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Abstract: The power supply of many applications running off the power line is made up of an isolated
dc-dc converter powered by a front-end power factor corrector (PFC) stage. The PFC stage ensures
compliance with the electromagnetic compatibility regulations but does not usually provide safety
isolation since it is typically implemented with a boost converter. Lately, the increase in multi-output
power supplies, especially in lighting and USB Power Delivery applications, has raised the need for
an isolated PFC at power levels where currently there is not an industry standard solution. This
isolated PFC is intended to power one or more non-isolated post-regulators to enable a substantial
simplification of the overall architecture and a cost reduction. The usage of an LLC resonant converter
as an isolated PFC has been considered and demonstrated only quite recently, raising the industry’s
attention due to the favorable converter’s characteristics that have led to its success as a dc-dc
converter. This paper provides two significant contributions. Firstly, it provides a quantitative
assessment of the difference in the results obtained by designing an LLC-based PFC converter based
on the first harmonic approximation analysis or the time-domain analysis by applying them to the
design of the same converter. Secondly, it demonstrates that designing an LLC-based PFC converter
to work also in the above-resonance region optimizes its performance by reducing the (magnetizing)
reactive current in the resonant tank and, therefore, the rms currents on both the input and the output
side and the related power loss.

Keywords: power quality; THD; isolated PFC; LLC resonant converter; LLC PFC; first harmonic
approximation; FHA; time-domain analysis; TDA

1. Introduction

The industry standard solution to address the compliance of mains-operated power
supplies with the IEC 61000-3-2 regulation [1], which sets limits to the harmonic content of
their input current, is the addition of an electronic front-end circuit, the so-called power
factor corrector (PFC). It is a switch-mode converter directly supplied by the rectified mains
and controlled to draw a sinusoidal current in phase with the voltage. This results in a low
total harmonic distortion (THD) and near-unity power factor (PF = 1), hence the name PFC,
as if the electronic equipment was a resistive load.

Figure 1 shows the most common architecture of a power-factor-corrected switch-
mode power supply (SMPS): a PFC pre-regulator front end providing a regulated output
voltage and powering a cascaded dc-dc converter.

In most applications, the PFC pre-regulator is realized using a boost converter, a
non-isolated topology. The cascaded dc-dc converter is therefore responsible for providing
the isolation required in most power supplies operated from the mains to meet safety
requirements and regulations.

The boost converter can cover a broad power range, whereas the cascaded dc-dc
converter uses different topologies depending on the power level. Flyback converters are
commonly used in the lower power range. LLC resonant converters [2] have become very
popular at higher power levels because of their nice properties conferred by soft-switching
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operation (low power loss, high efficiency, high operating frequency, low electromagnetic
emissions, high power density) without significant drawbacks.
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Figure 1. Typical two-stage architecture of a power-factor-corrected SMPS.

There are applications, however, where an isolated PFC cascaded by one or more
non-isolated converters might be a better option: multi-output isolated converters involve
a more complicated design and are more difficult to fine-tune, while non-isolated dc-dc
converters are quite standard building blocks, can be very efficient and compact and
eliminate cross-regulation issues among the various outputs. This is the case, for example,
of multi-output SMPS or LED drivers, or chargers for mobile equipment, single and
multiport [3], required to comply with the USB Power Delivery (USB-PD) protocol.

Figure 2 shows this type of architecture.
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Additionally, there are other SMPS applications (e.g., battery chargers) where the load
is tolerant to the low-frequency ripple of a PFC output. In this case, an isolated PFC might
enable a single-stage architecture (see Figure 3) with a substantial cost saving.
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Flyback-based isolated PFCs are a good choice up to 50–60 W: they are often used in
lighting equipment [4–7]. For higher power levels, though the literature presents plenty of
different solutions [8], none have become an industry standard like the flyback PFC.

Isolated boost converters [9] are not easy to handle, and the provisions needed to make
them operate properly make them less cost-effective; other topologies, such as SEPIC [10],
Ćuk [11] and Zeta [12] converters, can effectively work as an isolated PFC, but they are
seldom used.

Likewise, a lot of new topologies combining a boost-type front end with an isolated
converter that share the same control have been proposed over the years [13–20] but did
not find broad industrial usage, with very few exceptions [20]. Many of them [15–19]
considered the LLC converter to be the isolated converter.

Only recently, research has concentrated on the standalone LLC converter used as a
PFC stage (an LLC-PFC in short), therefore supplied by a rectified sinusoidal voltage and
not by a dc voltage like in two-stage SMPS architectures.

Ref. [21] uses the first harmonic approximation (FHA) analysis to demonstrate LLC’s
ability to work as a PFC stage, keeping its previously mentioned benign properties. It sets
up a design procedure that is used in [22] to prove the feasibility of an LLC-PFC at the
kW level and in [23] for the design of a modular PFC stage operated from the three-phase
line. In these papers, it is assumed that the converter always works in the so-called “below-
resonance” operating region, and the design constraints required to ensure soft switching
in this region are not addressed.

As for the control of the output voltage/current of an LLC-PFC, the previously men-
tioned works consider average current mode control (ACMC), like in boost PFC operated
in Continuous Conduction Mode [24], to achieve extremely low distortion of the input
current. The implementation is microcontroller-based.

Other authors [25,26] consider modulating the switching frequency directly (they call
it voltage-mode control) to simplify the control system at the price of a significantly higher
THD of the input current, though still sufficient to comply with the IEC 61000-3-2 regulation.

In [25,27], the accuracy limits of the FHA approach are highlighted, and the time-
domain (TD) analysis is proposed to overcome these limitations. Ref. [27] shows that the
FHA approach results in a too-conservative design that does not fully utilize the operating
region of the converter, whereas by using the TD approach, the operating region of the
converter can be fully utilized. However, the degree of conservativeness of the FHA
approach is shown only qualitatively, the TD-based design procedure is just sketched, and
the details on how the design is carried out are few.

Based on these premises, the first objective of the present work is to assess how the
usage of the TD approach can improve an FHA-based design. This goal is achieved by
addressing the design of a specified converter with the two approaches and comparing the
results. A more detailed TD-based design procedure is provided in this paper.

A second objective is to demonstrate that designing the LLC-PFC converter to work
also in the above-resonance region optimizes its performance by reducing the reactive
current in the resonant tank, which in turn reduces the rms currents on both the input and
the output sides.

Thirdly, to assess the feasibility of implementing ACMC using low-cost analog compo-
nents, this control is considered and verified by simulations and bench experiments.

Ultimately, the goal of the present work is to demonstrate that an LLC-PFC can be
an attractive solution in many use cases, with all the credentials to become an industry
standard for an isolated PFC at the power levels that a flyback PFC cannot support.

Therefore, the paper is organized as follows.
In Section 2, the FHA analysis is reviewed; compared to previously published proce-

dures, here, operation above the upper resonance frequency is accounted for. The resulting
step-by-step design procedure is given in Appendix A.
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In Section 3, the TD analysis is reviewed. Due to its mathematical complexity, only the
basic definitions and the results are provided in this section, the details of the analysis are
given in Appendix B.

Section 4 provides the electrical specification of an LLC-PFC intended for a high-power
LED lamp driver and uses two different design strategies with the FHA approach: the first
one assumes that the converter operates at the upper resonance frequency on the peak
of the maximum ac input voltage, whereas the second one assumes that the converter
operates at the upper resonance frequency on the peak of the nominal ac input voltage, thus
utilizing the above-resonance region to handle ac input voltages higher than the nominal
one. The same is done with the TD approach.

Section 5 shows a prototype constructed so that the two designs based on the TD
approach can be implemented in a single board and provides the results of their bench
evaluation. The results are commented on to provide the basis for the conclusions drawn
in Section 6.

2. First Harmonic Approximation (FHA) Analysis of the LLC-PFC

The simplified circuit diagram of the LLC-PFC converter is shown in Figure 4. The
input capacitor Cin is not a bulk capacitor as it is usually placed after the input bridge in a
non-power-factor-corrected converter; it is only a filter for the high-frequency switching
noise, like a standard boost PFC.
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The FHA analysis, whose foundations were laid in a paper published in 1988 [28],
is now widely used when designing an LLC resonant converter, especially because a
handy design procedure can be found that starts from the electrical specification and leads
to the definition of the resonant tank’s parameter (a, Lr, Lm, Cr), e.g., like the 10-step
procedure in [29].

Before extending this procedure to the design of an LLC-PFC, it is convenient to
remember some basic definitions used in the FHA analysis:

Primary-to-secondary turn ratio a =
Np
Ns

Topology factor α =

{
2a half bridge
a full bridge

Normalized voltage conversion
ratio (voltage gain) |M( fn, λ, Q)| = α Vout

Vin = 1√[
1+λ

(
1− 1

f 2
n

)]2

+Q2
(

fn− 1
fn

)2

(1)
Resonance frequencies fR1 = 1

2π
√

Lr Cr
; fR2 = 1

2π
√

(Lr+Lm)Cr

Characteristic impedance ZR1 =
√

Lr
Cr = 2π fR1 Lr = 1

2π fR1 Cr
Series-to-magnetizing
inductance ratio λ = Lr

Lm =
f 2
R2

f 2
R1− f 2

R2

Normalized switching frequency fn =
fsw
fR1

Output ac resistance Routac =
8

π2
Vout2

Pout = 8
π2 RLoad

Quality factor Q = ZR1
Rac

= ZR1
a2Routac

= π2

8
ZR1 Pout
a2 Vout2



Energies 2023, 16, 7114 5 of 31

The FHA analysis developed for LLC converters supplied by a substantial dc input
voltage can be extended to the PFC case, based on a quasi-static approximation. In fact,
although the input voltage is a rectified sinusoid that goes all the way from zero to the
peak, the line frequency fline is such that the variations are much slower than the converter
dynamics, making it possible to consider the system operating in steady-state conditions
for all the instantaneous phase angles θ of the rectified sinusoid.

In order to act as a PFC stage and achieve a unity PF, the instantaneous input power
along a line half cycle, Pi(θ), swings from zero at the zero crossing of the input voltage and
current to twice the average power Pin (equal to the output power Pout divided by the
efficiency η) at the peak of the input voltage, as plotted in Figure 5:

Pi(θ) =
(

Vinpksinθ
) (

Iinpksinθ
)
= 2Vin Iin sin2 θ = 2Pin sin2 θ = 2

Pout
η

sin2 θ. (2)

where Vin and Iin are the rms values, and Vinpk and Iinpk are the peak values of the input
voltage and current, respectively.
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Evaluating (2) at θ = π/2, we obtain

Pi(π/2) = 2 Vin Iin = 2 Pin = Vinpk Iinpk. (3)

This means that at the peak of the sinusoidal line voltage, the converter is powered
with an equivalent dc line voltage Vinpk and absorbs an equivalent dc current equal to
Iinpk, resulting in the input power being twice the average value. Based on the concept
of quasi-static approximation, the design based on the FHA approach can be carried out
treating the peak values of the line voltage and current as if they were dc values.

To ensure proper operation as a PFC-LLC, some additional analysis is needed. To this
purpose, it is fundamental to consider that not only the instantaneous input power but also
the instantaneous output power varies along θ too:

Po(θ) = η Pi(θ) = 2 η Pin sin2 θ = 2 Pout sin2 θ, (4)

and so do the ac resistance and the quality factor. Substituting (4) in (1), we get

Routac(θ) =
4

π2
Vout2

Pout sin2 θ
Q(θ) =

π2

4
ZR1

a2
Pout

Vout2 sin2 θ = Q0 sin2 θ. (5)

Finally, also the voltage gain |M| becomes a function of θ:

|M( fn, λ, Q0, θ)| = 1√[
1 + λ

(
1− 1

f 2
n

)]2
+ Q2

0sin4 θ
(

fn − 1
fn

)2
. (6)
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This voltage gain needs to be compared to the voltage gain of an LLC converter
supplied by a rectified sinusoid Vinpksin θ =

√
2 Vinsin θ required to provide a regulated

output voltage Vout:

Mreq(Vin, θ) = α
Vout√

2 Vinsin θ
= α

Vout
Vinpksin θ

. (7)

The plot of (7) vs. θ is shown in Figure 6: Mreq is minimum on the peak of the sinusoid
(θ = π/2) and tends to infinity approaching the zero crossings.
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To ensure that the converter can regulate the output voltage, with fixed Q0 and λ, it
must be |M| > Mreq at some frequency for all θ values. Also, the operating points must be
in the inductive region, where the converter works with zero-voltage switching (ZVS).

We can visualize this constraint considering a hypothetical LLC converter and plotting
its voltage gain |M| vs. the normalized frequency fn at a fixed power level (i.e., at a fixed Q0)
with the phase angle θ as a parameter, as shown in Figure 7. In particular, the plot is drawn
with θ equal to π/2, π/3 and π/4 (due to the symmetry of the sin function, these plots
represent the supplementary angles too). The highest required gain Mreq (calculated at the
minimum input voltage Vinpkmin

and, in case of variable output voltage, at Vout = Voutmax)
for the same phase angles is plotted in dashed lines.
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For all of these three phase angles of the input voltage, there is an intersection between
the required gain and the LLC voltage gain: these are the operating points for those phase
angles. This means that the condition |M| > Mreq is met at some frequency. These points
are in the inductive region, so the converter works with ZVS as required.

However, we need to ensure that this condition is verified for any phase angle θ
included in [0,π/ 2] (if it is so, for symmetry, it will be also in [π/2,π]).

The |M| curves also show that the gain has a peak Mpk in the capacitive region and the
maximum useful value MMAX at the boundary between the capacitive and the inductive
region. Notice that the difference between MMAX and Mreq gets smaller as θ tends to π/2 or,
equivalently, when Q0 increases. Also notice that MMAX is larger than the gain at fsw = fR2
(or, equivalently, at fn = fR2/ fR1). The latter gain can be easily calculated by inserting
fn = fR2/ fR1 in (6) and considering the definitions in (1):

|M( fR2/ fR1, λ, Q0, θ)| =
√

λ(1 + λ)

Q0sin2 θ
. (8)

Imposing that (8) be greater than (or at least equal to) the required voltage gain (7)
evaluated at the minimum input voltage and maximum output voltage, where the needed
gain is at a maximum, we will make sure that the gain will be always sufficient to achieve
output voltage regulation:

MMAX(λ, Q0, θ) ≥
√

λ(1 + λ)

Q0sin2 θ
≥ α

Voutmax√
2 Vinminsin θ

. (9)

Since the inequality 1/ sin2θ ≥ 1/sin θ is always true for any phase angle between
zero and π, the condition that must be fulfilled to ensure output voltage regulation is:√

λ(1 + λ)

Q0
≥ α

Voutmax√
2 Vinmin

. (10)

Likewise, the maximum value of the minimum voltage gain occurs when fsw > fR1
and Q0 = 0 (i.e., the output load is zero):

|M( fn, λ, 0, θ)| = 1

1 + λ
(

1− 1
f 2
n

) = |MOL( fn, λ)|. (11)

Its minimum value is called M∞ and occurs when fsw � fR1, as shown in Figure 8.
Indeed, if the maximum switching frequency is fixed at fmax > fR1, the maximum

value of the minimum voltage gain can be evaluated:

|MOL( fmax/ fR1, λ)| = 1

1 + λ

[
1−

(
fR1
fmax

)2
] . (12)

Imposing that (12) be lower than the required voltage gain (7) evaluated at the peak of
the maximum input voltage and the minimum output voltage, where the required gain is at
a minimum, it is possible to find the minimum inductance ratio λ that fulfills the minimum
gain requirement:

1

1 + λ

[
1−

(
fR1
fmax

)2
] ≤ α

Voutmin√
2 Vinmax

= Mreqmin → λ ≥
1

Mreqmin
− 1

1−
(

fR1
fmax

)2 . (13)

The FHA-based design procedure used in [21–23] and described step-by-step in [30]
sets the maximum operating frequency at the upper resonance frequency fR1(or equiva-
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lently fn = 1) where the gain is unity and independent of the load. Since this gain must be
lower than or equal to the minimum required voltage gain Mreqmin , it is possible to derive
the following constraint on α:

1 ≤ α
Voutmin√
2 Vinmax

→ α ≥
√

2 Vinmax

Voutmin
. (14)

If we extend the operating region at frequencies higher than fR1(i.e., fn > 1), the
constraint on α can be derived from (13):

α ≥
√

2 Vinmax

Voutmin

{
1 + λ

[
1−

(
fR1

fmax

)2
]}

. (15)

From (14) or (15), along with (1), it is possible to derive the required turn ratio a.
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Figure 8. Voltage-gain curve at no load and comparison to the minimum required gain to achieve
output voltage regulation.

Condition (10), along with (14) (or (15), depending on the design), is a fundamental
design constraint because it determines the maximum and minimum gain of the LLC
converter to fulfill the necessary gain to perform as a PFC.

By equating the required gain (7) to the voltage gain (6), it is possible to find how
the normalized switching frequency varies along the phase angle θ of a line half cycle, as
illustrated in the plot of Figure 9.
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The switching frequency peaks at θ = π/2 and decreases as the instantaneous line
voltage moves toward the zero crossing, where it reaches the lower resonance frequency
fR2 (the only possible equilibrium point when Vin(θ) and Iin(θ) are both zero). The
relationship is strongly nonlinear and dependent on the rms input voltage, difficult to
synthesize in an analog circuit or in a look-up table. This explains why controlling the
switching frequency directly like in [25,26] results in a high THD of the input current.

Unfortunately, as already said, the accuracy of the FHA analysis is quite good when
the system is working near the upper resonance frequency fR1 but is worse if we move
away from this point. Since the LLC converter is designed to work in the entire range
between the lower and the upper resonance frequencies and above when working as a PFC,
a time-domain analysis is necessary to assess how the approximations inherent in the FHA
analysis affect the results.

3. Time Domain (TD) Analysis of the LLC-PFC

The study of the differential equations of the current and voltages of the resonant tank
allows us to better understand the behavior below the upper resonance frequency without
the approximations inherent in the FHA approach.

As with the FHA, the quasi-static approximation allows us to solve the system of
differential equations considering the input voltage fixed.

There are some takeaways from the FHA theory that can be used also in the TD
analysis. One is the fact that the most stringent condition for the gain is at the peak of the
minimum input voltage, where the difference between the available gain and the required
gain is minimized, as shown in Figure 7. Also, the transformer turn ratio a can be derived
considering (14) or (15), depending on whether the maximum switching frequency fmax is
set at fR1 or above fR1.

It is convenient to start the TD analysis by inspecting the key waveforms of voltage
and current in the resonant tank. We will assume that at the peak of Vinmin (i.e., Vinminpk )
and full output load, the resonant tank operating mode is DCMB2 as defined in [2] and
characterized by two distinct time intervals in each switching half cycle.

Figure 10 shows the typical resonant tank currents and resonant capacitor voltage
during the below resonance operation, in the first half switching cycle in DCMB2 mode.
The waveforms in the second half switching cycle are mirror symmetric with respect to the
horizontal axis (the initial conditions and the evolution in time are just opposite).
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The plots of the currents in Figure 10 show the following:

• The red portion is the resonant current iRT during the time interval (0− Tm) during
which current flows on the secondary side as well.

• The blue portion is the magnetizing current iM flowing into Lm during the time
interval (0− Tm); this current is subtracted from iRT and does not contribute to the
secondary current to form the output dc current.

• The black portion is the tank circuit current imag in the time interval (Tm− Tsw/2);
this is a magnetizing current too, flowing in both Lr and Lm; in this interval, the
secondary current is zero.

The following analysis is performed supposing that the primary switch configuration
is a half bridge (then, α = 2a).

The circuit is described by two sets of differential equations in the two-time intervals
(0− Tm) and (Tm− Tsw/2). Referring to Figure 10 for the symbolism, in the time interval
(0− Tm), it is possible to write:

Vinpk = Lr d
dt iRT(t) + vCr(t) + a Vout

iRT(t) = Cr d
dt vCr(t)

a Vout = Lm d
dt iM(t)

(16)

with initial conditions: {
iRT(0) = iM(0) = −Io

vCr(0) = VCr0

. (17)

The solution of the system (16) is:
vCr(t) = −ZR1 Iosin(2π fR1t)−

(
Vinpk − aVout−VCr0

)
cos(2π fR1t) +

(
Vinpk − aVout

)
iRT(t) = −Iocos(2π fR1t) + 1

ZR1

(
Vinpk − aVout−VCr0

)
sin(2π fR1t)

iM(t) = a Vout
Lm t− Io

, (18)

where fR1 and ZR1 are those defined by (1).
During the same time interval, there is a current flowing on the secondary side of

the converter:
isec(t) = a[iRT(t)− iM(t)]. (19)

During the second time interval (Tm− Tsw/2), there is no current flowing on the
secondary side, and the inductances Lr and Lm are effectively in series. The second set of
differential equations is: {

Vinpk = (Lr + Lm) d
dt iRT(t) + vCr(t)

imag(t) = Cr d
dt vCr(t)

(20)

with initial conditions: {
imag(Tm) = Im

vCr(Tm) = VCrTm

. (21)

The solution of the system (20) is:vCr(t) = ZR2·Imsin[2π fR2(t− Tm)]−
(

Vinpk −VCrTm

)
cos[2π fR2(t− Tm)] + Vinpk

imag(t) = Imcos[2π fR2(t− Tm)] + 1
ZR2

(
Vinpk −VCrTm

)
sin[2π fR2(t− Tm)]

, (22)

where fR2 has been already defined in (1), while it is:

ZR2 =

√
Lr + Lm

Cr
= 2π fR2(Lr + Lm) =

1
2π fR2Cr

. (23)



Energies 2023, 16, 7114 11 of 31

The complete TD analysis is detailed in Appendix B. Here, we show only the results,
in particular, the following system of four nonlinear equations in the four unknowns Io, Im,
Tm and Tsw that are highlighted in Figure 10:

Ioutpk = a Im−Io
Tsw

[
tan(π fR1Tm)

π fR1
− Tm

]
Iinpk −

Ioutpk
2a = 1

2Tsw

[
Tm(Im − Io) + (Im + Io)

tan(π fR2( Tsw
2 −Tm))

π fR2

]
[

Im+Io
2π fR1Tm

KV−1
λ + π fR1TswIinpk

]2
=
[

Im+Iocos(2π fR1Tm)
sin(2π fR1Tm)

]2

tan(ϕmin) =
Iosin(2π fR1Tm)

Im+Iocos(2π fR1Tm)

. (24)

All the other parameters are known quantities:

• Iinpk is the peak input current (averaged on a complete switching cycle) evaluated at
the peak of the minimum input voltage (i.e., with phase angle θ = π/2):

Iinpk = 2
Pin

Vinpk
≈ 2

Pout
ηVinpk

.

• Ioutpk is the peak output current (averaged on a complete switching cycle) evaluated
at the peak of the minimum input voltage that is equal to twice the rated output
current for a PFC circuit:

Ioutpk = 2
Pout
Vout

.

• KV is the inverse of the voltage gain required of the converter that is the ratio between
the minimum input voltage and the nominal input voltage at resonance:

KV
Vinmin
Vinres

=

√
2Vinmin
αVout

.

• ϕmin is the minimum phase angle between the resonant current and the half-bridge
voltage, to ensure ZVS operation, strictly correlated to the dead time TD that is pur-
posely inserted between the turn-off of one switch of the half-bridge leg and the
turn-on of the other one to allow ZVS and the turn-off delay To f f of the power switch:

ϕmin = 2π fR1

(
TD − To f f

)
.

The system (24) needs to be solved with a numerical method using a calculation tool.
Once solutions (Io, Im, Tm and Tsw) are found, the parameters of the resonant tank circuit
and the operating frequency can be calculated:

Lm = aVout
Tm

Im + Io
; Lr = λLm; Cr =

1

(2π fR1)
2Lr

; f sw =
1

Tsw
.

4. Design of an LLC-PFC with Both FHA and TD Analysis

Table 1 shows the electrical specification of an LLC-PFC for a high-power LED lamp
driver supplied by the European mains.

Based on this specification, two different design strategies are used.
The first one is such that the converter works at the upper resonance frequency fR1 at

the peak of the maximum input voltage Vinmax. This automatically sets fmax = fR1.
The second one is designed to work at the upper resonance frequency fR1 at the peak

of the nominal input voltage Vinnom, which is lower than Vinmax. As a result, the switching
frequency will exceed fR1 in the voltage range included between Vinnom and Vinmax. The
maximum switching frequency fmax is specified, and the lower resonance frequency fR2 is
determined by fmax.
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Table 1. Electrical specification of the reference LLC-PFC for a high-power LED lamp driver.

Symbol Name Value Unit

Vinmin −Vinmax Input voltage range (rms) 176–305 Vac
Vinnom Nominal input voltage (rms) 230 Vac
Vout Regulated output voltage (dc) 60± 5% Vdc
VRect Secondary rectifier voltage drop (dc) 0.1 Vdc

Poutmax Maximum output power 240 W
η Estimated efficiency @ Poutmax, Vinmin 94 %

fR1 Upper resonance frequency 150 kHz
fR2 Lower resonance frequency (*) 60 kHz
fmax Maximum switching frequency (*) 300 kHz
CHB Half-bridge midpoint estimated capacitance 660 pF
TD Dead time 270 ns

(*) these two specifications are mutually exclusive: fR2 is specified if the design is to be carried out with fmax = fR1;
fmax is specified if the design is to be carried out with fmax > fR1 ( fR2 will be the result of computation).

The two design strategies are carried out using the FHA and the TD approach, for a
total of four designs, which are labeled and summarized in Table 2. These design labels are
used hereafter in this document.

Table 2. Summary of the four designs and their label.

Name Description Frequency Range

FHA1 Design with FHA¯ fR1 at Vinmaxpk fR2 ≤ fsw ≤ fR1
FHA2 Design with FHA¯ fR1 at Vinnompk fR2 ≤ fsw ≤ fmax
TD1 Design with TD¯ fR1 at Vinmaxpk fR2 ≤ fsw ≤ fR1
TD2 Design with TD¯ fR1 at Vinnompk fR2 ≤ fsw ≤ fmax

The resulting LLC resonant tanks are given in Table 3. Figure 11 shows the corre-
sponding currents in the resonant tank circuit and the secondary side. The pictures with
the same physical quantity have identical time bases and magnitudes, to easily compare
the waveforms. Table 4 shows the corresponding calculated current stress.

Table 3. Calculation results for the four designs listed in Table 2.

Symbol Name FHA1 TD1 FHA2 TD2 Unit

a Primary-to-secondary turn ratio 3.8 3.8 2.8 2.8 ---
Vinres Input voltage at the resonance (rms) 323 323 238 238 Vac

Cr Resonant capacitor 54 44 44 22 nF
Lr Series resonant inductance 20.8 25.5 25.6 51 µH
Lm Parallel resonant inductance 109.2 134 68.2 101 µH
fR1 Upper resonance frequency 150.2 150.2 150 150.2 kHz
fR2 Lower resonance frequency 60.1 60.1 78.3 87 kHz
Io Initial resonant current for ZVS 3.2 2.09 3.93 2.02 A

Table 4. Calculated rms currents for the four designs listed in Table 2. Rows #1–5: values averaged
over a switching cycle at Vinminpk

. Rows #6–7: values averaged over a line cycle at Vinmin.

# Parameter FHA1 TD1 FHA2 TD2 Unit

1 Resonant tank current 4.563 4.535 4.962 4.622 A
2 Magnetizing current 2.927 2.482 2.869 1.919 A
3 Initial current (instantaneous value) 3.203 2.096 3.929 2.022 A
4 Secondary current (x diode) 8.851 9.075 7.380 7.302 A
5 Secondary current (total) 12.517 12.834 10.437 10.327 A

6 Resonant tank current (over a line cycle) 3.843 3.524 4.026 3.318 A
7 Secondary current (total, over a line cycle) 7.37 7.615 6.343 6.293 A
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Figure 11. Currents at full load and the peak of the minimum input voltage for the four different
designs listed in Table 3: (a) resonant tank currents; (b) secondary side current.

With reference to Table 3, comparing the FHA designs with the TD designs (FHA1
vs. TD1, FHA2 vs. TD2), the FHA designs have a larger resonant capacitor Cr with both
design strategies. Consequently, the resonant inductances obtained from the FHA designs
are lower, and this leads to some key facts:

• The lower Lm increases its peak-to-peak current (magnetizing current) when the
output current is flowing because the voltage across it is fixed and proportional to
the output voltage times the transformer turn ratio, which is the same in both cases.
This also increases the rms current and, therefore, the power dissipation. Analytical
calculations (please refer to Table 4) show an increment of the rms value by more than
15% in the FHA1 vs. TD1 comparison and by more than 33% in the FHA2 vs. TD2
comparison. Of course, this positively affects the total rms current as well.
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• The higher resonant capacitor Cr reduces the impedance of the resonant tank and,
therefore, the quality factory Q0. According to the FHA theory, the lower the quality
factor, the higher the maximum gain that the converter can achieve, hence moving the
converter’s operation away from the capacitive region. This is confirmed by the initial
resonant tank current Io at the peak of the minimum input voltage, which is more than
34% greater in the FHA1 design with respect to the TD1 design, while it is over 48%
larger in the FHA2 design compared to the TD2 design.

Comparing the two analytical results of the FHA analysis (FHA1 vs. FHA2) FHA2 has
an initial current over 22% greater than FHA1, but there is a reduction in the rms secondary
current by more than 16%. Vice versa, comparing the two results of the TD analysis (TD1 vs.
TD2), the initial current is essentially the same since it mostly depends on the capacitance
of the half-bridge node, while the rms currents in Lm and the output diodes are reduced
by more than 22% and 19%, respectively, in the TD2 design compared to TD1. Table 4
summarizes all these results.

The same remarks can be made by observing the waveforms of Figure 11. Comparing
FHA1 with TD1, we notice that the initial current Io is lower in TD1, which means that
the converter operates closer to the inductive-capacitive boundary and utilizes a larger
portion of the available operating region. Also, it is confirmed that the peak-to-peak (and,
consequently, the rms) magnetizing current, which is purely reactive, is smaller in TD1.

The advantage of designing with fmax > fR1 is even more conspicuous. Comparing
FHA1 with FHA2, the (Tm− Tsw/2) interval is much shorter in FHA2, and, consequently,
the conduction angle of the secondary current is larger, which significantly reduces their
peak and rms value. Comparing FHA2 with TD2, we observe a reduction in the initial
current Io in TD2, with the same consequences.

It is interesting to visualize the difference between the results of the FHA approach
with those of the TD approach shown in Table 3, using the key tool of the FHA approach.

The plots of the voltage gain evaluated with the FHA analysis at the peak of the input
voltage for FHA1 and TD1 designs are shown in Figure 12.
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Figure 12. Voltage gain of FHA1 and TD1 designs, evaluated with FHA analysis.

The TD1 design (blue line) seems not to be working: the peak voltage gain gets very
close to but does not reach the required gain, and this happens in the capacitive region. The
conclusion would be that the converter cannot regulate the output voltage and works in
capacitive mode, then without ZVS. In contrast, there is enough gain margin with the FHA
design (red line). However, the time-domain analysis shows that the TD1 design works,
and with ZVS. This depends, as already said, on the approximation of the FHA analysis
that is less accurate when moving away from the upper resonance frequency fR1.

Regarding the FHA2 and TD2 designs, they cannot be compared in the same plot
because the lower resonance frequencies are quite different, and so they are the curves of the
gain, but the same remarks apply if we look at their plots separately in Figures 13 and 14.
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Figure 13. Voltage gain of the FHA2 design, evaluated with FHA analysis.
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Figure 14. Voltage gain of the TD2 design, evaluated with FHA analysis.

The conclusion is that the FHA designs are more conservative with respect to the TD
designs and, consequently, more lossy, and less efficient. Therefore, the FHA approach is
useful for carrying out a preliminary design or a design where efficiency and power density
are not the primary concerns. In fact, the real advantage of the FHA is the possibility to
make a design easily and quickly without sophisticated calculation tools. For an optimized
design, the TD analysis must be used, which allows for a reduction in the rms magnetizing
current while still ensuring the ZVS of the primary switches.

The other key point worth highlighting is that designing the converter to work also in
the above resonance region improves the shape of the magnetizing and secondary currents,
thus reducing their peak and rms values. As a result, power dissipation is reduced too, and
efficiency is increased. However, if the design is based on the FHA approach, this efficiency
gain could be completely offset by the higher losses in the resonant tank, due to the excess
of magnetizing current.

Before building the prototype, a series of simulations were run to check the paper
designs and, if needed, refine them. The results, not shown here, do not differ significantly
from those calculated and listed in Table 4. Also, the waveforms were very similar to those
shown in Figure 11.

5. Prototype and Performance

A prototype was built able to accommodate both TD designs. Its picture, with the key
components highlighted, is shown in Figure 15. Table 5 shows the electric characteristics of
the resonant tank of both prototypes.

Table 6 shows the measured current stress at the line frequency time scale. The values
are slightly larger than those predicted by the calculations (shown in Table 4, lines #6–7)
which took power loss sources into account quite roughly.
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Table 5. Electrical characteristics of the realized resonant tanks.

Symbol Name TD1 TD2 Unit

a Primary-to-secondary turn ratio 4 2.8 ---
Cr Resonant capacitor 2× 22 22 nF
Lr Series resonant inductance 23.7 50 µH
Lm Parallel resonant inductance 138 101 µH
fR1 Upper resonance frequency 155.9 151.7 kHz
fR2 Lower resonance frequency 59.7 87.3 kHz

Table 6. Measured current stress (rms values) over a line cycle at the minimum input voltage for the
two TD designs listed in Table 5.

Parameter TD1 TD2 Unit

Resonant tank current 3.79 3.53 A
Secondary current (total) 8.01 6.54 A

Figures 16 and 17 show the most important waveform of both TD designs over one
line cycle at the minimum mains voltage. In particular, the half-bridge voltage (CH1, gold
color) follows the ac input voltage (CH5, gray color), and the resonant current (CH4, green
color) is modulated over the line cycle. Also, the output voltage (CH3, blue color) has a
low-frequency ripple (twice the line frequency), typical of an active PFC circuit.

At the peak of the minimum input voltage and maximum load, the HB node swings
inside the dead time, and both switches operate with ZVS, as shown in Figures 18 and 19
for the TD1 and TD2 designs, respectively.

As predicted by both the FHA and the TD analysis, when the instantaneous input
voltage is below the peak, there is more margin for ZVS. Figures 20 and 21 show the resonant
tank current and the HB voltage for the TD1 and TD2 designs, respectively, at a phase of
the minimum input voltage θ = π/4, while Figures 22 and 23 show the same waveforms
at the valley of the minimum input voltage. Notice that the reactive (magnetizing) current
is in quadrature with the applied voltage (inferable from the gate-drive signal), consistent
with the instantaneous input power being zero at the zero crossing of the line voltage.
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Finally, the input current and voltage at the minimum and nominal input voltage
are shown in Figure 24: the shape of the current tracks the shape of the input voltage
very closely and with very low phase shift, consistently with the low THD and high PF
measured values, thus confirming the effectiveness of the topology.

The efficiency comparison between the TD designs is shown in Figure 25. The peak
efficiency is 96% for both of them at 100% load, but the TD2 design outperforms the TD1
design at lower loads, where the dissipation due to the greater reactive current of the TD1
design is more impacting. At 10% load, TD2 is about 4% more efficient. The four-point
average efficiency (mean value of the efficiency at 100%, 75%, 50% and 25% load) of TD2 is
notably higher as well.

The total power loss at 100% load is about 10W and seems to be distributed quite
evenly among the various parts that handle power (EMI filter, input bridge, primary
MOSFETs, synchronous rectifier MOSFETs, resonant transformer). The transformer is the
hottest spot, which suggests that its construction needs to be considered carefully.
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Figure 26 shows the THD and the PF of the TD2 design. The THD is below 10% down
to 60W (25% of output load), while the PF peaks at 0.997 at full load and stays above
0.9 down to 25% load. These figures are comparable to those of boost PFC converters of
similar power [31].
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6. Conclusions

In this paper, the usage and the design of an LLC resonant converter as a power
factor corrector, the LLC-PFC, were discussed. An LLC-PFC has many interesting features:
safety isolation between the mains and the user, the ability to address any output voltage
by adjusting the turn ratio of the transformer and soft-switching operation with high
efficiency and low EMI emissions. From the system perspective, the usage of an isolated
PFC enables the use of non-isolated downstream dc-dc converters (e.g., buck converters)
to generate the final voltage for the equipment, which is particularly advantageous in
multiple output systems.

The first harmonic approximation (FHA) analysis can prove that the LLC converter
can perform as a PFC, but its accuracy as a design tool was questioned because of the
approximations inherent in it. For this reason, a time domain (TD) analysis was performed,
showing that the FHA analysis leads to a more conservative design of the resonant tank.
If efficiency is a primary design target, a design based on the TD analysis is preferable
despite its higher complexity because it results in a lower reactive current in the reso-
nant tank, especially when the converter is designed to work partly above the upper
resonance frequency.

Finally, two different designs (one working always below the upper resonance fre-
quency, the other working also above this frequency) based on the TD analysis were carried
out, and a prototype was realized, to compare and validate the results found. The experi-
ments showed a significant reduction in the reactive current in the transformer and a higher
efficiency, especially at low loads, when the converter is designed to work at the upper
resonance frequency with the nominal input voltage.

Based on these results, the next steps will be the preparation of properly engineered
hardware to evaluate the level of power density achievable with this converter. Another
target of future work is the development of a PFC-LLC able to work with a wide range of
mains, from 90 to 305 Vac. In both cases, the biggest expected challenge is in the transformer.
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Appendix A

The 12-step procedure illustrated in [30] allows the design of an LLC-PFC converter
with the FHA approach such that it works at the upper resonance frequency fR1 at the peak
of the maximum input voltage. This procedure was followed for the FHA1 design.

This design procedure was slightly modified to design the converter such that it
works at the upper resonance frequency fR1 at the peak of the nominal input voltage, thus
allowing the frequency range to extend beyond fR1. The FHA2 design was carried out with
the following step-by-step design procedure based on the electrical spec in Table 1.

Step 1. Calculate the turn ratio a so that the converter works at resonance at the peak
of the nominal input and output voltages:

a =
Vinnom√

2(Vo + VRect)
= 2.71→ a = 2.8
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Step 2. Calculate the output resistance Routac:

Routac =
4

π2 a2 (Vo + VRect)
2

Poutmax
= 47.82 Ω

Step 3. Calculate the maximum voltage gain Mmax at the peak of Vinmin and the
minimum voltage gain Mmin at the peak of Vinmax and minimum output voltage:

Mmax = 2a
Vo + VRect√

2 Vinmin
= 1.352

Mmin = 2a
Vomin + VRect√

2 Vinmax
= 0.78

Step 4. Calculate λ so the required minimum gain is fulfilled at fmax:

λ =
1

Mmin
− 1

1−
(

fR1
fmax

)2 = 0.375

Step 5. Calculate the maximum Q0 value, Qmax1, necessary to stay in the inductive
region at minimum Vin and maximum load:

Qmax1 =
λ

Mmax

√
Mmax

2

Mmax
2 − 1

+
1
λ
= 0.613

Step 6. Calculate the maximum Q0 value, Qmax2, to ensure ZVS at zero load and
maximum Vin:

Qmax2 =
2
π

λ
TD

Routac CHB
= 2.045

Step 7. Calculate the maximum Q0 value, Qmax3, to ensure that the minimum value
requirement of the maximum gain is fulfilled:

Qmax3 =

√
λ(1 + λ)

Mmax
= 0.531

Step 8. Choose a value of Q0, QS, such that:

QS ≤ min(Qmax1, Qmax2, Qmax3) = 0.531

Step 9. Calculate the normalized minimum operating frequency fnmin at Vinmin at
θ = π/2 and maximum output power:

fnmin
∼=

1√√√√√√1 + 1
λ

1− 1

M
1+(

QS
Qmax1

)
5

max


= 0.713

Step 10. Calculate the phase-shift ϕmin of the resonant tank current at the peak of
minimum input voltage and maximum output power and check if the ZVS condition is
fulfilled. If so, proceed to step 11, otherwise choose a smaller value for QS and go back to
step 9.

ϕmin = tan−1

[
λ2 + λ + Q2

S

(
f 2
nmin
− 1
)]

f 2
nmin
− λ2

QS f 3
nmin

= 0.26rad
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ϕmin
2π fR1

1
fnmin

> TD → 386 ns > 270 ns

Step 11. Calculate the characteristic impedance of the resonant tank circuit and
all components:

Z0 = Re QS = 25.415Ω

Cr =
1

2π fR1Z0
= 41.748 nF→ Cr = 2·22nF = 44 nF

Ls =
Z0

2π fR1
=

1

(2π fR1)
2Cr

= 25.586 µH→ Ls = 25.6 µH

Lp =
Ls
λ

= 68.2 µH

Appendix B

Before manipulating the equations of the time-domain analysis, the following expres-
sions and definitions are introduced:

ZR1
ZR2

= fR1
fR2

Lr
Lr+Lm = fR2

fR1
,

Lr = Lm f 2
R2

f 2
R1− f 2

R2
,

Cr = 1
(2π fR1)

2Lr
,

fn2 = fR2
fR1

=
√

Lr
Lr+Lm =

√
λ

1+λ ,

λ = Lr
Lm =

f 2
R2

f 2
R1− f 2

R2
=

f 2
n2

1− f 2
n2

.

(A1)

For the solution (18) of the system (16), it is convenient to define also:

Ix =
1

ZR1

(
Vinpk − a Vout−VCr0

)
Vx = ZR1·Ix =

(
Vinpk − a Vout−VCr0

)
. (A2)

The solution (18) becomes:
vCr(t) = −ZR1 [Iosin(2π fR1t) + Ixcos(2π fR1t)] +

(
Vinpk − a Vout

)
=
(

Vinpk − a Vout
)
− ZR1 Ipkcos(2π fR1t− ϕ)

iRT(t) = Ixsin(2π fR1t)− Iocos(2π fR1t) = Ipksin(2π fR1t− ϕ)

iM(t) = a Vout
Lm t− Io

, (A3)

where:
Ipk =

√
I2
x + I2

o

ϕ = arctan
(

Io
Ix

)
= arcsin

(
Io
Ipk

)
.

(A4)

The first interval ends when the secondary current stops flowing in the Tm time
instant, when the resonant current equals the magnetizing current:

iRT(Tm) = Ipksin(2π fR1Tm− ϕ) = IM(Tm) = a
Vout
Lm

Tm− Io = Im → Lm = a Vout
Tm

Im + Io
. (A5)

The above expression allows us to express the magnetizing current as follows:

IM(t) =
Im + Io

Tm
t− Io.
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The expression of the resonant capacitor voltage in t = 0 and t = Tm is:

vCr(0) = VCr0 =
(

Vinpk − a Vout
)
− ZR1 Ipkcos(ϕ)

vCr(Tm) = VCrTm =
(

Vinpk − a Vout
)
− ZR1 Ipkcos(2π fR1Tm− ϕ).

For the solution (22) of the system (20), it is convenient to define also:

Iy =
1

ZR2

(
Vinpk −VCrTm

)
Vy = ZR2·Iy =

(
Vinpk −VCrTm

)
. (A6)

The solution (22) becomes:
vCr(t) = ZR2

{
Imsin[2π fR2(t− Tm)]− Iycos[2π fR2(t− Tm)]

}
+ Vinpk = Vinpk − ZR2 IpkMcos[2π fR2(t− Tm) + φ]

imag(t) = Imcos[2π fR2(t− Tm)] + Iysin[2π fR2(t− Tm)] =
= IpkMsin[2π fR2(t− Tm) + φ]

, (A7)

where:
IpkM =

√
I2
y + I2

m

φ = arctan
(

Im
Iy

)
= arcsin

(
Im

IpkM

)
.

(A8)

The expressions of the resonant capacitor voltage at t = Tm and t = Tsw/2 are
the following:

vCr(Tm) = VCrTm = Vinpk − ZR2 IpkMcos(φ)

vCr

(
Tsw

2

)
= VCrTswH = Vinpk − ZR2 IpkMcos

[
2π fR2

(
Tsw

2 − Tm
)
+ φ

]
.

Table A1 summarizes the time-domain equations in a half switching cycle.

Table A1. Time-domain equations in (0− Tsw/2).

Description Equation

Series
inductor
current

iLr(t) =

∣∣∣∣∣ iRT(t) = Ipksin(2π fR1t− ϕ)∀t ∈ [0, Tm]

imag(t) = IpkMsin[2π fR2(t− Tm) + φ]∀t ∈
[

Tm, (Tsw
2 )
] (A9)

Parallel
inductor
current

iLm(t) =

∣∣∣∣∣ iM(t) = (Im+Io
Tm )t− Io∀t ∈ [0, Tm]

imag(t) = IpkMsin[2π fR2(t− Tm) + φ]∀t ∈
[

Tm, (Tsw
2 )
] (A10)

Resonant
capacitor
voltage

vCr(t) =

∣∣∣∣∣ Vinpk − aVout− ZR1 Ipkcos(2π fR1t− ϕ)∀t ∈ [0, Tm]

Vinpk − ZR2 IpkMcos[2π fR2(t− Tm) + φ]∀t ∈
[

Tm, (Tsw
2 )
] (A11)

Secondary
side current

isec(t) = a[iLr(t)− iLm(t)] =∣∣∣∣∣∣a
[

Ipksin (2π fR1t− ϕ)−
(
(Im+Io

Tm )t− Io

)]
∀t ∈ [0, Tm]

0∀t ∈
[

Tm, (Tsw
2 )
] (A12)

Since the resonant capacitor is supposed to be referred to ground (i.e., it is not split),
the operation in the first switching half cycle (0− Tsw/2) is the one where the resonant
tank current circulates in the high side switch of the half-bridge converter, and it is the only
current drawn from the input supply voltage. In the subsequent half cycle (Tsw/2− Tsw),
the circulating current in the resonant tank is the one flowing through the low side switch,
and, thanks to the symmetry, all the currents and voltage expressions are known also in
this second time interval.

The following continuity relationships for the first-time interval (0− Tm) need to
be considered:
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iRT(0) = Ipksin(−ϕ) = −Io → Ipk =
Io

sin(ϕ)

iRT(Tm) = Ipksin(2π fR1Tm− ϕ) = Im → Im
Ipk

= sin(2π fR1Tm)cos(−ϕ) + sin(−ϕ)cos(2π fR1Tm).

Using the previous expression of Ipk, we get

Im

Io
=

1
tan(ϕ)

sin(2π fR1Tm)− cos(2π fR1Tm)→ tan(ϕ) =
Iosin(2π fR1Tm)

Im + Iocos(2π fR1Tm)
. (A13)

The same must be done for the second time interval (Tm− Tsw/2):

imag(Tm) = IpkMsin(φ) = Im → IpkM = Im
sin(φ)

imag

(
Tsw

2

)
= IpkMsin

[
2π fR2

(
Tsw

2 − Tm
)
+ φ

]
= Io → Io

IpkM
= sin

[
2π fR2

(
Tsw

2 − Tm
)]

cos(φ) + sin(φ) cos
[
2π fR2

(
Tsw

2 − Tm
)]

.

Using the previous expression of IpkM, we get

Io

Im
=

1
tan(φ)

sin[π fR2(Tsw− 2Tm)] + cos[π fR2(Tsw− 2Tm)]→ tan(φ) =
Imsin[π fR2(Tsw− 2Tm)]

Io − Imcos[π fR2(Tsw− 2Tm)]
. (A14)

The following trigonometric relationships hold true:

sin(ϕ) = Io
Ipk

; cos(ϕ) =

√
I2

pk−I2
o

I2
pk

; tan(ϕ) =

√
I2
o

I2
pk−I2

o
; (A15)

sin(φ) = Im
IpkM

; cos(φ) =
√

I2
pkM−I2

m

I2
pkM

; tan(φ) =
√

I2
m

I2
pkM−I2

m
.

Considering the above trigonometric relationships, Equations (A13) and (A14) become:

Im
Io

=

√
I2
pk−I2

o

I2
o

sin(2π fR1Tm)− cos(2π fR1Tm)

Io
Im

=

√
I2
pkM−I2

m

I2
m

sin[π fR2(Tsw− 2Tm)] + cos[π fR2(Tsw− 2Tm)].

From the above expressions, these two peak current expressions are found:

Ipk =

√
I2
m + I2

o + 2·Io·Imcos(2π fR1Tm)

sin(2π fR1Tm)
(A16)

IpkM =

√
I2
m + I2

o − 2·Io·Imcos[π fR2(Tsw− 2Tm)]

sin[π fR2(Tsw− 2Tm)]
. (A17)

Keeping in mind that we are considering the operation at the peak input voltage
(θ = π/2), where the input and output peak power in a PFC circuit equals twice the rated
dc output power, we have that the peak output current equals twice the average value of
the secondary current expression in one switching half cycle:

Ioutpk = 2Iout = 2
Pout
Vout

=
2

Tsw

∫ Tsw
2

0
isec(t)dt =

2a
Tsw

∫ Tm

0
[iRT(t)− iM(t)]dt (A18)

using the expression of isec(t) defined in (19).
In the same way, on the primary side, the peak input current at the peak input voltage

is equal to the average value (in a complete switching cycle) of the current flowing through
the HS switch of the half-bridge converter:
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Iinpk =
√

2 Iin = 2
Pin

Vinpk
=

1
Tsw

∫ Tsw

0
iLr(t)dt =

1
Tsw

[∫ Tm

0
iRT(t)dt +

∫ Tsw
2

Tm
imag(t)dt

]
. (A19)

Subtracting (A18) from (A19) and with some algebra manipulations, we get

Iinpk −
Ioutpk

2a
=

1
Tsw

[∫ Tm

0
iM(t)dt +

∫ Tsw
2

Tm
imag(t)dt

]
. (A20)

Substituting in (A18) and (A20) in the expressions of the currents of solutions (A3)
and (A7), using the continuity relationships and after some manipulations, we obtain:

iRT(t) = Io
sin(ϕ)

sin(2π fR1t− ϕ)

iM(t) = Im+Io
Tm t− Io

imag(t) = Im
sin(φ) sin[2π fR2(t− Tm) + φ]

Ioutpk =
a Io
Tsw

{
1

π fR1

[
1−cos(2π fR1Tm)

tan(ϕ)
− sin(2π fR1Tm)

]
− Tm

(
Im
Io
− 1
)}

Iinpk −
Ioutpk

2a = Im
2Tsw

{
Tm
(

1− Io
Im

)
+ 1

π fR2

[
1−cos(π fR2(Tsw−2Tm))

tan(φ) + sin(π fR2(Tsw− 2Tm))
]}

.

Further manipulating the above expressions by using relationships (A13) and (A14),
we finally obtain the following equations:

Ioutpk = a
Im − Io

Tsw

[
tan(π fR1Tm)

π fR1
− Tm

]
(A21)

Iinpk −
Ioutpk

2a
=

1
2Tsw

Tm(Im − Io) + (Im + Io)
tan
[
π fR2

(
Tsw

2 − Tm
)]

π fR2

. (A22)

The resonant capacitor voltage is symmetric with respect to its dc component (Vin/2
in half-bridge converters) for any phase angle of the input voltage: considering the case at
the peak of the input voltage (i.e., with θ = π/2), the following relationship holds true:

Vinpk

2
− vCr(0) = vCr

(
Tsw

2

)
−

Vinpk

2
↔ vCr(0) + vCr

(
Tsw

2

)
= Vinpk. (A23)

Furthermore, the resonant capacitor voltage must be consistent with the resonant
current. Therefore, this voltage can be expressed as follows:

vCr(t) =

∣∣∣∣∣∣
( vCr(0) + ( 1

Cr)
∫ t

0 iRT(τ)dτ + ∀ t ∈ [0, Tm]

vCr(Tm) + ( 1
Cr)
∫ t

Tm imag(τ)dτ∀ t ∈
[

Tm, (Tsw
2 )
]). (A24)

From the above relationship, and using the expression in (A19), we obtain:

vCr

(
Tsw

2

)
= vCr(Tm) +

1
Cr

∫ Tsw
2

Tm
imag(τ)dτ = vCr(0) +

1
Cr

(∫ Tm

0
iRT(τ)dτ +

∫ Tsw
2

Tm
imag(τ)dτ

)
= vCr(0) +

Tsw
Cr

Iinpk. (A25)

From (A23) and (A25), the following relationships are then obtained:

vCr(0) = VCr0 =
1
2

(
Vinpk − Iinpk

Tsw
Cr

)
(A26)
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vCr

(
Tsw

2

)
= VCrTswH =

1
2

(
Vinpk + Iinpk

Tsw
Cr

)
. (A27)

Calculating the value of the capacitor voltage in the Tm time instant from (A24) and
using (A27) and the latter of (A13), we get:

vCr(Tm) = VCrTm = vCr(0) + 1
Cr
∫ Tm

0 iRT(τ)dτ = VCr0 +
1

Cr
∫ Tm

0
Io

sin(ϕ)
sin(2π fR1τ − ϕ)dτ

= VCr0 +
Io

2π fR1Cr

[
1−cos(2π fR1Tm)

tan(ϕ)
− sin(2π fR1Tm)

]
= 1

2

(
Vinpk − Iinpk

Tsw
Cr

)
+ Im−Io

2π fR1 Cr tan(π fR1Tm)

(A28)

By using the relationships in (A1) and (A5), the expression of Cr can be obtained:

Cr =
1

(2π fR1)
2Lr

=
f 2
R1 − f 2

R2

(2π fR1 fR2 )
2Lm

=
f 2
R1 − f 2

R2

(2π fR1 fR2 )
2

Im + Io

a Vout Tm
. (A29)

From (A2), using expressions (A26) and (A29), we get:

Vx =
(

Vinpk − a Vout−VCr0

)
=

Vinpk
2 − a Vout +

Iinpk
2

Tsw
Cr

Ix = 2π fR1CrVx = Im+Io
2π fR1Tm

f 2
R1− f 2

R2
f 2
R2

( Vinpk
2aVout − 1

)
+ π fR1TswIinpk.

Therefore, the first expression in (A4) can be written as:

Ipk =
√

I2
x + I2

o =

√√√√[ Im + Io

2π fR1Tm
f 2
R1 − f 2

R2
f 2
R2

( Vinpk

2a Vout
− 1
)
+ π fR1Tsw Iinpk

]2

+ I2
o .

Finally, equating the above expression to the one in (A16), we obtain:[
Im + Io

2π fR1Tm
f 2
R1 − f 2

R2
f 2
R2

( Vinpk

2a Vout
− 1
)
+ π fR1Tsw Iinpk

]2

+ I2
o =

I2
m + I2

o + 2 Io Imcos(2π fR1Tm)

sin2(2π fR1Tm)
. (A30)

From the first relationship in (A6), by using the expressions (A28) and (A29), we obtain:

Iy = 2π fR2 Cr
(

Vinpk −VCrTm

)
= 2π fR2 Cr

[Vinpk
2 +

Iinpk
2

Tsw
Cr −

Im−Io
2π fR1Cr tan(π fR1Tm)

]
= Im+Io

2π fR2Tm
f 2
R1− f 2

R2
f 2
R1

( Vinpk
2a Vout

)
+ π fR2Tsw Iinpk −

fR2
fR1

(Im − Io)tan(π fR1Tm).

Therefore, the first expression in (A8) can be written as:

IpkM =
√

I2
y + I2

m =

√√√√[ Im + Io

2π fR2Tm
f 2
R1 − f 2

R2
f 2
R1

( Vinpk

2a Vout

)
+ π fR2Tsw Iinpk −

fR2

fR1
(Im − Io)tan(π fR1Tm)

]2

+ I2
m.

Finally, equating the above expression to the one in (A17), we obtain:[
Im+Io

2π fR2Tm
f 2
R1− f 2

R2
f 2
R1

( Vinpk
2a Vout

)
+ π fR2Tsw Iinpk −

fR2
fR1

(Im − Io)tan(π fR1Tm)

]2
+ I2

m

= I2
m+I2

o−2 Io Imcos[π fR2(Tsw−2Tm)]

sin2[π fR2(Tsw−2Tm)]
.

(A31)
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Now, we must introduce the conditions to achieve ZVS for the switches of the half-
bridge. According to the FHA analysis, to achieve ZVS, the impedance of the resonant tank
must be inductive: this means that the resonant current must lag the half-bridge voltage as
shown in Figure A1.
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Figure A1. Half-bridge rising transition at LVG turn-off with times.

With reference to Figure A1, which refers to the turn-off of the LS switch and the
turn-on of the HS switch, the following conditions are required for ZVS operation:

1. The initial current Io must be large enough to swing the HB node rail-to-rail within
the dead time Td;

2. The circulating current (which lags the HB voltage by the angle ϕ) must not change
sign during Td

where Td is the dead time between the turn-off of one switch of the HB converter and
the turn-on of the other one.

After the LS gate signal (i.e., LVG) goes low, the HB node voltage remains unchanged
due to the turn-off delay To f f of the switch. Then, the HB node swings rail-to-rail during
the transition time TT .

We make the following simplifying assumptions:

• The secondary side rectified current starts flowing at the beginning of the transition
time TT ;

• The resonant tank current at the beginning of the transition time TT equals the initial
current Io;

• The MOSFET fall time Tf is negligible with respect to the transition time TT .

Therefore, the charging current of the HB node capacitance must be equal to the
opposite of the resonant tank current:

ichg(t) = −iRT(t) = −Ipksin(2π fR1t− ϕ) = − Io

sin(ϕ)
sin(2π fR1t− ϕ).

By integrating the relationship

ichg(t) = CHB
d
dt

VHB(t).

the expression of the half-bridge node voltage can be obtained:

VHB(t) =
1

CHB

∫ t

0
ichg(τ)dτ =

1
CHB

∫ t

0
− Iosin(2π fR1t− ϕ)

sin(ϕ)
dτ =

Io

sin(ϕ)

cos(2π fR1t− ϕ)− cos(ϕ)

2π fR1 CHB
.



Energies 2023, 16, 7114 29 of 31

By imposing that the derivative of the HB node voltage is zero, the expression of the
time instant where this voltage gets the peak value, and the expression of the peak value
are found:

d
dt

VHB(t) = −
Iosin(2π fR1t− ϕ)

CHBsin(ϕ)
= 0→

{
THBpk =

ϕ
2π fR1

= TZC

VHBpk = VHB

(
THBpk

)
= Io

sin(ϕ)
· 1−cos(ϕ)

2π fR1·CHB

. (A32)

Mind that, referring to the first of Equation (A32), the time instant THBpk where the HB
node voltage gets its peak VHBpk corresponds to the time instant where the current in the
resonant tank reaches zero; that is, it equals TZC.

The transition time TT is calculated by imposing that the HB node voltage equals the
peak input voltage Vinpk; that is,

VHB(t) =
Io

sin(ϕ)

cos(2π fR1t− ϕ)− cos(ϕ)

2π fR1 CHB
= Vinpk → TT =

ϕ− arccos
[
cos(ϕ) + 2π fR1 CHB Vinpk

sin(ϕ)
Io

]
2π fR1

= TZC − TRES, (A33)

where TRES is the residual time where the resonant current is still negative, and the HB
voltage has reached the peak input voltage.

It is possible to define the minimum phase angle considering the maximum time
between the switch turn-off and the turn-on of the other one:

ϕmin = 2π fR1

(
Tdmax − To f f

)
. (A34)

The ZVS condition can be imposed by setting the phase angle of the current in the
resonant tank in the latter of Equation (A13) equal to ϕmin; that is,

tan(ϕmin) =
Iosin(2π fR1Tm)

Im + Iocos(2π fR1Tm)
. (A35)

From the first of expressions (A33), and considering that ϕ = ϕmin, we can get a guess
value for the initial current Io:

VHBpk =
Io

sin(ϕmin)

1− cos(ϕmin)

2π fR1 CHB
≥ Vinpk → Io ≥ 2π fR1 CHB Vinpk

1− cos(ϕmin)

sin(ϕmin)
= Iomin . (A36)

Based on the time-domain analysis of the circuit, we found four equations (refer to
(A21), (A22), (A30) and (A31)) and four unknowns (Io, Im, Tm and Tsw).

However, Equations (A30) and (A31) are not independent: this means that the system
presents a degree of freedom that we can use to ensure ZVS.

By introducing the known quantities here (λ and KV):

λ =
Lr

Lm
=

f 2
R2

f 2
R1 − f 2

R2
; KV =

√
2Vinmin
α Vout

=
Vinmin pk

2a Vout

and considering that the maximum required gain occurs when the input voltage is min-
imum, the two Equations (A30) and (A31) can be further simplified after some algebra,
leading to the following equations:[

Im + Io

2π fR1Tm
KV − 1

λ
+ π fR1Tsw Iinpk

]2
=

[
Im + Iocos(2π fR1Tm)

sin(2π fR1Tm)

]2
(A37)

{
fR2

fR1

[
Im + Io

2π fR2Tm
KV
λ

+ π fR1Tsw Iinpk − (Im − Io)tan(π fR1Tm)

]}2
=

{
Io − Imcos[π fR2(Tsw− 2Tm)]

sin[π fR2(Tsw− 2Tm)]

}2
. (A38)
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Therefore, we can use Equations (A21), (A22) and (A37) (or (A38) alternatively) as the
first three system equations, then add Equation (A35) to impose the ZVS condition, getting
the following system of four equations with four unknowns (Io, Im, Tm and Tsw):

Ioutpk = a Im−Io
Tsw

[
tan(π fR1Tm)

π fR1
− Tm

]
Iinpk −

Ioutpk
2a = 1

2Tsw

[
Tm(Im − Io) + (Im + Io)

tan(π fR2( Tsw
2 −Tm))

π fR2

]
[

Im+Io
2π fR1Tm

KV−1
λ + π fR1TswIinpk

]2
=
[

Im+Iocos(2π fR1Tm)
sin(2π fR1Tm)

]2

tan(ϕmin) =
Iosin(2π fR1Tm)

Im+Iocos(2π fR1Tm)

.

Once the system solutions (Io, Im, Tm and Tsw) are found, the parameters of the LLC
resonant tank circuit can be calculated:

Lm = aVout
Tm

Im + Io
; Lr = λLm; Cr =

1

(2π fR1)
2Lr

; f sw =
1

Tsw
.
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