000 distribution transformers are included in the dataset, and those transformers
include cases with different numbers of phases, overhead and underground transformers,
4.8 kV ungrounded delta and 13.2 kV grounded wye primary voltages, and capacities
less than 1500 kVA. Over approximately two-and-a-half years, data were collected from a
suburban area (Area 1) and a rural area (Area 2) in DTE Electric’s service territory (Figure 1).
Both areas were trained with data approximately from July 2019 to June 2021. Ten percent
of those data was used as the validation dataset. The test periods for Areas 1 and 2,
respectively, were from July 2021 to November 2021 and from July 2021 to December 2021.
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3. Monte Carlo Simulations

As described in [36], the Monte Carlo simulations method depends on input pa-
rameters that are processed through a mathematical model to deliver a needed output.
A statistical distribution is developed for each of the input parameters, and random samples
are repeatedly drawn from those distributions to determine the inputs to the mathematical
model. This results in a distribution of the outputs and that distribution can be used
in statistical analysis and decision-making. Monte Carlo simulations can be considered
a statistical form of what-if analysis.

Reference [1] developed an electrical load forecasting method that was intended to
be used for Monte Carlo simulations. In this case, the inputs are key weather parameters,
the mathematical model is provided by several machine learning methods, and the output
is electrical load on distribution transformers. Reference [1] delivered the framework for
providing stochastic electrical load forecasts on circuit elements months into the future,
but it did not provide the method to implement the required Monte Carlo simulations
in a time-efficient manner. This section describes how that critical step can be completed
with the objective of deploying the method for wide-scale implementations across utilities’
service territories.

3.1. Overall Structure

To investigate load scenarios that have not yet occurred and the likelihood of those
scenarios, the authors sought to efficiently implement Monte Carlo simulations leveraging
the forecasting method described in [1]. To reduce the total time to complete the Monte
Carlo simulation, a multithreaded and object-oriented approach was implemented by the
authors to strategically make use of system resources, specifically the Central Processing
Unit (CPU) and Graphics Processing Unit (GPU). The structure to generate the Monte Carlo
simulations is shown in Figure 2. This structure will be explained in the following sections.



Energies 2023, 16, 7251 7 of 23
Energies 2023, 16, x FOR PEER REVIEW  7  of  24 
 

 

 

Figure 2. An overview of the Monte Carlo structure that is described in this section. 

3.2. Generate Weather Periods 

The purpose of  the Generate Weather Periods component  is  to create  the weather 

scenarios needed for the Monte Carlo simulations. The Generate Weather Periods compo-

nent runs  in a dedicated thread on  the CPU, and  it  is  triggered to start creating a new 

batch of data by a Forecasting Started Event from the Complete Forecasting component. 

A Forecasting Started Event is artificially generated during initialization to start the pro-

cess. The Generate Weather Periods component generates the weather scenarios over sev-

eral iterations, with each iteration creating a batch of data to be sent to the next component 

to create electrical  load profiles. This approach of creating batches of data  reduces  the 

overall  time by allowing downstream components  to begin processing data  in parallel 

with the Generate Weather Periods component. In the authors’ preferred configuration, 

five iterations with batch sizes of 50, 200, 250, 250, and 250 were completed to generate 

1000 scenarios for the test periods for Areas 1 and 2 separately. 

3.2.1. Batches of Weather Days 

After it is triggered to create a batch of weather data, the first step for the Generate 

Weather Periods component is to use Markov Chains to create a series of day-types for the 

period being investigated, as illustrated in Figure 3. The random walk requires a serialized 

processing approach.   

 
 

(a)  (b) 

Figure 3. Generating a sequence of day-types for Monte Carlo simulations. (a) An example of day 

classification with nine clusters, with each cluster represented by a unique index and color. (b) An 

example Markov chain for January. This work was originally completed with solar irradiance and 

temperature only, and the dew point was included after the first iterations. 

The result of this step is shown in Equation (1). The day-type matrices (DT) provide 

the sequence of day-types to be used in this study. DTTrain is just the historical classification 

of the weather actually experienced. DTTest is the created sequence of days based on the 

Markov Chains and will be used to perform the Monte Carlo simulations. 

Figure 2. An overview of the Monte Carlo structure that is described in this section.

3.2. Generate Weather Periods

The purpose of the Generate Weather Periods component is to create the weather
scenarios needed for the Monte Carlo simulations. The Generate Weather Periods com-
ponent runs in a dedicated thread on the CPU, and it is triggered to start creating a new
batch of data by a Forecasting Started Event from the Complete Forecasting component.
A Forecasting Started Event is artificially generated during initialization to start the process.
The Generate Weather Periods component generates the weather scenarios over several
iterations, with each iteration creating a batch of data to be sent to the next component
to create electrical load profiles. This approach of creating batches of data reduces the
overall time by allowing downstream components to begin processing data in parallel
with the Generate Weather Periods component. In the authors’ preferred configuration,
five iterations with batch sizes of 50, 200, 250, 250, and 250 were completed to generate
1000 scenarios for the test periods for Areas 1 and 2 separately.

3.2.1. Batches of Weather Days

After it is triggered to create a batch of weather data, the first step for the Generate
Weather Periods component is to use Markov Chains to create a series of day-types for the
period being investigated, as illustrated in Figure 3. The random walk requires a serialized
processing approach.
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Figure 3. Generating a sequence of day-types for Monte Carlo simulations. (a) An example of day
classification with nine clusters, with each cluster represented by a unique index and color. (b) An
example Markov chain for January. This work was originally completed with solar irradiance and
temperature only, and the dew point was included after the first iterations.

The result of this step is shown in Equation (1). The day-type matrices (DT) provide
the sequence of day-types to be used in this study. DTTrain is just the historical classification
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of the weather actually experienced. DTTest is the created sequence of days based on the
Markov Chains and will be used to perform the Monte Carlo simulations.

DTTrain ≡
[
dt0,1 · · · dt0,H

]
≡ Day− Types f or Training Period

DTTest ≡


dt1,1 · · · dt1,M

...

...
dtN,1 · · · dtN,M

 ≡ Day− Types f or Testing Period

dti,j ≡ day− type f or batch i, day j ∈ N

N ≡ Batch Size ∈ N

H ≡ Number o f Days in Training Period ∈ N
M ≡ Number o f Days in Testing Period ∈ N

(1)

3.2.2. Detailed Weather Profiles

With the sequence of day-types developed, the next step for the Generate Weather
Periods component is to use an autoregressive model to create hourly solar, dew point, and
temperature profiles for each day in the test period for each simulation, as illustrated in
Figure 4. This step has been vectorized for faster processing.
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The result of this step is shown in Equation (2). The weather matrices (W) provide
the weather data (24 h solar irradiance, temperature, and dew point profiles) to be used in
future steps. Again, WTrain is just the historical weather actually experienced, and WTest is
the result of the autoregressive model.

WTrain ≡ [s0,1,1 · · · s0,1,24 t0,1,1 · · · t0,1,24 d0,1,1 · · · d0,1,24 · · · s0,H,1 · · · s0,H,24 t0,H,1 · · · t0,H,24 d0,H,1 · · · d0,H,24]

WTest ≡


s1,1,1 · · · s1,1,24 t1,1,1 · · · t1,1,24 d1,1,1 · · · d1,1,24 · · · s1,M,1 · · · s1,M,24 t1,M,1 · · · t1,M,24 d1,M,1 · · · d1,M,24

...

...
sN,1,1 · · · sN,1,24 tN,1,1 · · · tN,1,24 dN,1,1 · · · dN,1,24 · · · sN,M,1 · · · sN,M,24 tN,M,1 · · · tN,M,24 dN,M,1 · · · dN,M,24


si,j,k ≡ solar irradiance f or batch i, day j, and hour k ∈ R

ti,j,k ≡ temperature f or batch i, day j, and hour k ∈ R

di,j,k ≡ dew point f or batch i, day j, and hour k ∈ R

(2)
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3.2.3. Final Processing

The final step for the Generate Weather Periods component is to complete the final
processing of the data to produce a tensor to be sent to the next component. This step is also
vectorized for faster processing and creates a tensor for each day in the test period for each
simulation. The tensor contains the date, iteration number, batch, month, day of month,
current day cluster, next day cluster, day of year, hourly solar profile, hourly temperature
profile, hourly dew point profile, day of year sine and cosine representation, weekend,
holiday, holiday week, period (i.e., 2021S4), season (S1 to S4), and a period index (1 to 10).

3.3. Complete Forecasting

With the weather scenarios from the Generate Weather Periods component, the Com-
plete Forecasting component implements the forecasting algorithm described in [1]. It
generates the stochastic electrical load forecasts needed for the Engineering Analysis that
will be described in Section 4. It runs in a dedicated thread on the GPU and is triggered by
a Generate Weather Batch Complete Event.

3.3.1. Clustering Forecast

The first step of the Complete Forecasting component is to complete the clustering-
based forecasting described in [1], which is illustrated in Figure 5. The result is the Trans-
former Load Matrix (TLM), which includes key information, such as the initial load forecast
for each transformer. It is completed for the entire batch for each transformer provided
by the Generate Weather Periods component. This step has been vectorized for each
transformer for the entire batch for faster processing.
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3.3.2. Prepare Tensor

This step generates a tensor based on the results of the clustering step to feed into the
neural network in the next step. It does this for the entire batch for each transformer. This
step has been vectorized for each transformer for the entire batch for faster processing and
produces a tensor for each transformer for a day in each simulation. It contains day of year
sine and cosine representation, transformer data (type, index, relative rating, and z-score
for number of customers), day cluster, load cluster, day of year, weekend, holiday, holiday
week, season period index (1 to 10), clustering forecast (24 h), hourly solar profile (24 h),
hourly temperature profile (24 h), hourly dew point profile (24 h), hourly attention (24 h),
and hourly sine and cosine representation (24 h).

3.3.3. Neural Network Refinement

The final step of the Complete Forecasting component is to implement the Neural
Network Refinement element described in [1] and illustrated in Figure 6. It is completed
for the entire batch for each transformer. This step has been vectorized for each transformer
for the entire batch for faster processing.
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3.4. Add Standard Error and Implement Engineering Analysis

Regression models typically include a standard error that considers the model’s fit to
the training data. To consider this, a standard error table is created for each transformer
during the neural network training, as described in [1]. The results from the Complete Fore-
casting component are the expected value of the forecasting model. Additional variation
can be expected based on the standard error table. This is considered by first completing a
random sampling within the standard error distribution. This result is then added to the
expected value of the forecast to provide the final forecast to be used in Engineering Analy-
sis [37]. This is illustrated in Figure 7. The results are used in the Engineering Analysis that
will be described in Section 4. This component runs in a dedicated thread running on the
CPU, and it queues data from the Complete Forecasting component.
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The result of this step is shown in Equation (3). The load matrices (L) are created
for each transformer, which will be used in Engineering Analysis. LTrain is the actual load
experienced by the transformer, and LTest is the forecasted load for each of the Monte Carlo
simulations.

LTrain ≡
[
l0,1,1 · · · l0,1,24 · · · l0,H,1 · · · l0,H,24

]
LTest ≡

 l1,1,1 · · · l1,1,24 · · · l1,M,1 · · · l1,M,24
...

lN,1,1 · · · lN,1,24 · · · lN,M,1 · · · lN,M,24


li,j,k ≡ load f or batch i, day j, and hour k ∈ R

(3)

4. Engineering Analysis

Reference [1] contemplated use cases for the Monte Carlo simulations, but it did
not develop those use cases. This section describes how the results of the Monte Carlo
simulations can be used. While there are many use cases, the authors prioritized proactively
identifying and correcting concerns that can impact customers. This section describes two
uses that the authors have developed: Transformer Failures due to Loading and Power
Quality Concern Prediction.

The tools provided by [38–42] were helpful in the Monte Carlo and Engineering
Analysis, with [38] providing the method to complete the forecast training and prediction
on the GPU [39,40], providing the means to read and process the data, and [41,42] provide
data analysis tools that ran on the CPU and GPU respectively.

4.1. Transformer Failures Due to Loading

IEEE Standard C57.91-2011 can be used to determine the loss of transformer life due
to load [24,43]. As described in IEEE Standard C57.91-2011, insulation deterioration is
a key component of transformer life, and insulation deterioration is a function of time,
moisture content, oxygen content, and temperature. With modern construction techniques,
moisture and oxygen content can be minimized, which leaves temperature as the primary
controllable factor.
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4.1.1. Hot-Spot Determination

Figure 8 illustrates the determination of the highest insulation temperature (Hot-Spot).
The Hot-Spot will most likely be on the transformer windings at the top of the transformer
tank and will be the summation of the ambient temperature, oil temperature, and winding
temperature. The authors used this standard with the load forecasts from the Monte Carlo
simulations to determine the likelihood of a transformer failure due to loading.
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The standard provides guidance on determining each of these temperatures based on
the transformer’s load.

The top oil temperature rise over ambient temperature is determined using the following:

∆ΘTO,i = ∆ΘTO,R

[
(K2

i R+1)
(R+1)

]n

∆ΘTO,U = ∆ΘTO,R

[
(K2

U R+1)
(R+1)

]n

∆ΘTO = (∆ΘTO,U − ∆ΘTO,i)
(

1− e−t/τTO
)
+ ∆ΘTO,i

ΘTO ≡ Top−Oil Temperature ◦C∆ΘTO ≡ Top−Oil Rise Over Ambient ◦C

∆ΘTO,R ≡ Top−Oil Rise Over Ambient at Rated Load ◦C

∆ΘTO,i ≡ Initial Top−Oil Rise Over Ambient ◦C

∆ΘTO,U ≡ Ultimate Top−Oil Rise Over Ambient ◦C

τTO ≡ Oil Time Constant

Ki ≡ Ratio o f Initial Load to Rated Load

KU ≡ Ratio o f Ultimate Load to Rated Load

R ≡ Ratio o f Load Loss at Rated Load to No Load Loss

n ≡ Emperically Derived Exponent

(4)



Energies 2023, 16, 7251 13 of 23

The winding Hot-Spot temperature relative to the top oil temperature is calculated
using the following equations.

∆ΘH,i = ∆ΘH,RK2m
i

∆ΘH,U = ∆ΘH,RK2m
U

∆ΘH = (∆ΘH,U − ∆ΘH,i)
(

1− e−t/τW
)
+ ∆ΘH,i

ΘH ≡Winding Hottest− Spot Temperature ◦C

∆ΘH ≡Winding Hottest− Spot Temperature Over Top Oil ◦C

∆ΘH,R ≡Winding Hottest− Spot Temperature Over Top Oil at Rated Load ◦C

∆ΘH,i ≡ Initial Winding Hottest− Spot Temperature Over Top Oil ◦C

∆ΘH,U ≡ Ultimate Winding Hottest− Spot Temperature Over Top Oil ◦C

τW ≡Winding Time Constant

m ≡ Emperically Derived Exponent

(5)

With the top oil temperature and winding Hot-Spot temperatures, the impact on
transformer life can be determined using the following:

ΘH = ΘA + ∆ΘTO + ∆ΘH

FAA = e[
15000
383 −

15000
ΘH+273 ]

FEQA = ∑N
n=1 FAA,n ∆tn

∑N
n=1 ∆tn

%loss o f li f e = FEQA x t x 100
Normal Insulation Li f e

ΘH ≡Winding Hottest− Spot Temperature ◦C

ΘA ≡ Average Ambient Temperature ◦C

FAA ≡ Aging Acceleration Factor f or a Period

FAA,n ≡ Aging Acceleration Factor f or Period n

FEQA ≡ Accumulated Aging Factor

(6)

4.1.2. Transformer Thermal Parameters

Some of the parameters required for the implementation of IEEE Standard C57.91-2011
are available in the standard, such as m and n. Others must be determined through
testing. Because the distribution transformers installed on the electrical distribution system
vary based on many factors, including their installation date, past usage, manufacturer,
manufacturing date, and many others, determining the transformer parameters needed for
the calculations is a challenge for a wide-scale application of IEEE Standard C57.91-2011.
To address this issue, the authors established a range of parameters to use based on
discussions with transformer manufacturers and industry experts, as shown in Table 1.
Note that there can be wider variation in these parameters, including with newer, more
efficient transformer designs. The results are determined for the range of parameters to
determine their impact on the Hot-Spot calculations, which is presented in Section 5.1.2
and shows that they provided beneficial outcomes. Specifically, the “Mid” set of values
applied for a wide-scale application of IEEE Standard C57.91-2011 provided good results
in this study.
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Table 1. Transformer parameters used with IEEE Standard C57.91-2011 in this study.

Transformer Parameter High Mid Low

R 10 7 4

∆ΘTO,R (◦C) 60 55 50

τTO (h) 8 6 4

∆ΘH,R (◦C) 25 17.5 10

τw (h) 0.33 0.21 0.083

4.1.3. Implementation Details

To implement the calculations described in Equations (4)–(6) using the values in
Table 1, the first event records were analyzed to determine the last time each transformer
in the study was replaced. The date and time for that event is the starting point for the
calculation using the historical load for each transformer (LTrain) from Equation (3). Those
data were then coupled with the forecasted load for each transformer for all the simulations
(LTest) from Equation (3). The consolidated data were then sequentially processed from
hour to hour through Equations (4)–(6). The result is the remaining useful life for each
transformer for each Monte Carlo simulation. The portion of the Monte Carlo simulations
ending with 100% or greater of the useful life being exhausted is the likelihood of failure.

4.2. Power Quality Concern Prediction

In addition to using the Monte Carlo simulations for transformer failure predictions,
the authors sought to also use them to identify and address power quality events before
they were experienced by customers. Power quality events, in this case, are defined as low
voltage, high voltage, and flicker events reported by customers.

4.2.1. Classification Evaluation

The authors reviewed the work in [44,45] to develop measures and analysis methods
for evaluating the classification models with a range of hyperparameters.

The confusion matrix shown in Figure 9 was used in this study.
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The key metrics used in this study are defined in Equation (7) based on the confusion
matrix shown in Figure 9. Accuracy (A) will be a key measure to evaluate the overall results
of the power quality event classification model. True Positive Rate (TPR) measures the
number of actual power quality events predicted to the total number of power quality
events experienced by customers. A high TPR value indicates that a high number of power
quality events can be identified and addressed before they are realized by customers. Thus,
TPR is a measure of the model’s focus on customer service. On the other hand, Precision
Rate (P) is a measure of how many transformers predicted to experience power quality
concerns actually have power quality concerns. Each one of these transformers will have
to be investigated by engineers and field crews. A high p-value indicates that a high
ratio of transformers being investigated will actually have issues. Thus, it is a measure
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focused on efficiency. Finding the right balance between these three measures is part of the
overall objective.

Accuracy ≡ A ≡ TP+TN
(TP+TN+FP+FN)

True Positive Rate ≡ TPR ≡ TP
(TP+FN)

Precision Rate ≡ P ≡ TP
(TP+FP)

(7)

4.2.2. Classification Model

The authors experimented with several feature sets derived from the Monte Carlo
simulations, several classification models, and different values of hyperparameters for the
classification models to predict power quality events during the period under investigation
(test periods for Areas 1 and 2). The classifier was trained using the training periods
for Areas 1 and 2 separately. The predicted power quality events were then determined
by using the data from the test period and compared to the actual power quality events
experienced by customers during that period. A summary of the factors for the experiments
is included in Table 2.

Table 2. Classification Model Experiment Factors [40,41].

Features Derived from
Monte Carlo Simulations Classification Method Hyperparameters

Entropy Logistic Regression (LR) C (SVM and LR)
Percent Greater than 1 Support Vector Machine (SVM) Gamma (SVM)

Absolute Difference Mean Random Forest (RF) Categories Weights (All)
Average Classifier Threshold (All)

Standard Deviation Max Depth (RF)
Maximum Minimum Samples per Leaf (RF)
Minimum

To elaborate on Table 2, the features included in the first column are all calculated with
the results of the Monte Carlo simulations and defined as follows:

Entropy—The differential entropy as defined in [39]
Percent Greater than 1—The percentage of hours where the load is greater than the capacity
of the transformer
Absolute Difference Mean—The average of the difference in load from hour to hour
Average—The average of the load in the simulations result
Standard Deviation—The standard deviation of the load in the simulations result
Maximum—The maximum of the load in the simulations result
Minimum—The minimum of the load in the simulations result

The authors attempted to train three different classification models. The results for
LR and RF are presented in Section 5.1.3. Attempts to train SVM were also completed, but
none of those endeavors provided good results.

There are many hyperparameters for each classification model (see the Nomenclature
section and [46–48] for more details). The authors investigated variation in many and
reviewed research [44,45] to determine the most impactful hyperparameters, which are
listed in the third column of Table 2. Values for these hyperparameters were selected, and
adjustments were made to determine the results. Those results are provided in Section 5.1.3.

A few hyperparameters require additional explanation. The true samples are weighted
because false samples are disproportionately high (i.e., there are far fewer transformers
experiencing power quality events than those that do not experience power quality events.
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Also, the classifier threshold uses the average of the probabilities of true classification across
all simulations to determine the final classification based on the defined threshold.

4.2.3. Implementation Details

The features for each transformer, which are described in Section 4.2.2, are calcu-
lated using the load results for each transformer (LTrain and LTest), which is described in
Equation (3). The features determined with the training period load values from each
transformer (LTrain) are used as inputs to the classification model, with the desired outputs
being power quality events realized during the training period. This trained model is
then tested with the feature sets derived from test period forecasted load data (LTest) from
Equation (3). The threshold previously described was used to determine the classification
for each transformer, and those classifications were compared to actual power quality
events experienced during the test period to determine the efficacy of the model.

5. Research Findings and Future Work

The research findings and how they will lead to future work are presented in this section.

5.1. Research Findings

The research findings can be considered in three categories—(1) the time to complete
the Monte Carlo simulations and the time to complete the overall process, (2) the efficacy
of the transformer failure results, and (3) the efficacy of the power quality predictions.

5.1.1. Monte Carlo Results

The structure described in Section 3 produced 1000 simulations for approximately
four months from July 2021 to early November 2021 for 389 transformers in Area 1 in
approximately 44 min and for five months from July 2021 to early December 2021 for
454 transformers in Area 2 in approximately 55 min. The time to complete the Engineering
Analysis described in Section 4 is 11 min for Area 1 and 15 min for Area 2. When added
to the training times in Table 2 from [1], the overall process can be completed in approxi-
mately 103 to 118 min for 389 to 454 transformers (approximately 48 million to 69 million
points), respectively.

The work was completed on a system with the following specifications: CPU: AMD
Ryzen 7 5800X with 3801 MHz Default Clock Speed, GPU: NVIDIA GeForce RTX 3060 Ti,
RAM: 4 X G. Skill F4-3200C16-16GVK DD4 for 64 GB, Motherboard: HP 8876.

5.1.2. Transformer Failure Results

The Monte Carlo simulations were used with the guidance from IEEE Standard
C57.91-2011 to predict transformer failures, and the results were compared with actual
failures in the period under investigation (test periods for Areas 1 and 2). The results
are shown in Table 3, with the Transformer Index defined as a unique index for each
transformer in the study. The Percentage of Monte Carlo Simulations that Exceeded
100% Useful Life is the percentage of the 1000 simulations that ended greater than 100.
This calculation uses the percentage loss of life determined through the implementation
of IEEE Standard C57.91-2011 for the training and test periods for all the 1000 Monte
Carlo simulations and each set of transformer parameters defined in Section 4.1. Finally,
Transformer Outage Events are the actual transformer outage events experienced during
the period under investigation (test periods for Areas 1 and 2). All the transformers in
Table 3 were considered likely to fail during the test period.
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Table 3. The top ten transformers identified as most likely to fail based on Monte Carlo simulations
and the IEEE Standard C57.91-2011 Hot-Spot calculations.

Transformer
Index

Percent of Monte Carlo
Simulations That Exceeded 100% Useful Life Transformer

Outage Events

Data Improvement
Opportunity

IdentifiedLow Mid High

200 0 100 100 TRUE N/A

385 19.2 100 100 FALSE Transformer Capacity

475 0 100 100 FALSE Transformer Capacity

293 2.6 80.7 100 TRUE N/A

10,328 2.7 25.7 75 TRUE N/A

489 0 3 62.7 TRUE N/A

286 0.1 2.3 19.8 FALSE Transformer Capacity

275 0 2.1 100 FALSE Meter-to-Transformer Mapping

480 0 1.2 25.5 FALSE Transformer Capacity

389 0 0.7 21.5 FALSE Transformer Capacity

As shown in Table 3, four of the ten transformers predicted to be most likely to fail
did fail during the period under investigation. Initially, transformers 385, 475, 286, 480,
and 389 all showed some percentage of the 1000 simulations ending with 100% of the
useful life being exceeded for some scenarios. None of these five transformers experienced
an actual transformer outage event, but field investigations led to the identification of
transformer capacity data issues. After the data were improved, 0% of the simulations
ended with 100% of the useful life being exceeded. Similarly, AMI voltage correlation and
meter-to-transformer distance analysis showed that transformer 275 had over 56% more
customers mapped to it than was actually the case. Identifying these issues through this
method allowed for these data to be improved, and the results are summarized in the Data
Improvement Opportunity Identified column in Table 3.

It can also be seen from Table 3 that variation in the transformer thermal parameters
needed for the implementation of IEEE Standard C57.91-2011 leads to different values.
However, it shows that the top predicted transformer failures do not vary significantly.

5.1.3. Power Quality Event Predictions

Tables 4 and 5 show the results of the power quality event prediction experiments to
determine the proper balance between accuracy, customer service, and efficiency measures.

The authors found the bold line in Table 4 as the best option. The bold line in Table 4
would have led to proactively identifying six transformers with power quality issues out of
the 835 transformers that were classified. This model would have required the investigation
of 56 transformers; 25 transformers actually had power quality concerns during the period
under investigation.

The LR results presented in Table 5 show that accuracy did not exceed 67.8% and
precision did not exceed 6.1%. Experiments were also completed using SVM, but SVM did
not show good results. This led the authors to select RF as the best option for the purpose.

Starting with the bold line in Table 4, a feature ablation study was completed. The
results of that study are presented in Table 6.

From the results of the feature ablation study presented in Table 6, removing the
“percent greater than 1” variable, which is emphasized with the bold line, slightly improves
the results. With this improvement, engineers would have to investigate 54 transformers
(i.e., more efficient) with no loss of TPR (i.e., maintaining customer service focus).
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Table 4. Random Forest Results. The bold line indicates the authors’ preferred option.

Actual Power Quality
Event Weight

Classifier
Threshold Max Depth Minimum

Samples per Leaf

Accuracy
× 100
(%)

TPR
× 100
(%)

Precision
× 100
(%)

0.95 0.5 2 2 41.2 84 4.1

0.95 0.5 2 3 41.2 84 4.1

0.95 0.5 3 2 90.1 12 4.7

0.95 0.5 3 3 89.8 12 4.5

0.95 0.4 2 2 34.3 92 4.0

0.95 0.4 2 3 34.3 92 4.0

0.95 0.4 3 2 45.0 76 4.0

0.95 0.4 3 3 45.6 76 4.1

0.9 0.5 2 2 96.0 4 10.0

0.9 0.5 2 3 96.2 4 11.1

0.9 0.5 3 2 96.6 4 20.0

0.9 0.5 3 3 96.8 4 25.0

0.9 0.4 2 2 66.1 60 5.2

0.9 0.4 2 3 66.1 64 5.5

0.9 0.4 3 2 91.6 24 10.5

0.9 0.4 3 3 91.7 24 10.7

0.9 0.4 4 3 93.3 12 8.1

0.85 0.4 3 3 95.9 4 9.1

0.9 0.45 3 3 95.7 8 13.3

Table 5. Logistic Regression Results.

Actual Power
Quality Event Weight

Classifier
Threshold C

Accuracy
× 100
(%)

TPR
× 100
(%)

Precision
× 100
(%)

0.95 0.5 10 33.9 88 3.9

0.95 0.5 1 26.2 92 3.6

0.95 0.5 0.1 31.5 92 3.9

0.95 0.4 10 26.0 92 3.6

0.95 0.4 1 18.2 96 3.4

0.95 0.4 0.1 13.4 100 3.3

0.9 0.5 10 67.8 68 6.1

0.9 0.5 1 66.6 60 5.3

0.9 0.5 0.1 66.7 60 5.3

0.9 0.4 10 49.1 80 4.5

0.9 0.4 1 40.1 84 4.1

0.9 0.4 0.1 32.3 92 3.9
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Table 6. Feature Ablation Study. This study uses the Random Forest model from Table 4 and removes
variables to determine their impact on the results. X indicates the feature is included in the model.

Entropy
Percent
Greater
than 1

Abs Diff
Mean

Max
Load

Min
Load

Average
Load

Stdev
Load

Accuracy
× 100
(%)

TPR
× 100
(%)

Precision
× 100
(%)

X X X X X X X 91.7 24.0 10.7

X X X X X X 92.0 24.0 11.1

X 67.8 56.0 5.1

X X 54.6 76.0 4.8

X X 72.2 40.0 4.4

X X X X 92.9 12.0 7.5

X X X 95.1 8.0 10.0

X X 63.0 56.0 4.5

X X X X X 94.3 8.0 7.4

5.1.4. Research Findings Summary

The forecasting method described in [1] can be used to efficiently generate stochastic
electrical load forecasts. Strategically using CPU and GPU resources and event synchro-
nized threading are critical to reducing the overall time to complete the simulations. One
key aspect of efficiently completing the Monte Carlo simulations is to generate batches of
the needed input parameters, such as weather data, in one thread, with the batch sizes vary-
ing to start the parallel processing in downstream components. Furthermore, vectorizing
data processing wherever possible reduces the overall time.

These simulations can be used with IEEE Standard C57.91-2011 to accurately predict
transformer failures and to identify data improvement opportunities. The key thermal
parameters of transformers can vary widely based on many factors, including installation
date, past usage, manufacturer, and manufacturing date. It would at least be difficult, if
not impossible, to determine these parameters for all the transformers to be included in
a wide-scale implementation of IEEE Standard C57.91-2011; but the work described in
this manuscript has shown that transformer failures and data improvement opportunities
can be predicted by using a standard mid-range of values. Finally, the simulations can be
used with classification models to predict power quality events and provide measures of
overall accuracy, true positive rate, and precision to allow utilities to find the proper balance
between a focus on customer satisfaction and engineering efficiency. This work has shown
that the Random Forest classification method with proper selection of weighting, thresholds,
and other hyperparameters performed the best with differential entropy, absolute difference
mean, average, standard deviation, maximum, and minimum measures derived from the
stochastic electrical load forecasts.

5.1.5. Future Work

The work described in this manuscript and [1] provides a foundation for utilities to
prevent customers from experiencing outage and non-outage events with the evolving
electrical distribution system. While this work has provided some meaningful contribu-
tions, time constraints have led to two limitations: the authors believe the overall method
described in [1] can be further developed and verified, and the scope of the Engineering
Analysis can be expanded past distribution transformers.

With the foundation that has been established and considering the limitations, the
authors plan to expand their work in four directions. First, there will be a focus on
improving the overall accuracy and predicting capability of the method described in [1].
Second, the work will be expanded past the original datasets to other geographic areas
and time periods to both test and further develop it. Third, the work described in this
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manuscript will be expanded to additional Engineering Analysis, including aggregating
the results to anticipate protection concerns and the risk of equipment damage beyond
distribution transformers. The aggregated results also have the potential to identify areas
with lightly loaded equipment, which can lead to ferroresonance risk [49–51]. Finally, the
authors plan to use these new methods to consider new opportunities for electric utilities,
including the use of non-wires alternatives (NWAs), microgrid technology, and adaptive
networked microgrids (ANMs).
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Nomenclature

A Accuracy
AMI Automated Meter Infrastructure
ANM Adaptive Networked Microgrid
CMA Cumulative Moving Average
CPU Central Processing Unit
DER Distributed Energy Resources
EPRI Electric Power Research Institute
ERCOT Electric Reliability Council of Texas
EV Electric vehicles
GPU Graphics Processing Unit
LR Logistic Regression
LTF Long-Term Forecast
MTF Medium-Term Forecasts
P Precision
PEA Provincial Electricity Authority of Thailand
RF Random Forest
STF Short-Term Forecast
SVM Support Vector Machine
TPR True Positive Rate
VSTF Very-Short-Term Forecast
Training Period July 2019 to June 2021
Training Data Data from the Training Period not included in the Validation Data
Validation Data Randomly selected 10% of data from Training Period
Test Period Area 1 July 2021 to November 2021
Test Period Area 2 July 2021 to December 2021
Period Under Investigation Test Periods for Area 1 and Area 2
DTTrain Day− Types f or Training Period
DTTest Day− Types f or Testing Period
dti,j day− type f or batch i, day j
N Batch Size
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H Number o f Days in Training Period
M Number o f Days in Testing Period
WTrain Weather Matrix f or the Training Period
WTest Weather Matrix f or the Testing Period
si,j,k solar irradiance f or batch i, day j, and hour k
ti,j,k temperature f or batch i, day j, and hour k
di,j,k dew point f or batch i, day j, and hour k
LTrain Load f or the Training Period
LTest Load f or the Testing Period
li,j,k load f or batch i, day j, and hour k
Parameters Used with IEEE Standard C57.91-2011
ΘTO Top−Oil Temperature ◦C
∆ΘTO Top−Oil Rise Over Ambient ◦C
∆ΘTO,R Top − Oil Rise Over Ambient at Rated Load ◦C
∆ΘTO,i Initial Top−Oil Rise Over Ambient ◦C
∆ΘTO,U Ultimate Top−Oil Rise Over Ambient ◦C
τTO Oil Time Constant
Ki Ratio of Initial Load to Rated Load
KU Ratio of Ultimate Load to Rated Load
R Ratio of Load Loss at Rated Load to No Load Loss
n Emperically Derived Exponent
ΘH Winding Hottest− Spot Temperature ◦C
∆ΘH Winding Hottest− Spot Temperature Over Top Oil ◦C
∆ΘH,R Winding Hottest− Spot Temperature Over Top Oil at Rated Load ◦C
∆ΘH,i Initial Winding Hottest− Spot Temperature Over Top Oil ◦C
∆ΘH,U Ultimate Winding Hottest− Spot Temperature Over Top Oil ◦C
τW Winding Time Constant
m Emperically Derived Exponent
Hyperparameters Used with Classifiers

C
Used with SVM and LR—Regularization parameter. The strength of
the regularization is inversely proportional to C [46,48]

Gamma Used with SVM—Kernel coefficient [46]
Max Depth Used with RF—The maximum depth of the tree [47]

Minimum Samples per Leaf
Used with RF—The minimum number of samples required to be at
a leaf node [47]

Classifier Threshold Used with All—The threshold for deciding between two classifications.

Category Weights
Used with All—A weighting applied to samples that are
disproportionately distributed distributed
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