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Abstract: Electric motor development is a challenging task, as higher efficiency requirements and
various interdependencies between different engineering domains must be considered. Established
design approaches often lack the ability to address these interdependencies because they focus on
specific domains and properties. Automated, multidisciplinary design approaches hold untapped
potential for optimizing motors in terms of diverse requirements and advancing the development of
more efficient and reliable motors. This paper presents a systematic literature review of the current
state of research in the multidisciplinary design automation of electric motors. The literature basis
comprises 1005 publications that are identified by a systematic internet search. The review of the
existing approaches is based on twelve criteria that characterize the design automation task in general,
such as knowledge representation or reasoning methods used, as well as criteria specific to electric
motor design, such as domains considered and their coupling. The analysis reveals what current
approaches are lacking: Consequent analysis and integration of domains, applicability of suggested
methods, incorporation of established multidisciplinary design optimization (MDO) architectures,
alongside the consideration of passive components in the motor. Aside from the introduction of
twelve criteria for systematic charaterization of multidisciplinary design automation of electric
motors, this article expands the state of the art by proposing an initial framework to establish process
chains tackling the identified gaps in the review.

Keywords: electric motor; electric machine; design automation; multidisciplinary design
optimization (MDO); knowledge-based engineering

1. Introduction

Electric motors account for 53% of electricity consumption worldwide [1]. They are
prevalent in a wide range of industrial and consumer products. Research focusing on
electric motor development has gained momentum due to the ongoing electrification
of various mobile applications, e.g., electric cars and more electric aircraft, as well as an
increasing amount of mechatronic products. Subsequently, an increasing effort is invested in
processes and methods in electric motor development, to meet ever-increasing requirements
with regard to application-specific efficiency and power density [2]. Most applications
require electric motors to be custom-tailored, resulting in the need to provide more flexible
and efficient development processes [3].

Typical engineering domains involved in electric machine design are illustrated in
Figure 1. In conventional approaches, design decisions are made in the electromagnetic
domain first, often relying on the designers’ assumptions and experiences [4]. Requirements
and restrictions of further engineering domains like rotordynamics, structural mechanics
or thermal design are considered at a later stage. Every time a design does not meet these
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requirements, several steps or the whole design process have to be revisited [5]. This often
results in lengthy iteration cycles, increased project risks and prevents the inclusion of
aspects from different domains in decision making. Various authors claim this to be a key
factor for future electric motor development to meet rising efficiency standards [6–9].

Electro-
magnetics

Thermal 
domain

Structural
mechanics

Rotor-
dynamics

Noise 
Vibration 
Harshness

Manu-
facturing

Economics

Figure 1. Engineering domains involved in the design of electric motors.

For this reason, new design methods are suggested in the literature, which will be
summarized under the term multidisciplinary design automation (MDDA) in this work.
These aim to overcome the weaknesses of conventional design approaches by systematically
searching the solution space through automation. This allows decision-relevant information
to be made available earlier and, thus, allowing for the design of a better electric motor
from a multidomain perspective by breaking down domain silos [10,11].

In the literature, different approaches can be found for the application of MDDA in the
development of electric motors. However, there is a lack of higher-level methods to set up
MDDA processes. This paper systematically reviews the research conducted on MDDA in
electric motor engineering. The main objective is to analyze and classify existing methods
in this area. This allows to identify further research needs. Overall, this paper contributes
by (1) presenting the state of the art regarding the adoption of MDDA, (2) identifying trends
and gaps resulting from it and (3) deriving a generic methodological framework for the
adoption of MDDA.

The article is structured as follows: Section 2 gives an overview of the used terminology
in the scope of MDDA; Section 3 describes the review method; and Section 4 presents the
employed review criteria. Section 5 presents the results of the systematic literature review.
Section 6 presents the findings of the review in order to identify trends and gaps. Based on
these findings, the authors present a methodological framework for setting up MDDA in
electric motor engineering in Section 7. Section 8 concludes the paper by answering the
research questions.

2. Multidisciplinary Design Automation in Electric Motor Design
2.1. Terminology

The most relevant terms for this publication will be clarified in the following text, since
there is no uniform terminology. In general, design automation (DA) can be understood as
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computer-aided engineering support. It translates information and knowledge into solu-
tions, tools or systems to support the progress of design processes through automation [12].
Since electric motor development involves different engineering domains, it is reasonable
to extend the concept to multidisciplinary design automation as suggested by [13]. Another
term that is often used in the context of DA is knowledge-based engineering (KBE). Van der
Velden differs between KBE and DA and describes the former as a capture of engineering
knowledge to emulate human decision making and automate engineering processes. De-
sign automation is described as an automation of sequential steps in engineering processes.
These are often only applicable to specific use cases, since they contain hard-coded rules
and knowledge [14]. In more recent definitions, KBE has been described as a method
within the context of DA [13]. These definitions emphasize that KBE leverages existing
knowledge to automate repetitive tasks in product development [15,16]. As shown in
Figure 2, three steps are necessary for the creation of a KBE system: knowledge capture,
knowledge formalization and knowledge representation [17].

Knowledge
capture

Knowledge
formalization

Knowledge
representation

Figure 2. Steps necessary to build a KBE system [17].

Generative design and engineering is a term that is often used synonymously to DA.
It describes methods and processes for generating a large number of solution variants,
often related to geometries. This enables engineers to explore the existing solution space
more thoroughly. There are different approaches to generative design, ranging from
parameterized computer-aided design (CAD) templates [18] to leveraging deep networks
to synthesize new designs [19]. The term computer-based design synthesis (CDS) is used
in a similar context. It refers to tools and methods in the design process that support
engineers to create design alternatives based on computationally encoded knowledge
[10,20]. Another relevant term in the context of automated multidisciplinary design is
multidisciplinary design optimization (MDO). The concept of MDO emerged primarily
from the challenges encountered in aircraft design, which inherently involves intricate
design and simulation processes due to its multidisciplinary nature. MDO addresses these
challenges by executing coupled simulations and concurrent optimization of specified
design variables [21]. In recent years, MDO methodologies have been applied to the design
of electric motors [22,23]. Since MDO facilitates the automatic synthesis of geometries
while considering multiple domains of analyses, it can be regarded as a distinct form of
MDDA that leverages optimization algorithms as a reasoning approach. A typical process
for setting up a MDO consists of five steps, as visualized in Figure 3 [24].

Execute workflowDefine design case
and requirements

Specify complete
and consistent
product model

Formulate design
optimization
problem and

solution strategy

Implement and
verify workflow

Figure 3. Steps for the creation and execution of MDO processes [24].

Design automation tasks serve different purposes in the design process. In his
categorization—see Figure 4—Rigger groups DA task categories along the design pro-
cess. Some of them contain multiple tasks, resulting in a total of 15 different design
automation task categories. In early design stages, design automation tasks are focused
on automatically decomposing the functional structure, i.e., functional synthesis, and on
product architecture synthesis. This includes topology and parameter synthesis and anal-
ysis. However, at this early stage, the design takes place on a high level and does not
yet include concrete geometric features and parameters. In embodiment design, tasks
revolve around spatial synthesis and analysis and are grouped under the term spatial
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product/component architecture. These range from topology and parameter synthesis to
analysis preparation, integration and simulation. A spatial topology optimization forms an
integrated loop of these tasks. Typical MDO processes are an example of this. Automated
design configuration can be applied both in embodiment design and detailed design. Tasks
grouped under the term transformation process design focus on the planning of production
processes in later stages of the design process. However, a co-evolution of products and
processes can be implemented in early stages too [10].

Design Process

Conceptual
Design

Embodiment
design

Detail
design

Functional
Synthesis

Spatial Product /
Component
Architecture

Product
Architecture
Synthesis

Transformation
Process Design

Transformation
Process Design
(Co-Evolution)

Design Configuration

Design Automation Task Categories

Figure 4. Categorization of design automation tasks along the design process [10].

Apart from the selection of a motor type, most decisions made in electric motor design
are made during spatial product design. The focus of this review is therefore on design
tasks involving an automated synthesis of geometries, i.e., spatial product/component
architecture, design configuration and spatial topology optimization.

2.2. Existing Reviews

In order to ensure that there is no review already addressing the research goal, existing
review papers in the field of MDDA for electric motors were searched in the lens.org
database. The identified review papers are briefly presented in the following text.

Reference [2] gives an overview of modern optimization techniques within the devel-
opment of electric machines. The authors present commonly used optimization algorithms
and the basic idea of setting up the optimization problem. However, integrated multidisci-
plinary analyses are not in focus.

Reference [25] differentiates between component-level design and system-level design
approaches and argue that the optimal solution can only be found following a multidomain
perspective. Furthermore, aspects to be considered in each of the engineering domains, i.e.,
electromagnetic, thermal and mechanical engineering, are listed. However, no in-depth
analysis of the state of the art in MDO for electric machines is presented.

Reference [26] highlights and categorizes couplings between engineering domains in
the multidisciplinary optimization of electric machines. The proposed categorization was
applied within the framework of the systematic review in this paper; see Section 4.3.

References [27,28] review current optimization procedures used within electric ma-
chine development, focusing on optimization algorithms. Since a profound analysis of
optimization algorithms has already been carried out, the analysis of these algorithms will
only be a secondary aspect in the paper at hand. In the systematic analysis, the associated
data collection category is based on the categorization proposed by [27].
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To summarize, none of the existing review papers comprehensively address the specific
use of MDDA for electric motor development. Single reviews focus only on certain aspects,
e.g., optimization algorithms, while in other reviews, MDDA is only considered as a
side aspect.

2.3. Research Objectives and Focus

MDDA is increasingly relevant to address the need for more efficient development of
electric motors, especially as solutions are required to meet increasing demands for power
density, reliability or efficiency. Based on the experience gained in different projects at
Fraunhofer IFAM, there is a need for a methodology for setting up application-dependent
MDDA workflows. In order to provide a sound basis for this methodology, the research
goal is formulated as follows:

Purpose Collect and analyze existing approaches
Issue on MDDA in electric motor development that explicitly take into account
Object different engineering domains and their interactions
Perspective both from the point of view of engineers and researchers.

Based on this goal, this article is guided by the following overarching research question:

What approaches for MDDA exist to support development of electric motors, which
domains do these consider, what activities and methods do these include and in which
application fields are they employed?

Since existing reviews do not answer this question, the contribution at hand extends
the state of the art by

• Collection and analysis of state of the art MDDA in electric motor development.
• Introduction of criteria to distinguish MDDA workflows and associated methods.
• An initial framework to set up MDDA workflows for efficient development of electric

motors for different applications.

These contributions are based on a systematic literature review. In line with the design
research methodology (DRM) [29], this review is associated to the “descriptive study 1”.
It serves as a basis for detailed design support development in the prescriptive study in
future work.

3. Method

The method of the systematic review is introduced in the following section. The
applied methodology is based on [30], including the following steps: (1) research questions,
(2) search process, (3) publication selection, (4) quality assessment, (5) data collection and
analysis. For publication selection the PRISMA flow was adopted [31].

3.1. Research Questions

Based on the understanding of MDDA described in Section 2.1 and the DA tasks that
are in focus in this paper, the following sub-questions are used to guide the review:

1. How is the multidomain analysis and automated geometry synthesis structured?
2. How are domain-specific aspects and constraints formalized?
3. When in the development process of electric motors are MDDA approaches being

utilized?
4. For which application and type of electric motor is MDDA already employed?
5. Which parts and geometries of electric motors are automatically created?
6. Which domains are considered and implemented in the MDDA and at which fi-

delity level?
7. Which couplings between engineering domains are considered?

Based on these sub-questions, specific criteria for the review will be defined in Section 4.
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3.2. Search Process

To ensure completeness of papers for a systematic review, the authors searched for
relevant publications in a two-stage process, as depicted in the PRISMA diagram in Figure 5.
In the first stage, the search was based on a search string, using the search databases lens.org,
Web of Science and Scopus. These offer a large database and are able to handle complex
search strings. In an iterative process, the search string was specified, considering three
parts and their multiple synonyms: design automation, multidisciplinary, and electric
motor. The finally used search string is given in Appendix A. The search was conducted
within title, abstract and keywords of the publications. In the next steps, doublets were
removed, inclusion/exclusion criteria were applied, and the database was extended by a
forward and backward citation analysis. In Figure 5, the different steps of the literature
identification and selection process following the PRISMA flow diagram [31] are illustrated.

 Records screened (n = 634)

 Records identified from
 citations analysis (n = 71)

 Studies included in review
 (n = 94)

 Records identified from:
 Web of Science (n = 295)
 Scopus (n = 294)
 Lens (n = 364)
 Total (n = 934)

Identification of studies via databases and registers

 Records removed before screening 
   Duplicate records removed
   (n = 300)

Identification of studies via other methods

 Records excluded (n = 437)

 Reports sought for retrieval
 (n = 197)  Reports not retrieved (n = 4)

 Reports assessed for eligibility
 (n = 193)

 Reports excluded (n = 122)
   Duplicate publication (n = 24)
   Not electric motor specific (n = 27)
   Thematically irrelevant (n = 11)
   No in-the-loop MDA (n = 36)
   No automated geometry synthesis 
   (n = 21)
   Language (n = 3)

 Reports sought for retrieval (n = 71)  Reports not retrieved (n = 0)

 Reports assessed for eligibility
 (n = 71)

 Reports excluded (n = 48)
   Duplicate publication (n = 4)
   Not electric motor specific (n = 3)
   Thematically irrelevant (n = 5)
   No in the loop MDA (n = 13)
   No automated geometry synthesis
   (n = 19)
   Document type (n = 4)
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Figure 5. PRISMA flow of the conducted literature identification process and number of papers in
each step.

3.3. Publication Selection

Following criteria were used to select papers for the review:

• Document type: Peer-reviewed conference or journal publications
• Language: English
• Date range: Years 2007–2022
• Electric machines: Only papers that focus on design activities of electric machines

are included. Publications that consider electric machine design as a side aspect
(system-of-systems) are not considered.

• Electric motor focus: Papers that relate to details of generators are excluded from the
review unless the authors indicate the transfer to electric motors.

• Automated geometry synthesis: Only papers that employ methods for automated
geometry synthesis are considered.

• Multidisciplinary: In the scope of automated geometry synthesis, analyses have to be
presented in more than one engineering domain, see Figure 1.

A total of 934 papers were initially identified, as depicted in Figure 5. After removing
duplicates, 634 papers remained for abstract screening. In this screening process, 437 papers
were excluded. Four papers could not be retrieved and therefore had to be excluded from
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the review. Another 122 papers had to be excluded in the assessment of eligibility based
on the full papers, either because they did not fit the inclusion criteria or turned out to
be duplicates. In this step, publications are classified as duplicates if they only differ
marginally in their content. This is often the case when publications were first published at
conferences and then in a journal. In this case, the more detailed version of the paper is
considered in the review. A forward and backward citation process was conducted based
on the remaining studies. In this process, 71 additional papers were identified based on
their abstract. All 71 papers could be retrieved and thus were assessed for eligibility, which
resulted in an exclusion of 48 papers. As a result, a total of 94 papers were included in
the review.

3.4. Quality Assessment

Three basic aspects were considered to assure high quality of the review during the
literature selection phase:

1. Quality of paper identification;
2. Quality of papers;
3. Quality of review criteria

Moreover, the overall procedure of the review is based on well-known methods, i.e.,
Kitchenham’s approach and PRISMA flow [30,31]. In order to address the three mentioned
quality aspects, the following measures were taken. Literature identification was based on
three well-established databases, namely Lens.org, Scopus and WebOfScience. A backward
and forward citation analysis based on Researchrabbit and lens.org was conducted to
assure that all relevant papers were found for the review. To ensure the quality of papers
in the study, only conference and journal papers having passed a peer-review process
were included. The quality of the review criteria—see Section 4—is ensured by two
precautions. First, categories and items are based on existing works. Second, within two
randomly selected samples (29 papers), the classification of papers was performed by two
independent authors. Based on the results, discrepancies were identified and the review
criteria were specified to reduce subjectivity of classification. The occurring discrepancies
were divided into three categories: full match of review items, partial match and poor
match. As a result of the iterative procedure, the average for all review criteria was 75.5%
full matches, 15.3% partial matches, and 9.2% poor matches.

3.5. Data Collection and Analysis

To systematically analyze the papers and answer the research questions, twelve criteria
were defined for the review; see Figure 6. Half of these criteria are based on [10] and
extended by specific criteria relevant for design automation in electric motor development.
For the definition of basic DA tasks, Rigger analyzed publications regarding inputs, outputs,
goals and DA Methods. The analysis of goals is further split up in purpose, system level
and requirements/constraints, while DA Methods consist of knowledge representation
and reasoning methods. Since the review at hand focuses on MDDA for electric motors
the following criteria were added for the review: considered domains, couplings between
domains, machine type, part of the machine, and application. Considered domains were
analyzed based on [32], couplings were introduced based on the classification in [26], and
reasoning methods were adapted for electric motor specific reasoning methods defined
in [27].
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Review criteria

General DA criteria

Inputs

Purpose of synthesis

Outputs

Objective function

Knowledge 
representation

Reasoning Methods

Electric motor specific criteria

Considered domains

Domain couplings

Type of electric 
motor

Validation

Application

Part of electric 
motor

Figure 6. Review criteria employed in the review.

4. Review Criteria

The chapter below describes the criteria used for the systematic review and introduces
the information to be extracted for each criterion.

4.1. Inputs, Outputs and Goals

The inputs and output types of a design automation task depend on the stage within
the design process [10]. In this review, we distinguish between parameterized and non-
parameterized geometry, as proposed by [2]. Instead of employing a fixed topology defined
by parameters, the corresponding approaches utilize a non-parameterized geometry that
discretizes design areas and achieves design optimization by element-wise material as-
signment. Furthermore, alternative geometry inputs, such as component libraries, were
explored during the search process. An expected output of spatial synthesis tasks is finding
(optimized) geometry parameters [10]. The goal criterion provides additional information
regarding the purpose of geometry synthesis and its objective function. In this review,
the authors assessed whether topology or parameter synthesis was performed, as well as
the objective function and design variables employed in each respective paper. Given the
multitude of potential design variables, specific variables were not identified. Instead, the
review identified the overarching component they represented. For example, when stator
slot parameters were included as design variables, the review noted the term “stator”.

To define the process stage in which the MDDA is applied, the specific design vari-
ables were analyzed. Allocation of design variables to process stages of electric motor
development is defined based on common guidelines, e.g., [32,33]. In both procedures, the
first step is to determine the main machine dimensions, namely the air gap diameter and
the active stack length. In order to determine the stage of the development process, this
review evaluates whether the main machine dimensions were already fixed or considered
as design variables in the MDDA. The former was defined as detailed design and the
latter as preliminary design. Some papers describe a two-stage design process, where a
preliminary design is found in the first stage and further elaborated upon. These papers
were marked as preliminary and detailed design in the study.

4.2. Knowledge Representation and Reasoning Methods

Rigger highlights that the selection of knowledge representation methods in the context
of design automation is influenced by the particular reasoning approach used. Hence, the
review analyzed the way of representing knowledge based on the characteristics proposed
by [10]. These include: graphs, object-orientated representations, ontologies, shape-based
representations and procedural rules. The identification of reasoning methods was guided
by Rigger’s definition, while specific reasoning methods relevant for electric machines, as
defined in [27], were added. In total, seven categories of reasoning methods were defined:
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1. Evolutionary algorithms, e.g., genetic algorithms (GA);
2. Other intelligent optimization algorithms, e.g., ant colony optimization

algorithm (ACO);
3. Multi-objective optimization algorithms, e.g., non-dominated sorting genetic algo-

rithm (NSGA);
4. Gradient-based algorithms, e.g., sequential quadratic programming (SQP);
5. Inference engines, i.e., fixed decision procedures to guide rule application;
6. Statistical reasoning methods, e.g., response surface method (RSM);
7. Other reasoning methods.

4.3. Considered Domains and Domain Couplings

In this study, publications were only included when their automated geometry synthe-
sis process follows an in-the-loop MDA; see Figure 7.
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Figure 7. Difference between in-the-loop multi-disciplinary analysis (MDA) (a), where multidisci-
plinary aspects are considered in decision making and multi-disciplinary (MD) feasibility check (b),
where a primary discipline is used for decision making, and other domain analyses are conducted to
ensure the design’s feasibility afterwards.

In conventional electric motor development processes, the design is optimized in
one domain, mainly the electromagnetic domain. This single-domain optimum is then
checked in other domains to ensure its feasibility. The term in-the-loop MDA, however,
pertains to process frameworks that assess designs across multiple engineering domains
for each design variant. This approach empowers engineers to make design choices by
considering properties from multiple domains and facilitates more frequent iterations,
thereby facilitating the identification of optimal designs within the solution space [6,7]. The
review papers were analyzed regarding the following engineering domains considered in
the in-the-loop MDA: electromagnetic, thermal, mechanic, manufacturing and economic
domains. A variety of different engineering tasks can be summarized under the term
mechanical design [32]. This is why it was decided to further split this domain in the study
into rotordynamics, structural and NVH (noise, vibration, harshness) analysis.

In addition to determining the relevant domains to consider, setting up MDDA in-
volves making decisions regarding the appropriate model fidelity. In this review, three
fidelity levels across the different domains were specified. These are analytical calculations,
lumped-parameter models (LPM), and finite element analyses (FEA) or computational fluid
dynamics. Models with lumped parameters are very popular in the design of electrical
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machines to evaluate the thermal behavior of the machine. However, they can also be used
to evaluate other physical relationships, such as noise characteristics [34].

These domain models are inherently coupled because they are based on the same
geometry and material properties. In addition to that, the results of one domain model
can affect the other model. To handle these influences, couplings between the different
domains were analyzed in the review. These couplings in electric machine design processes
describe the sharing of input and output data between different analyses [26].

There are different ways to handle domain couplings. The first one is to separate the
analysis modules and not consider a coupling. The second one is to sequentially couple
domains, i.e., use results of one domain in the other domain in a one-way fashion, called
one-way coupling in this review. The third one is to consider a domain coupling in an
iterative manner, meaning that the inputs and outputs of both domains are iterated until
the error between inputs and outputs reaches a certain threshold. The latter will be called
two-way coupling in this review. A special type of coupling is the so-called parameter split
decoupled approach. In this approach, parameters are assorted to domains based on their
sensitivity in order to reduce the impact of decoupling [26].

4.4. Type and Part of Electric Motor and Application

To assess the scope of the MDDA, the automatically designed geometries of the electric
motor are noted in the review. Furthermore, the type of electric motor, e.g., permanent
magnet synchronous motor (PMSM), is recorded. In order to find areas of focus for the use
of MDDA, application fields were identified when indicated by the authors.

4.5. Validation

To evaluate the credibility of the proposed methods, the type of validation was also
identified. This involved determining whether validation was conducted through simula-
tions or experiments within the paper, after discovering a specific design using MDDA.

The described review criteria were applied to all publications and the classification
was performed by one author.

5. Results

In this section, we summarize the results of the literature review.

5.1. General Results

With regard to the evolution of MDDA as well as the validation of MDDA approaches,
these are the following results.

5.1.1. Trend

In Figure 8a, the amount of papers for each year is given. The graph shows that over
the analyzed time span of 15 years (2007–2022), the amount of publications regarding
MDDA in electric motor development is constantly increasing. About 56% of the papers
considered within the review were published in the last 5 years (2018–2022). Most of these
papers are published by researchers, while only a small portion (30%) of the works include
at least one author affiliated to an industrial company.
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Figure 8. (a) Number of papers in the review by year published; (b) Share of papers with different
types of validation in the review.

5.1.2. Validation

Figure 8b reveals that the majority of papers included at least one kind of validation.
The highest form of validation is to use high-fidelity simulations and prototype tests to
verify the MDDA results. The type of validation depends on the analyses conducted, i.e.,
if the MDDA included high-fidelity simulations of one specific domain, validation can
only be performed by even higher fidelity simulations or experimental results. In [8], an
FEA-based validation is conducted for each analysis module. Reference [35] compares the
results of their optimization workflow with an analysis in the software Ansys Motor-CAD
for validation. In [36], the applied design process is verified by applying it to an example
and comparing it to detailed FEA analyses.

In [37], the design found by the MDDA is prototyped and tested physically. The results
are close to simulation results, whereby the authors consider the proposed development
methodology to be validated. Reference [11] validates their proposed MDDA tool in a
similar manner by comparing properties of the realized prototype with analysis results.

5.2. Inputs, Outputs and Goals
5.2.1. Inputs

In this review, most papers used parameterized geometries as inputs for the MDDA.
However, the level of geometry fidelity differs. Approaches that apply analytical analyses
utilize a geometrical representation of their design variables, whereas the actual calcula-
tions are performed using only the parameters (e.g., [36,38,39]). Higher fidelity geometry
representations, such as CAD models, are primarily employed for more detailed analyses,
such as FEA simulations. In these papers, the CAD representation is generated and used
for the analysis (e.g., [40,41]). While most authors use a parametrized geometry, some au-
thors adapt non-parametrized geometries, enabling them to find new and unconventional
designs. For instance, Reference [42] uses a level-set methodology to describe the geometry
of a PMSM rotor and analyzes it in the thermal and electromagnetic domain. A similar
approach is proposed by [43] for the joint electromagnetic and mechanical design of a rotor
geometry for a synchronous reluctance motor.

5.2.2. Goals

Consistent with the inputs, the goal of most of the contributions is a parameter
synthesis. It is noticeable that almost no paper analyzes different topologies within the
MDDA. Exceptions are the papers applying non-parametrized geometries, since these
will always result in new topologies. Furthermore, Reference [44] compares various rotor
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topology concepts for Synchronous Reluctance Motors (SynRM) that differ based on the
positioning of supporting ribs and the use of a retaining sleeve. Similarly, Reference [11]
uses a MDDA process to compare different PMSM topologies. In both cases, however, the
optimization is performed separately for each topology. The results of each MDDA is then
compared, leaving the topology decision to the machine designer.

5.2.3. Outputs

Since all MDDA approaches focus on geometry synthesis, geometry was identified
as an output for all papers in the review. However, the aspects under which the design
decisions or optimizations were conducted differ. These objectives describe a design’s
properties that the MDDA aims to maximize or minimize. The most common synthesis
objectives are shown in Figure 9a.
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Figure 9. (a) The ten most frequently identified electric motor properties as a part of the objective
function in each paper; (b) Share of papers with different types of reasoning methods in the review.

5.2.4. Objectives

A total of 21 papers employ a single objective, implying that most papers use a multi-
objective function in their MDDA. From Figure 9a, it is apparent that the three most prominent
objectives are the main performance objectives of electric machines, namely torque, efficiency,
and power. These originate directly or indirectly from the electromagnetic analysis of the
proposed design. Cost and mass can mainly be derived from a machines’ geometry [45,46].
However, their calculation depends on the considered geometries and their fidelity. The ma-
jority of papers only take into account active parts for cost and mass calculation. Approaches
that consider non-active parts for cost or mass calculations are only available in [11,46].
However, these examples demonstrate that the mass estimate for non-active parts is by
no means negligible, as they account for 40% of the total mass of the machine. Losses in
an electric motor consist of iron losses, winding losses and mechanical friction losses [47].
In some works, losses act as an indirect way of taking thermal aspects into account [48].
Some papers even abstain from adding a thermal analysis module for this reason. However,
doing so prevents assessing temperatures and results in not fully exploiting a material to its
limits [39]. Noise, temperature, stress and torque ripple are, again, domain-specific properties
of a machine, stemming from NVH, thermal, structural and electromagnetic analyses.

5.3. Knowledge Representation and Reasoning Methods
5.3.1. Reasoning Methods

Figure 9b shows the reasoning methods employed in this review. Most reasoning
methods in this review rely on optimization algorithms. Rule-based reasoning using in-
ference engines can only be found in a small number of papers, e.g., [38,49]. Evolutionary
algorithms make up a large proportion of reasoning methods in the scope of this review,
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with the genetic algorithm (GA) being most widely used [50–52]. Other intelligent al-
gorithms, like the particle swarm optimization (PSO) method, are used less frequently,
e.g., [53,54]. Most optimization algorithms have further developed counterparts to handle
multi-objective optimizations better, e.g., the widely used non-sorting genetic algorithm
(NSGA-II) or multi-objective PSO (MOPSO) [40,55,56].

5.3.2. Knowledge Representation

According to [10], the formalization of knowledge in the context of a general design
automation task is strongly related to the reasoning methods used. In the reviewed pa-
pers, design dependencies were almost exclusively formalized as being shape-based or via
procedural rules. As introduced in Section 2, the design automation tasks of the reviewed
papers fall under the category of spatial product synthesis. For these tasks, typical knowl-
edge representations next to shape-based and procedural formalization are graph-based
formalization, object-oriented formalization and formalization based on the unified mod-
eling language (UML) [10]. However, in the papers reviewed, these formalizations were
not identified.

5.4. Considered Domains and Domain Couplings

Figure 10b shows how many different disciplines are considered in the MDDA of
the reviewed papers. As it can be seen, most approaches are limited to two domains.
Figure 10a illustrates the frequency of each domain and the corresponding fidelity level
identified in this review.
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Figure 10. (a) Considered domains in the papers of this review and corresponding fidelity level;
(b) Share of papers considering two, three or four and more domains. For this electromagnetic,
thermal, structure mechanic, rotordynamic, NVH, manufacturing and economic analyses as part of
the MDDA were searched for.

5.4.1. Electromagnetic Domain

From Figure 10a, it is apparent that nearly all reviewed papers consider the electromag-
netic domain. This emphasis is primarily driven by the opportunity to calculate machine
efficiency via electromagnetic models based on the calculation of electromagnetic losses
and the machine power from torque and speed [57]. These parameters are crucial while
designing electrical machines and explain the number of studies in Figure 9a that contain
torque, efficiency and power as optimization objectives [58]. Some papers additionally
mention the analysis of torque ripple and cogging torque [47], whose reduction together
with keeping a minimum efficiency can also be a desired optimization criteria in the MDDA
of electrical machines [59]. Overall, in this review, three major distinguishing criteria for
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the electromagnetic analysis were observed: analysis fidelity level, analysis dimension
(2D/3D) and time dependency of the analysis. Within the electromagnetic domain, high-
fidelity approaches prevail. In that case, most of the authors use numerical FEA concepts,
like those demonstrated in [60,61]. Other numerical approaches for the electromagnetic
analysis, e.g., using the finite-difference method, were not identified in this review. Next to
numerical approaches, analytical models [48,54,62] and lumped-parameter models (often
referred to as equivalent circuit approaches) [34,57] are also used in the reviewed papers.
The required level of fidelity for the electromagnetic analysis depends on the machine
type under investigation and possible compromises between computational effort and
accuracy needed for the desired outcomes [63]. For instance, FEA has a high fidelity but
entails a high computational burden. In contrast, analytical or equivalent circuit approaches
have moderate computational effort but offer lower fidelity [64]. Nevertheless, in case of
difficult structures, complex field distributions and nonlinearities, analytical models may
fail to predict electromagnetic variables or are not accurate enough, necessitating the use of
FEA despite the computational demands [47,65]. A possible way to reduce computational
effort while keeping high fidelity in the electromagnetic analysis is the combination of
different methods. In [47], an approach is proposed where parameters that are easier to
model are analyzed using an analytical sub-domain model; then, the more challenging
parameters are optimized using an FEA. The analytical model optimizes the PMSM’s
general geometry by calculating its electromagnetic and torque performances with high
accuracy. To further optimize the torque ripple and cogging torque, the authors utilize
FEA in computing the magnetic pole shift, magnet segmentation and eccentricity. On the
other hand, the combination of an analytical approach and FEA can be applied when the
analytical part is used for post-processing of loss data obtained from FEA [66]. In [57],
they present a combination of a magnetic equivalent circuit (MEC) for the electromagnetic
domain and an electric equivalent circuit (EEC) for the electrical domain and as extension
of a loss model for calculating the copper and iron losses. In combination, these models
are used to replace an FEA for the electromagnetic optimization of a switched reluctance
machine. To calculate the static flux density, the static flux linkage characteristic data and
the static torque, a magnetic circuit modeled by a reluctance network is applied. Figure 11
demonstrates an example for a reluctance network. The EEC is then used to calculate, for
instance, the phase current, the torque ripple coefficient and the average torque from the
static torque and the flux linkage characteristic data [57]. A similar way is chosen in [67],
where a strategy is proposed to mitigate computational effort by substituting the FEA with
an analytical method to calculate the torque, internal power factor and the internal voltage
and combining that method with an EEC and a loss model. The choice to use a combination
or a single EEC and MEC depends on the specific use case and the desired parameters as
well as on whether only the electromagnetic or the entire electrical analysis is considered,
which is also related to time dependency [63]. If a static model is sufficient to predict the
behavior of a machine, as is the case for synchronous machines, the electromagnetic and
electrical analyses can be combined in an FEA or MEC without requiring an extra EEC [63].
In this context, static or quasi-static analysis means an analysis for one or more static rotor
position points [68], which results in lower computational effort [45] and faster analysis
if it is used to replace a transient simulation [38]. However, in general, transient analysis
serves to more accuracy [69] and is also utilized to analyze transient behavior caused by
eddy currents [70]. Furthermore, the need for a transient analysis depends on the machine
type. Induction machines, for instance, require transient analysis or the analysis needs to
run until achieving a steady state [63]. This requirement leads to a significant increase in
computational effort. Hence, for dynamic or transient performance analysis, an electrical
analysis model such as an EEC is imperative to limit the computational effort [63]. The
combination of an analytical model and a MEC is described in [36]. The authors utilize
the methods separately, employing one for the stator field calculation aspects and the
other for electromagnetic parameters relating to the rotor. Another approach to reduce
the computational effort involves a combination of methods, such as implementing an
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analytical coarse pre-optimization followed by a more detailed FEA. In [71], this technique
is used to analyze the electromagnetic characteristics of a PMSM. A similar approach is
employed in [72]. The method described in [73] is comparable but incorporates a MEC
for achieving a low fidelity and low computational effort. In [64], all three fidelity levels
are combined. The analytical model is used for a pre-optimized design to filter out weak
options. This is followed by a MEC analysis. The final accurate optimization is then made
by an FEA.
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Figure 11. Example of a magnetic equivalent circuit (modified from [57]).

5.4.2. Thermal Analysis

The thermal domain is considered in about two thirds of reviewed papers; see
Figure 10a. The purpose of the thermal calculator is to assess whether design candidates
reach thermal limits [50,59]. Typical thermal limits are the maximum winding insulation
and magnet deterioration temperature [22,45,59]. As it can be seen in Figure 10a, fidelity
level 1 is applied less frequently for thermal calculations. The authors in [38] use analytical
equations to derive cooling jacket dimensions and a heat exchange coefficient in the scope
of a multidisciplinary automated scaling approach. The most prominent way of conducting
thermal analyses are lumped-parameter models. Their execution times are usually very
fast; however, it requires the developer to build a model to accurately describe the main
heat flow [22].

For this purpose, the machine geometry is modeled by simple geometrical shapes
for which the heat flow has been derived. Each of these are represented as a node in the
LPM [56,74]. Heat flow between nodes are modeled using thermal resistances. For transient
considerations, the heat capacity in each node must be taken into account [56]. Three
different detailing criteria of LPMs were observed in this review: (1) The dimensionality,
(2) time dependency and (3) assumptions for the thermal modeling. Most authors use a
2D representation of the machine for the thermal analysis by modeling an axial or radial
section of the motor [56,75,76]. Three-dimesional LPMs combine these and have a higher
accuracy [72,77]. Stationary thermal calculations are most often used in the papers of this
review, i.e., calculation of temperatures under the assumption of reaching an equilibrium in
each considered operating point [36,75]. However, not considering transient phenomena with
respect to use scenarios can result in a significant limitation of the design space. Reference [39]
compares in his MDDA application steady-state and transient thermal analyses for the design
of an electric motor in a hybrid electric aircraft powertrain. The use of a transient thermal
analysis with respect to the flight scenario results in a significant size reduction and thus
an almost threefold power density increase. Some other detailing criteria of LPMs are the
assumptions made in each study. Commonly, radiation heat transfer is not considered, and
thermo-physical material properties are assumed to be temperature-independent [39,57,78].
However, more detailed LPMs encompassing radiation heat transfer in the scope of MDDAs
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exist [72]. Beyond that, higher fidelity numerical modeling for thermal analyses is usually
avoided for computational efficiency reasons.

It is noticeable that there are only a few papers that not only examine the exceeding of
thermal limits in the context of an MDDA, but also include components and parameters of
the cooling system as part of the design variables. One example is the design of cooling
ducts in the scope of MDDAs [79,80]. In [81], the thermal stress distribution in a double-
skewed rotor for an induction motor is used to find the optimal design of the rotor.

5.4.3. Structural Mechanics

The overarching objective of structural analyses in MDDAs is to ensure that the ge-
ometry is able to withstand the mechanical loads that are imposed during operation. For
the most part, structural analyses are focused on rotor geometries, including rotor shaft,
rotor sleeves, magnets and machine-specific rotor lamination geometries, like flux barriers
in synchronous reluctance machines. The structural-mechanical design is often in conflict
with the electromagnetic design, e.g., when sizing ribs in SynRM rotors [75,82]. Structural
analyses in this review utilized both analytical calculations and numerical FE calculations,
as illustrated in Figure 10a. In order to perform an analytical calculation of the structural
mechanics within a MDDA, authors utilize model reductions for which analytical calculation
models are available, i.e., reducing the problem to two dimensions by assuming the stress
and strain in the axial direction to be zero [70]. In [37], an analytical model based on rotating
disks stress equilibrium theory is applied for the design of a high-speed PMSM. The contact
pressure, the thermal expansion as well as the centrifugal forces are considered. Similar
approaches to design rotor magnets and rotor sleeves are adopted in [8,39,55,73,75]. Some
authors use analytical calculations for more detailed rotor and stator geometries as well,
e.g., ribs in SynRM rotors by employing beam theory simplifications [36]. Since this form
of geometry simplification is limited when dealing with more complex geometries, FEA
calculations tend to be used for this purpose in the reviewed papers. Thus, there are a variety
of papers that use 2D FEA simulations to evaluate detailed rotor geometries in synchronous
reluctance machines [44,68,83] and permanent magnet-excited machines [22,43,66,84]. For
the design of high-speed rotors that include retention sleeves, 2D FEA is also utilized [50,60].
Regardless of the fidelity of the calculation, the maximum speeds including a safety factor
are generally used as a basis for the structural mechanics analysis within an MDDA.

5.4.4. Noise, Vibration, Harshness (NVH)

Another set of tasks that can be assigned to the mechanical domain involves the exam-
ination of generation of acoustic noise. In this review, a total of 17 papers considered NVH
analyses. Radial electromotive forces of different spatial orders and temporal frequencies
cause the stator teeth to vibrate. Resonance amplifies this effect, which occurs when the
spatial orders and temporal frequencies of the radial electromagnetic forces align with a
natural mode of the considered geometry, resulting in a significant noise level [85,86]. The
vibration in the stator is transmitted to components that are rigidly connected to the stator,
such as the housing [41]. Usually, only the stator is considered in NVH analyses, although
the housing and other motor components can certainly have a dampening effect [87]. In [85]
the stator is simplified as a cylinder so that a mass–spring equation system can be set up
for each mode shape. Similar analytical analyses are conducted in [22,88,89]. In [41], an
equivalent circuit model is used to account for the different areas and materials of the
stator and housing in the vibration analysis. The main advantage of these analytical and
equivalent circuit approaches is the significantly reduced computational time compared
to an FEM analysis [41]. For FEA analyses, simplified 3D geometries of the stator or even
of the stator and the housing are often used for NVH assessment [87,90]. On the basis of
vibration analyses, an acoustic analysis is often carried out in order to find corresponding
sound pressure levels [90,91].
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5.4.5. Rotordynamics

In ten papers, tasks belonging to rotordynamic analysis are carried out in the scope
of the MDDA. The rotordynamic analyses are performed to ensure that the rotor is not
operated in a critical speed range. Similar to the resonance effect in the context of NVH, the
critical speed is the speed at which the rotor excites the structure at its natural frequency [32].
Strong vibrations that are capable of destroying the motor are the consequence of the
resonance effect [92]. High-speed motors are operating close to their physical limits [93],
which explains why almost all papers that consider rotordynamics in the context of MDDA
address high-speed motors. As can be seen from Figure 10a, all three fidelity levels were
identified for rotordynamic analyses. In [94], only the first-order natural frequency of
the rotor is determined analytically and considered as part of the optimization objectives.
A similar approach is applied in [37]. Reference [69] uses an analytical estimation of the
critical speed based on a simplified rotor geometry. Reference [73] uses a lumped-parameter
model by dividing the rotor into disk segments, allowing the incorporation of multiple
diameters and material properties. Some authors make use of higher fidelity analyses for
the rotordynamics analyses. Reference [95] uses a 3D-FEA of the rotor with a cooling fan
impeller to determine the first bending mode of a high-speed PMSM. Reference [92] uses a
similar approach. A few authors use a campbell diagram for the analysis and visualization
of critical speed ranges [73,96].

It is noticeable that other tasks that belong to the mechanical domain in the develop-
ment of electrical machines are only considered in single works in the scope of MDDAs in
this review. These tasks include the design of non-active parts, such as the housing, end
flanges or bearings. In [11,46], simple analytical calculations are used for this purpose in
order to be able to provide a better estimation of the mass and dimensions of the motor,
including the non-active parts.

5.4.6. Manufacturing

Another engineering domain analyzed in this review is manufacturing. Manufac-
turing influences on the design are often not calculated by separate calculations as it is
performed for the other engineering domains. Papers considering manufacturing aspects
use statistical models to account for manufacturing deviations. This circumstance prevents
to analyze the manufacturing analysis fidelity, which is why no data regarding the fidelity
of the manufacturing analysis were derived from the literature study. The manufacturing
analyses encountered during this review are often referred to as robust design optimization.
According to [97], there are three common approaches to conduct robust design for electric
motors: Taguchi parameter design, worst case design and design for six sigma. Performing
a multi-objective robust design study always involves a high computational cost, especially
when high-fidelity analyses are used [97]. For this reason, most robust design papers in
the study make use of methods to improve the computational efficiency of the analyses,
like surrogate models [98,99]. Manufacturing aspects are considered almost exclusively
in combination with electromagnetic analyses. Thus, multidomain robust design was not
identified in this review. The only exception to this was found in [99]. The authors make
use of a multi-physics model for the robust design of a SMC (soft magnetic composite)
motor consisting of electromagnetic, thermal and modal analyses as well as a production
cost estimation model. To handle the computational cost, surrogate models are built and a
multilevel design parameter approach is employed.

5.4.7. Economics

The costs of a design also play a major role in many papers. This is reflected in the
choice of optimization objectives in Figure 9a. In order to determine costs, different types
of cost determination are used. According to [99], the production cost of electric motors
consist of material cost, buying parts cost, machinery cost, capital cost and personnel cost.
Papers in this review predominantly reduce this to the material cost and calculate it by
computing the masses or volumes and the corresponding market prices [45,47,71,100,101].
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In this review, almost all authors restrict costs, and thus mass and volume, to active material
cost, i.e., iron sheets, copper parts and magnets [45,47,67]. Reference [100] also includes
the cost of the rotor-retaining sleeve. References [101,102] include the aluminum parts
of the motor, making a simplified housing geometry necessary. Reference [99] calculates
the material cost in dependence of production volume and also include the cost of scrap
material and buying parts in their estimation. References [77,103] are the only works that
include machining cost in their calculation for manufacturing of a specific component: in
this case, the SMC core.

5.4.8. Surrogate Models

Especially in the more recent papers, surrogate models are frequently implemented
in MDDAs to handle expensive calculations with a lower time effort [84,100]. The use
of surrogate models fundamentally affects the setup of the MDDA. The models must be
built in advance of the actual optimization. The steps for this usually consist of sampling
to build the database, building the surrogate model, and checking the accuracy of the
model including subsequent readjustment [52,73,96,100]. For the sampling stage, different
methods exist, e.g., the Latin hypercube sampling plan [90]. In [96], a design of experiments
sampling plan is used to maximize the amount of information acquired and minimize
the bias error. Reference [73] proposes to combine low- and high-fidelity domain anal-
yses in the sampling stage to achieve the best trade-off between computation time and
accuracy. The actual surrogate model can be built using either artificial neural networks
or interpolation methods. In [100], three neural network methods, multilayer perceptron,
support vector regression, generalized regression neural network, are compared with the
Kriging interpolation method, where support vector regression shows the best results for
the considered application of a high-speed PMSM.

5.4.9. Domain Couplings

Figure 12 presents the results of the domain couplings analysis. For this analysis, the
rotordynamic, structural and NVH domains were considered as one mechanical domain.
This is valid, since no couplings between different tasks within the mechanical domain
were identified. The figure depicts the percentage distribution of coupling types in papers
that consider the respective pairs of engineering domains. Couplings between domains are
not always reported in the reviewed papers. In ten papers, no specific couplings or the type
of coupling implemented in the respective MDDA are described. The coupling between
electromagnetic and thermal domain is described as a strong coupling in the literature,
making it necessary to be considered for accurate results [72]. In particular, the magnetic
and electric conductivity of materials in the electric motor are depending on the temperature
in the system [40]. One of the outputs of the electromagnetic calculations are losses,
which are necessary inputs for the thermal domain in order to calculate the temperatures
within the system [11,37,66]. Figure 12 shows that most authors that consider both the
electromagnetic and thermal domain implement set coupling as a one-directional coupling.
References [79,80] use a one-way coupling between the electromagnetic analysis and the
thermal analysis to design cooling ducts in both the stator and the rotor. Reference [40]
states that the permeability of the laminations remain nearly constant with changing
temperature. The temperature dependency of copper resistivity on the other hand should
be incorporated in the analysis. The authors propose to update the copper losses according
to the temperature variation instead of recalculating the electromagnetic analysis [40]. If
the initial guess of machine temperature deviates strongly from the calculated values, the
calculation of the magnetic field and thus the magnetomotive force has to be updated [72,85].
This is why some authors implement a bi-directional coupling and iterate between the
domains until the error becomes sufficiently small [76]. Reference [72] combines a one-way
coupling with a two-way coupling using a space mapping methodology for the design of a
starter motor.
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Figure 12. Different types of couplings between engineering domains employed in the MDDA of
reviewed papers.

The properties for the mechanical analyses also depend on the temperatures in the
system. However, most papers that feature both a thermal and mechanical analysis do
not consider a coupling between these domains. In [37], the temperature dependency is
integrated into the mechanical analysis of magnets in a high-speed motor. The authors
conclude that the temperature rise can have a significant impact on the safety factor of the
magnets. Between electromagnetic and mechanical domains, different dependencies exist.
The NVH analyses start with a vibrational analysis, which is based on radial electromotive
forces, as an output of the electromagnetic analysis. This is why for papers featuring
NVH analyses, a one-directional coupling between the electromagnetic analysis and NVH
analyses is considered in all cases, e.g., [41,87,91]. For rotordynamics and structural anal-
yses, dependencies arise mainly from rotational speeds in the system. Most MDDAs in
this review base their calculations in these domains on the maximum rotational speed
that the system is designed for [70,95]. In these cases, no direct coupling between the
electromagnetic domain and rotordynamic/structural domain was identified. A number
of papers designing detailed rotor geometries address coupling strategies between the
electromagnetic and structural mechanics domains. It is necessary that the small ribs or
bridges within its geometry, see Section 5.7, provide a balance between being sufficiently
robust to withstand loads and yet small enough to reduce their detrimental electromagnetic
influence [104]. Reference [104] presents and compares different architectures of coupled
electromagnetic and mechanical analyses. Reference [83] suggests a parameter-split decou-
pling (PSD) approach, where the design parameters of a SynRM rotor are split into two
subsets. One subset will be part of the electromagnetic analysis, with the other being fixed,
and vice versa for the structural analysis. The assignment of a parameter to a subset de-
pends on its influence in each domain. Most authors conduct the electromagnetic analyses
and check for structural integrity afterwards in their MDDAs. However, the mechanical
stress in the rotor laminations influences its permeability. In [105], an approach is presented
where the results of a stress analysis in a PMSM rotor is considered in the electromagnetic
analysis.

5.5. Applications

Figure 13a indicates that mobile applications dominate, such as electric vehicle (EV)
traction motors, electric machines in aerospace applications or railway traction motors.
However, not all articles provide details regarding the utilization of the motor developed in
the MDDA. In most mobile applications, space is limited, which results in the aim to realize
high power while keeping the weight or volume of the motor as low as possible [11]. The
correlation between application and objectives becomes evident in Figure 13b. It indicates
the objectives applied for papers focusing on traction motor design. Compared to the
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numbers for all reviewed papers shown in Figure 9a, it can be concluded that losses, power
density and dimensions of the motor are used more often as design objectives.
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Figure 13. (a) Stated applications in the papers of this review; (b) Ten most frequently identified
objectives of papers applying the MDDA to electric vehicle traction motor design.

Reference [39] even states that for aerospace applications, minimizing the mass has
the highest priority. Some papers for mobile applications are also focusing on optimizing
specific driving cycles or load profiles. Reference [66] integrates a WLTP cycle (worldwide
harmonized light vehicles test procedure) into the MDDA for an electric vehicle traction
motor. With the calculated losses map, the total lost energy for the driving cycle is calculated
and applied as the main optimization objective. Reference [39] uses a reference flight
mission profile to calculate the total losses in the scope of their MDDA for a hybrid electric
aircraft powertrain. A total of 21 of the reviewed papers feature high-speed motors.
These papers do not, in all cases, specify an application field such as compressors or
turbochargers. Consequently, they make up a large part of the “no application specified”
group in Figure 13a.

High-speed motors are particularly noteworthy because of distinctive characteristics
regarding the MDDA application. On the one hand, the application of MDDAs is quite
apparent for these motors, since the high speeds are accompanied by high structural-
mechanical, thermal and rotordynamic loads. Thus, sequential development processes for
the development of high-speed motors comprise numerous iterations [5]. On the other
hand, this type of motor entails changes in terms of the geometric design of the components.
For example, because of high speeds, the motors are typically built with smaller diameters,
and rotor-retaining sleeves must be provided to secure the magnets mechanically, see
Section 5.7.

Furthermore, the application significantly impacts the considered domains of the
MDDA. In Figure 14a,b, domain fidelity levels for high-speed motors and traction motors
are given. For both applications, the designers opted to employ high-fidelity electromag-
netic analyses. However, the structure of the MDDA varies significantly for all other
domains. In the case of high-speed motors, the emphasis is on structural and rotodynamic
analyses, with no consideration of NVH analyses. Conversely, traction motors are analyzed
with respect to their thermal characteristics and NVH behavior.
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Figure 14. (a) Considered domains and fidelity levels in papers designing high-speed motors;
(b) Considered domains and fidelity levels in papers designing traction motors.

5.6. Process Stage

In Figure 15, it is illustrated that both preliminary and detailed design studies were
identified in this review.

Preliminary design

50.0%

Detailed design

37.2%
Two staged process

12.8%

Figure 15. Share of papers presenting preliminary, detailed or two-staged design approaches.

Most of the papers focus on preliminary design aspects. In these papers, the multidisci-
plinary process primarily revolves around sizing the active machine part. This includes not
only the main machine design parameters, but also the basic design of the stator and rotor
geometries. More in-depth approaches start with fixed main machine design parameters
and place emphasis on automating the design of more detailed geometries [66,83,104]. A
small set of works combines a preliminary design step with a more detailed design [76,106].
From the bar graphs in Figure 16a,b, it can be seen that the process stage has a significant
influence on the applied domain models and corresponding fidelity level. In prelimi-
nary design papers, all domains are present, drawing a similar picture as the findings in
Figure 10a.
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Figure 16. (a) Domains and corresponding fidelity levels of preliminary design papers; (b) Domains
and corresponding fidelity levels of detailed design papers.

In more detailed designs, the focus of the analyses is on higher fidelity analysis
models. For electromagnetic, structural and NVH analyses, FEA analyses are employed
in the majority in MDDAs. For thermal analysis, LPMs are used for both preliminary and
detailed design. Additionally, some detailed design papers tend to focus on component-
level issues. Here, the analysis models are chosen depending on the component, e.g.,
structural and electromagnetic analyses for the design of PMSM rotor geometries [105] or
SynRM rotors [43,65].

5.7. Type and Part of Electric Motor
5.7.1. Type of Electric Motor

As can be seen from Figure 17a, most authors (61.7%) apply MDDA to permanent
magnet-excited motors. Overall, surface permanent magnet motors (SPM) predominate.
The SPM motor type is often used for high-speed motors [8,55,73,75,100]. A general
topology of SPM motors used in this review is shown in Figure 17b. A main feature of high-
speed SPMs is that a rotor-retaining sleeve must be designed in the MDDA [37,60,70,75,95].
In [50], an MDDA approach is used to design an SPM for a traction motor application.
In the process, optimal stator and rotor parameters are determined, including a rotor-
retaining sleeve. In general, MDDAs applied for the design of permanent magnet motors
often include modules to examine permanent magnet-specific boundaries and properties:
With permanent magnets, the examination of the temperature is of utmost importance to
prevent demagnetization [42,70]. Furthermore, permanent magnets in the rotor structure
can be exposed to high mechanical stresses, which is why structural mechanics modules
might be necessary [37,95]. Papers dealing with interior permanent magnet motors (IPM)
often consider rotor topologies with a V-magnet arrangement, as is depicted in Figure 17b
exemplary [22,41,66]. For IPMs, the rotor topology is frequently studied in great detail,
i.e., the majority of design variables in the MDDA describe rotor geometries [22,78,105].
Reference [66] determines the optimal shape and orientation of a V-type permanent magnet
rotor. The embedding of permanent magnets often results in narrow rib and bridge
geometries, which is why the authors implement a structural analysis of the rotor geometry.
Similar approaches can be found in [22,78,105].

Next to PM motors, reluctance motors are the second largest group in this review, mak-
ing up 20.2%. Synchronous reluctance motors account for 12.8%, and switched reluctance
motors are considered in 7.4% of reviewed papers. Similar to the MDDA of IPMs, papers
applying MDDAs for SynRM again focus on the design of the rotor geometry. SynRMs
also comprise fine ribs or bridges, as can be seen in Figure 17b. The design of these has
a significant electromagnetic and structural mechanical impact [44,68,104,106]. Almost
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all induction motors (IMs) in the reviewed papers feature squirrel cages, an example of
which is shown in Figure 17b. Consequently, the MDDAs in these papers often focus on
the detailed design of the rotor bar geometry [101,107]. In addition to electromagnetic
performance, the geometry of an IM rotor has an impact on thermal, structural, mechanical
and NVH characteristics [81,93,108].

IPM

18.1%

SPM

37.2%

SynRM

12.8%

SRM

7.4%

IM

9.6%
Variable Machine Type
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Figure 17. (a) Share of papers with applying MDDA for different types of electric motor topologies;
(b) Typical geometries encountered in this review for the most frequently represented motor types.

Some authors intentionally keep their MDDA approach general, i.e., they do not
refer specifically to one machine type. These papers thus claim that their approach can be
applied to different types of electric motors [47,52,64,90]. One prerequisite for a general
MDDA approach is, according to [47], to build the MDDA based on modular submodels,
so that each can be replaced for the calculation of different machine types.

5.7.2. Automatically Designed Parts in the MDDA

Most reviewed papers are limited to the automated design of active parts, i.e., stator
and rotor geometries. In some applications, the stator geometry is fixed and only an MDDA
for the component specific parameters, e.g., rotor parameters, is performed. These papers
take a more detailed look on the 2D-Geometry of PMSMs or SynRMs, often combining
electromagnetic and structural mechanic calculations [66,83,104]. The majority of papers
use simplified 2D geometries for analyses. If machine types are designed whose magnetic
flux also has axial components, such as transverse flux machines or axial flux machines,
3D geometries are used [45,77,99]. Furthermore, the simplification of the motor geometry
depends on the analyzed domains. In the case of NVH analyses, a simplified 3D geometry
of either the stator and/or housing is often required, or a 2D simplification must be derived
from the original geometry [41,88]. As mentioned previously, a significant number of
papers focus on the design of high-speed motors. Consequently, it is common practice to
incorporate a sleeve in addition to the typical stator and rotor geometries. This is because
the presence of a sleeve directly affects the effective airgap in the magnetic circuit, thereby
impacting essential optimization objectives such as power density and efficiency [55,75].
Non-active parts are rarely designed in the scope of an MDDA in the reviewed papers.
In [94], magnetic bearings and the active parts are designed simultaneously as part of the
MDDA for a high-speed motor. In [38,60,79,80], next to the active parts, a focus is put on
designing geometries for the cooling system, e.g., cooling ducts in the stator or in the cooling
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jacket. In some MDDA applications, the shaft is designed simultaneously with the active
parts [37,51,60]. In [11,46,51], non-active parts are automatically designed, like bearings,
shaft and housing parts, e.g., by generating cylindrical shells and disks. The objective here
is to obtain a better estimation of the non-active mass in the motor and consider it within
the optimization.

6. Findings

In the course of this review, the selected papers were examined with regard to
twelve criteria. As stated in Section 4, the review criteria were established by consid-
ering application-unspecific design automation tasks and electric-motor-specific criteria.
The papers showed significant differences with regard to most of the criteria examined,
indicating that the criteria can be used to analyze MDDA processes for the development
of electric motors. In the following sections, the key findings drawn from the review will
be presented.

6.1. Mdda Application Is Limited to Specific Use Cases or Machines; General Works Are Lacking

Overall, this review has shown that MDDA is already being used in the development
of electric motors. The results in Section 5.5 showed that MDDAs can be employed for the
design of electric motors in a variety of applications. However, in 64% of reviewed papers,
MDDAs are employed for mobile applications or high-speed motors. Thus, MDDAs are not
yet adopted for electric motors in all application fields. It can be assumed that the reason
for this is similar to that of setting up design automation for the design of other systems.
Studies have shown that the initial effort to create the models and interfaces is considered
to be the main obstacle and requires a corresponding change in the organization [109]. In
this review, authors often construct process chains for their specific case without adhering
to any specific methodology or utilizing preexisting concepts and architectures, like MDO
architectures. Thus, general works that developers can apply as a blueprint for their use
case to build an MDDA process chain, or even works that provide methods for building
MDDA process chains, are lacking. However, Table 1 provides a summary of five papers
that address parts of this issue.

Table 1. Selection of outstanding papers in this review regarding the application of MDDA for the
development of electric motors.

Source Considered Domains Highlighted Features of the Approach

[39]
Thermal (Level 2),

Electromagnetic (Level 1),
Structural (Level 1)

Transient state thermal optimization,
Optimization based on mission profiles,
Component design (winding insulation)

[37]

Electromagnetic (Level 3),
Thermal (Level 2),

Structural (Level 1),
Rotordynamics (Level 1)

High level of multidisciplinarity,
Design variables based on sensitivity analysis

Thermal/Structural coupling considered
Response surface based optimization

[73]
Electromagnetic (Level 2 and 3),

Structural (Level 1 and 3),
Rotordynamics (Level 1 and 3)

Multi-fidelity surrogate model
Component design (Rotor, shaft, sleeve)

[110]
Electromagnetic (Level 1),

Thermal (Level 2),
Structural (Level 1)

System and component aspects considered
Component specific modeling

Application independent approach
Surrogate modeling

[11]
Electromagnetic (Level 1),

Thermal (Level 2),
Structural (Level 1)

Design of passive components considered
Comparison of different motor topologies

Application independent approach

Reference [39] introduces a comprehensive Multidisciplinary Design, Analysis and op-
timization (MDDA) approach for designing an electric motor as an integral component of a
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hybrid electric aircraft powertrain. The authors integrate higher-level design considerations
to design the motor’s active components. Simultaneously, they address lower-level design
aspects encompassing windings insulation design by including partial discharge analysis,
since this component showed to be most critical for their application. Simultaneously,
they address component-level design aspects related to the insulation of windings and
partial discharges, since the winding showed to be critical for their application. In terms of
thermal analysis, the authors emphasize the criticality of accounting for application-specific
load profiles within a transient thermal analysis framework, particularly for optimizing
objectives dependent on mass.

In [37], an approach for the design of high-speed motors for antenna applications is
presented. While application specific, the approach shows the integration of a variety of
disciplines, considering electromagnetic, thermal, structural and rotordynamic aspects in
the loop of the MDDA. The authors systematically compile their optimization objectives
and design variables based on a sensitivity analysis. Additionally, they make use of a
surrogate model based on a response surface methodology and validate their design by
simulations and experiments.

Reference [73] focus solely on the design of the rotor in a high-speed PMSM in their
MDDA approach, showing that MDDA approaches can be employed both on a higher
level and a lower level. Herein, they combine electromagnetic, structural and rotordynamic
analysis and employ a multi-fidelity surrogate model for the optimization.

While most works in this review divide the design problem in their MDDA according
to the domains considered, Reference [110] decomposes the system based on its components,
considering shaft, yoke, slots, winding and pole design issues. To find a system-level design,
the analytical component models are integrated in to a system-level model by simplifying
them using a surrogate model.

Reference [11] stands out because of their consideration of active and passive ma-
chine parts alike in their MDDA approach. They highlight the importance for the mass
reduction of the machine. Additionally, their approach is the only one using the MDDA
to compare different motor topologies, in this case internal, external, dual stator and dual
rotor topologies.

Overall, from this review, it can be drawn that the architecture of an MDDA process
chain is a complex task that demands the developer to consider a variety of different aspects.
However, this review indicates a lack of overall guidance for developers on how to setup
MDDA process chains.

Thus, the support to be developed on the one hand has to give a general framework
that can be adopted for different applications. On the other hand, it has to address the gap
of lacking methodological support for the setup of MDDAs for electric motors.

6.2. MDDAs Are Relevant Both on a System and Component Level

This review has pointed out that MDDAs can be employed both on the system level
and for more detailed examinations of specific components on the component level. The
latter is necessary to explore the boundaries of a design and investigate the effects of
material or manufacturing innovations on a particular component, e.g., soft magnetic
composite cores [77]. Furthermore, only a detailed analysis of a component allows to
consider resulting design variants, manufacturing constraints or necessary component
analyses, e.g., partial discharge analyses in the winding [39].

A strict separation or decomposition of system and component design for the electric
motor are found only in a few papers (e.g., [110]). Frequently, all aspects are examined at a
single level, which limits the potential for parallelization [111]. Therefore, a methodological
framework for the MDDA setup should enable the designer to consider both system
and component design aspects within the overall design and provide assistance for their
integration and parallelization.

Furthermore, this review showed that MDDA is relevant both for the system-level
design and for the detailed design of parts in electric motors. Subsequently, a general frame-
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work has to consider both these aspects. For this type of framework, the methodological
assistance should aid the developer in adopting concepts of integration or parallelization.
Figure 18 presents the parts of the overall support concept that are based on the findings of
this review.

System design
model

Component
design model

Integration 

Parallelization

Methodological support for the setup of the MDDA

Figure 18. General support concept for the setup of MDDAs for the development of electric motors.

6.3. Systematic Approaches for the Architecture of MDDAs of Electric Motors Are Lacking

This review has revealed a multitude of interdependencies for the MDDA setup: for
the architecture of an MDDA, a variety of decisions have to be made, i.e., the consideration
and fidelity of domain analyses, the way of reasoning to implement, the arrangement and
coupling of the automated procedure, and resulting interfaces, as well as approaches for
a higher computational efficiency. This review demonstrated that architecture decisions
depend on the application, the resulting requirements and design objectives, as well as the
specific type of electric motor and process stage employed. However, approaches to set up
an MDDA workflow taking these into account are lacking.

6.3.1. Objectives

The selection of optimization objectives, design variables and constraints is a crucial
task while setting up an MDDA workflow. It lies in the nature of multidisciplinary design
that a vast amount of possible design variables, optimization objectives and constraints
can be considered. Selecting too many objectives or design variables can result in a large
computational burden [63]. Even though laying this foundation has a major influence on
the outcomes of a design study, only a small number of authors use systematic approaches
in order to decide for design variables and objectives (e.g., [37,57,99,100]).

6.3.2. Procedure Arrangement

The MDDAs in the various reviewed papers can be classified as MDOs. However, most
authors do not specifically state that they set up an MDO in their work. This indicates that
existing methods in the literature have not fully advanced to the field of designing electric
motors. This is also reflected by the fact that the vast majority of papers set up their MDO
as the most straight forward architecture, called multidisciplinary feasible (MDF). In this
monolithic architecture, analyses are simply conducted after each other in each optimization
loop. Other monolithic MDO architectures, like All-at-once (AAO) or individual discipline
feasible (IDF), or even distributed architectures, like concurrent subspace optimization
(CSSO), were not identified in the scope of this review. The only exceptions are the
following references: [23,112]. Reference [112] compares different monolithic architectures
for its MDDA of a PMSM, proving that remarkable wall clock savings can be achieved
compared to MDF. Reference [23] states that their framework is able to decompose the
original optimization problem into smaller subproblems, making use of distributed MDO
architectures like CSSO. A major advantage of a hierarchical breakdown is that it enables
the developer to solve multiple optimizations in parallel [111]. In this review, however,
systematic approaches on selecting an architecture for the MDDA are lacking. In other
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engineering disciplines, methods for this task exist, e.g., [113], who propose a question
technique to determine MDO architectures for aerospace engineering.

6.3.3. Computational Efficiency Approaches

Adapting the MDO architecture is not the only way to achieve time savings. In the
reviewed papers, surrogate-model-based approaches became more and more prevalent
in recent years. In these approaches, analyses are conducted to gather data regarding the
inputs and corresponding output responses first. Based on these data, a model is fitted,
which can accurately predict the output across the input range. These models can then be
used in the actual optimization of the system. Since surrogate models can be evaluated
as fast as analytical models, this enables the designer to conduct optimizations with high
accuracy and less time effort [84,100]. For the overall architecture of the MDDA, this means
that the corresponding steps for setting up the surrogate models must be incorporated.
Furthermore, it should be noted that the electric motor always is part of a system-of-systems
context, meaning it is itself a component within a larger system, such as a powertrain in a
vehicle [39]. Therefore, an MDDA framework should provide a basis for integration into
higher-level design and optimization procedures. Surrogate model approaches can act as
an enabler for this [110].

6.4. High Level of Multidisciplinarity Continues to Be the Exception

The utilization of MDDA is primarily motivated by the ability to consider interactions
among engineering domains during the systems design in order to enhance performance
and reduce time and cost in the design cycle [114]. To achieve these benefits, it is crucial to
systematically include the relevant engineering domains within the MDDA framework. The
reviewed papers primarily focused on the electromagnetic domain, which is evidently the
most important domain and thus should always be considered in the system-level design. It
is noticeable that either fully analytical models or FEA models were used. Across all papers
reviewed, thermal analysis has also been shown to be a vital component of electric motor
MDDA. Especially for power dense motors, the temperature is the main limiting factor [39].
For thermal analysis, LPMs are used almost exclusively at the system level. Structural-
mechanical analyses were also prominently addressed, especially for PMSM or SynRM
rotor geometries. Both high-fidelity FEA calculations and analytical models are employed
within this domain. If the aim of the MDDA is to design the rotor geometry in more detail,
the component design model should incorporate structural analyses. NVH analyses and
rotordynamic analyses are clearly underrepresented compared to the other engineering
domains. Nevertheless, this review pointed out that low-fidelity approaches to incorporate
these domains with a small additional computational load do exist. Overall, this review
showed that developers ranked the domains differently in terms of the trade-off between
accuracy and computational cost. The majority of papers utilize FEA for electromagnetic
analyses, whereas analytical and semi-analytical models are predominantly employed
for other domains. Furthermore, this review showed that cost and mass estimation can
play a major role for a wide range of developments; however, the evaluation of these is
often restricted to active parts and thus are limited. For the general MDDA framework to
consider rotordynamics and NVH analyses, geometric models of passive parts showed
to be necessary, which then can also be used to obtain better estimation of cost and mass
of the motor. Another aspect investigated in this review is the manufacturing domain.
Overall, manufacturing-related topics are relatively scarce. In principle, MDDA approaches
have the potential to take manufacturing aspects into account early in the development
process. Robust design approaches are an example for this. However, the majority of
these approaches are confined to investigating the interaction between the electromagnetic
and manufacturing domains. Robust design analysis is also associated with potentially
extensive computational requirements, restricting its application to only a small set of
design variables and making the use of surrogate models necessary [99].
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6.5. Knowledge for MDDAs Is Not Systematically Formalized, Limiting Reusability

As already laid out in Section 2, Reference [14] describes DA as an automation of
sequential steps, while KBE involves a more systematic way of capturing engineering
knowledge to emulate human decision making. Referring to this definition, this review
revealed that MDDAs in the reviewed papers lack systematic ways of knowledge for-
malization. MDDAs mostly contain hard-coded knowledge in the form of geometries,
topologies or procedural rules. Systematic ways of building knowledge bases for the setup
of MDDAs were not found in this review. This limits the transferability and reusability
of the approaches. Knowledge captured in knowledge based systems can be reused with
CAD tools and simulation tools, reducing product development time and cost [115]. This
is crucial, since one of the main factors stopping developers from setting up DAs is the
initial effort required [109]. Systematic approaches to build up the knowledge base for MD-
DAs in the reviewed papers, including knowledge acquisition, knowledge formalization
and knowledge representation [17], do not seem to not have found their way into the set
up of MDDAs for electric motors. However, knowledge-based systems to support more
conventional design approaches of electric motors exist.

Reference [116] presents a concept for building a knowledge-based system for the
design of electric motors along the Verein Deutscher Ingenieure (VDI) VDI-2206 and VDI-
2221 product development cycles.

Reference [117] presents a KBS to support the variant management of electric motors.
By modeling variant and design knowledge, the system supports the designer by proposing
design solutions in a semi-automatic manner.

6.6. Model Fidelity Decisions Depend on the Machine Type, the Application and the Process Stage

Analysis model decisions include the choice of domain models, their fidelity and
couplings between them. This review, specifically Section 5.4, has shown that the appli-
cation that the motor is designed for has a major influence on the MDDAs objectives and
thus the analysis model decision. MDDA processes showed to be relevant at different
stages in the spatial synthesis of a motor design. Therefore, MDDA processes should be
adaptable to different process stages. Comparable multi-fidelity approaches have been
presented in [64,73]. Consequently, in a systematic MDDA setup approach, the analysis
model decision should be based on an analysis of the application and the process stage.
This should be part of the systematic knowledge acquisition for the MDDA setup, which
current approaches in this review are lacking. This review also revealed that analysis model
decisions have an influence on the geometries to be generated. For example, while for
the electromagnetic analysis, a 2D representation may be sufficient, for NVH analyses,
simplified 3D representations might be necessary, as was discussed in Section 5.7.2.

6.7. Passive Parts Are Neglected in Most MDDAs

The review pointed out that a focus is put on the active parts of the electric motors in
most MDDAs. However, this review also identified studies that emphasize the substantial
impact of passive parts on specific optimization objectives, as discussed in Section 5.7.2.
In addition to that, the synthesis of passive parts acts as an enabler for multidomain
analyses, i.e., NVH analyses, rotordynamic and thermal analyses. This includes the shaft
and bearings for rotordynamic analysis [37], as well as the housing for thermal [11] and
NVH [88] analyses. Therefore, a general framework should be capable of considering
these parts in addition to the active geometries. Moreover, this review showed that simple
analytical models for multidomain calculations of these parts are already available. These
suggest that the inclusion of non-active parts does not impose excessive computational
burdens on the MDDA [37,41,51]. Structural analyses showed in this review to be motor-
type specific, e.g., structural calculations for PMSM rotor geometries [22,36]. Furthermore,
this review highlighted that the majority of MDDAs employ 2D geometric representations
for electric motors. However, as already discussed for certain machine types, parts, and
domain analyses, 3D geometries are necessary. Moreover, simplifying geometries for
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analysis purposes can help to reduce computational effort [88]. The MDDA framework
should therefore be able to generate the parts with a high fidelity and derive low-fidelity
geometries for analysis purposes.

7. Methodological Framework

This review points out a lack of guidance to set up MDDA processes within the
development of electric motors in a purposeful manner. The works analyzed partially
show general and systematic approaches and frameworks, but approaches that are only
valid for individual use cases. A more generic framework addressing different fields of
applications and their requirements, the different levels (system level and component level)
as well as the different design stages and tasks of design automation is missing. To support
engineers in setting up MDDA process chains, we propose a methodological framework
that integrates the findings of this review—see Section 6—and addresses all tasks and
decisions needed for MDDA in electric motor development.

The forthcoming section presents the methodological framework’s structure, as it is
visualized in Figure 19. The framework comprises two main components: The system-level
design model (SDM) and a component design model (CDM). In addition, the framework
provides methodological support to prepare and adapt the models needed for the MDDA.
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System design model 
Design
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Figure 19. Methodological framework derived from the findings of this review.

7.1. System Design Model (SDM)

The system model describes a modular MDDA framework for the design of electric
motors on system level. The aim is to give a general model of the motor that can be adapted
to the specific circumstances, mainly depending on the application and the individual
requirements, optimization objectives and design variables derived from the intended
application of the electric motor. Moreover, the design process stage is specified with
regard to the SDM. The SDM should be implemented in a modular way, so that it can be
reused for new application scenarios. It represents a reference model of the electric motor
and can be adapted to specific application scenarios, motor types and design process stages.
This adaptation is enabled by exchanging or rearranging certain elements of the SDM, e.g.,
analysis models. This allows to reuse elements of the model, which is not supported by
most of the existing approaches. As a starting point for the SDM, domain models that work
for most applications have to be set up. These can be drawn from the results of this review,
as they are presented in Section 5.4. The SDM features a central geometry generator, as
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proposed in different MDO approaches from aerospace engineering such as [118]. This
allows to generate geometries and geometry parameters for the different analyses, enabling
a high number of domains to be considered in the MDDA [119]. In the SDM, this also
includes passive geometries of the motor, which current approaches often neglect.

7.1.1. SDM Preperation and Setup

The setup preparation is performed in a preparation step. In this step, knowledge
for the architecture of the MDDA and the creation of corresponding models are gathered.
This includes: system-level requirements based on the application at hand, information
regarding the process stage and the considered motor type. The support for this task
can be synthesized from a variety of existing methods, e.g., generic requirements engi-
neering methods [120] or electric-motor-specific requirements engineering methods [121].
Furthermore, the SDM preparation addresses the formalization not directly related to the
geometry by using, e.g., ontologies. For electric motor design, approaches for knowledge
formalization exist (e.g., [122]); however, they have not been applied in the context of the
setup of MDDA processes.

Based on these preparations, the SDM is set up. This includes the architecture of the
MDDA, domain model and coupling decisions, necessary geometric models, as well as
the derivation of design variables, objectives and constraints. This review revealed that
methods for this task have not found their way in to the setup of MDDA processes for
electric motors. However, in other disciplines, methods exist for this task, especially from
aircraft engineering (e.g., [113,123]). Reference [113] gathers knowledge regarding the
MDO architecture before formalizing it in a semantic web. This is used to derive the MDDA
architecture for the design of an aircraft. Reference [123] presents a tool that allows MDO
architects for aircraft design to quickly arrange MDO workflows and visualize them using
a extended design structure matrix (XDSM). These methods are promising to be adapted
for the setup of architectures for the MDDA in electric motor development in future works.

7.1.2. Model Optimization

After the MDDA process is set up, sensitivity analyses can be employed to find the
design variables with the highest impact on the optimization objectives. Suitable methods
for this task were identified in this review, e.g., in [124], and can be integrated into the
proposed framework. Furthermore, the SDM can be used to build surrogate models. This
is useful to increase computational efficiency before performing the actual optimization or
for integration into higher-level system models. Methods for this were also identified in
this review, which can be reused and adopted for this framework, e.g., [96,100].

7.2. Component Design Model (CDM)

The component design model (CDM) is the second part of the support framework.
The purpose of the CDM is to detail certain components, while integrating the results
into the SDM. This allows a component of interest to be deeply analyzed and designed
early in the process. This way, component-level aspects, like manufacturing constraints,
can be systematically considered, which existing approaches lack. As can be seen from
this review, the decision for detailed modeling of a component can be driven by various
reasons. It ranges from examining the impact of a particular manufacturing method or
material innovation for a component, e.g., SMC rotor cores [97], to detailed examination of
a component for exploiting it for a specific use case, e.g., the detailed examination of rotor
geometries [22,36].

7.2.1. CDM Preperation and Setup

Similar to the preparation step of the SDM, the preparation of the CDM setup includes
a systematic acquisition and formalization of knowledge about system and process context
of the component, manufacturing constraints, necessary evaluations of the component
as well as possible variations of the component, e.g., different rotor topologies. Since the
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goal of the CDM is to automatically design a component, existing approaches from the
literature can be adopted for this. Reference [10] proposes methods for the identification,
evaluation and formalization of design automation tasks. The proposed templates could be
adapted to structure the process of the CDM. Reference [125] presents a part decomposition
approach for the design automation of flow components, systematically considering manu-
facturing constraints in the process. A similar approach could be applied for the systematic
knowledge acquisition and formalization for the CDM preparation.

7.2.2. Architecture Adaptation

For the integration of the CDM, the architecture of the SDM needs to be adapted.
Depending on the component, the CDM can be either integrated or parallelized. Ref-
erence [110] proposed in his multilevel approach an integration procedure by building
surrogate models. Another integration approach can be a parameter split decoupling,
as is demonstrated in [83]. This review showed that existing MDO architectures are not
employed for electric motor design. In other engineering disciplines, different works that
tackle the systematic derivation of MDO architectures which could be adapted for the
framework exist, e.g., [113,123,126].

8. Conclusions

In this paper, a systematic literature review was conducted to examine the current
state of the art and research in the multidisciplinary design automation (MDDA) of electric
motors. A total of 94 papers were selected and analyzed, considering general criteria for
the characterization of design automation tasks as well as criteria that are specific for the
development and optimization of electric motors.

8.1. Answers to Research Questions

This review revealed that existing implementations of MDDA are often focusing on
specific applications or design criteria of electric motors, while more universally approaches
are missing. The answers to the research questions given below summarize the findings of
this review:

• How is the multidomain analysis and automated geometry synthesis structured? The
majority of MDDAs encountered in this review can be classified as MDOs. However,
it is evident that authors do not refer to existing MDO architectures, known from, e.g.,
aircraft engineering. This is reflected in the fact that most authors employ straight-
forward multidisciplinary-feasible architectures (MDF); other MDO architectures are
often not considered. Additionally, numerous analyses are carried out on a sole level
without differentiation between architecture levels, such as the system and component
levels. Overall, this review indicates a lack of systematic and reusable approaches that
can be utilized to establish an MDDA based on the given use case.

• Which parts and geometries of electric motors are automatically created? A focus in
the reviewed papers is put on active parts of electric motors. This review showed
that MDDAs are applied at both the system and component levels. In the former,
the active parts are usually optimized as a whole, while in the latter, a component is
considered in detail, such as the optimization of a rotor geometry. This review also
revealed a lack of consideration of passive parts of the motor, which are often essential
for non-electromagnetic domains, e.g., NVH, structural, thermal or rotordynamics, as
well as higher accuracy mass and cost analyses.

• When in the development process of electric motors are MDDA approaches being
utilized?
This review points out that MDDA approaches are used at both the preliminary and
detailed stages of the design process of electric motors. It has been shown that the
process stage has a significant impact on the choice of domain models in MDDAs.
Approaches that cover multiple stages or can adjust to them were found to be rare in
the reviewed papers.
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• How are domain-specific aspects and constraints formalized? In this review, shape-
based and procedural rules were the only types of knowledge formalization used.
Other expected forms for this category of design automation task, e.g., graph based
formalization, object-oriented formalization and UML based formalization, were not
identified for the setup of MDDAs.

• For which application and type of electric motor is MDDA already employed? The
application of MDDA is mostly limited to high-speed drives and mobile applications,
such as electric vehicle traction motors. This review demonstrated that the application
has a significant impact on MDDA’s architecture by affecting the selection of domain
models and the objectives of the MDDA.

• Which domains are considered and implemented in the MDDA and at which fidelity
level? MDDA process frameworks enabling the developer to analyze all relevant
engineering domains remain the exception in the reviewed papers. Electromagnetic
analyses build the basis of all MDDA process chains in this review, mostly being
employed with high-fidelity models. Thermal analysis is the second-most frequently
considered domain. Independent of the application and process stage, the majority of
MDDAs adopted lumped-parameter models for thermal analyses. Structural analyses
are mostly employed for detailed rotor geometries under high load, e.g., PMSM
or SynRM geometries. NVH and rotordynamic analyses are often neglected in the
reviewed papers.

• Which couplings between engineering domains are considered? Simple, one-directional
couplings are usually implemented between the electromagnetic and other relevant
domains for reasons of computational effort. The implementation of bi-directional
couplings is almost exclusively implemented for the coupling between the electromag-
netic and thermal domains and, even here, was rarely observed. The coupling between
the electromagnetic and mechanical analyses are, if existent, one directional. Thus, the
influence of mechanical loads and deformations on the electromagnetic analysis is
neglected in most works. Couplings between thermal and mechanical analyses are
mostly not considered. Instead, this physical coupling is represented in a simplified
way by means of worst-case scenarios.

These findings are considered by different elements of the proposed framework for
multidisciplinary design automation of electric motors introduced in Section 7.

8.2. Core Contributions

The reported systematic literature review expands the state of the art in the automated
design of electric motors with the following contributions:

1. We present a set of twelve criteria to analyze the current multidisciplinary design
automation approaches for designing electric motors. In addition to general criteria
that characterize aspects such as knowledge representation or reasoning method,
the classification criteria consider the type of electric motors, along with the related
domains and their coupling. In particular, the specific criteria for electric motors can
be used to build up MDDA process chains.

2. We provide a comprehensive overview of existing approaches in the field of multi-
disciplinary design automation for electric motors covering the period from 2007 to
2022. Based on this analysis, we indicate the main trends in the research field and
limitations of existing approaches: consequent analysis and integration of domains,
applicability and transferability of MDDA approaches, systematic incorporation of
established MDO architectures, as well as the consideration of passive components in
the motor.

3. Based on our assessment of the current literature and identified limitations, we suggest
an initial methodological framework for establishing MDDA process chains tailored to
specific applications, with a focus on integrating system and component-level design,
as well as thorough domain consideration and coupling.
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Following the design research methodology (DRM), the next research steps will focus
on elaborating the methodological framework in more detail (prescriptive study), as well
as validating its applicability through the development of electric motors within the stated
framework (descriptive study II).
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Abbreviations
The following abbreviations are used in this manuscript:

AAO All-at-once architecture
ACO Ant colony algorithm
CAD Computer-aided design
CDM Component design model
CDS Computer-based design synthesis
CSSO Concurrent subspace optimization architecture
DA Design automation
DRM Design research methodology
EEC Electric equivalent circuit
EV Electric vehicle
FEA Finite element analysis
GA Genetic algorithm
IDF Individual discipline feasible architecture
IPM Interior permanent magnet motor
KBE Knowledge-based engineering
MDO Multidisciplinary optimization
MDDA Multidisciplinary design automation
LPM Lumped-parameter model
MDF Multidisciplinary feasible
MEC Magnetic equivalent circuit
MOPSO Multi-objective particle swarm optimization
NSGA Non-dominated sorting genetic algorithm
NVH Noise, vibration, harshness
PMSM Permanent magnet synchronous motor
PSD Parameter split decoupling
PSO Particle swarm optimization
RSM Response surface methodology
SDM System design model
SMC Soft magnetic composite
SQP Sequential quadratic programming
SynRM Synchronous reluctance motor
UML Unified modeling language
VDI Verein Deutscher Ingenieure e.V.
WLTP Worldwide harmonized light vehicles test procedure
XDSM Extended design structure matrix

Appendix A. Employed Search String

(“design automation ” OR “automat* design” OR “generat* design” OR “generative
engineering” OR “Knowledge based Engineering” OR “Knowledge based System” OR KBE
OR “design synthesis” OR optimis* OR optimiz*) AND (multi-physics OR “multi physics”
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OR “multi disciplinary” OR multidisciplinary OR multi-disciplinary OR multidomain OR
“multi domain” OR holistic OR multi-domain) AND ((electric OR “permanent magnet” OR
synchronous OR asynchronous OR induction OR reluctance OR AC OR DC) AND (Motor
OR Machine OR Generator)).
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