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Abstract: The study of sedimentary microfacies of horizontal wells is important for improving oil
recovery using horizontal well technology. Vertical well data alone do not provide accurate enough
information to determine the sedimentary microfacies of horizontal wells. Therefore, a comprehen-
sive method combining the data of both horizontal and vertical wells was established to identify
sedimentary microfacies of horizontal wells and applied to a single horizontal well in the Daqing
oilfield in China’s Songliao Basin. The results identified the study area as a delta sedimentary envi-
ronment, mainly subdivided into four microfacies types: a distributary channel, the main overbank
sand, the overbank sand, and an interdistributary bay. The criteria for identifying each sedimentary
microfacies were established. Among them, the criteria for identifying distributary channels include
a natural gamma value continuously less than 90 API; a resistivity value continuously greater than
11 Ω·m; a logging curve, which is typically bell-shaped or box-shaped with very high amplitude and
amplitude difference; a mainly siltstone lithology; and a total hydrocarbon content (Tg) continuously
greater than 3%. The variations in the two types of channel boundaries (narrowing of the channel
boundary and reverse extension of the bifurcated channel boundary) were corrected. The research
results can provide guidance for the efficient development of favorable reservoirs in oilfields using
horizontal well technology.

Keywords: logging facies analysis; sectional description; channel boundary; distributary channel;
sedimentary microfacies

1. Introduction

The horizontal well technique was introduced in China in the 1960s. The first horizon-
tal well was constructed in Daqing Oilfield in 1991, and its output was 4–8 times that of the
surrounding vertical wells. With the continuous improvement in logging technology and
instruments, rapid progress has been made in recent years in horizontal-well-related tech-
nologies and construction [1–3], for instance, in horizontal well logging interpretation [4–7],
drilling technology [8–10], completion technology [11–13], fracturing technology [14,15],
development program optimization [16,17], and geologic steering [18,19]. Although many
scholars have studied sedimentary microfacies, most have focused on vertical wells, and
relatively few have studied sedimentary microfacies by combining horizontal and vertical
wells to establish the pattern for identifying sedimentary microfacies of single horizontal
wells. In recent years, several problems have been identified in the fine characterization of
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oil and gas reservoirs relying on horizontal well information. First, some of the complete
drilling information on horizontal wells did not match the predictions based on the infor-
mation from vertical wells. Second, the methods for reservoir description using horizontal
well information were diversified. Third, horizontal and vertical wells information lacked
convenient and easy methods of mutual verification and correction.

The focus area in this study is a thin sand–mud interbed developed using a combi-
nation of vertical and horizontal wells. The drilling length of the horizontal well is about
730~1400 m, and multiple sandstone sections are drilled, making it difficult to delineate
channel boundaries using horizontal well technology [20,21]. The accurate and fine de-
lineation of the horizontal well directly affects the development of the reservoir and its
subsequent development adjustments. Thus, it is necessary and urgent to make full use of
the horizontal well information to identify and characterize the sedimentary microfacies of
the drilled reservoir.

The target layer of the study area is the subfacies deposition in the delta distributary
plain [22,23], characterized mainly by four types of microfacies: the distributary channel
microfacies, the main overbank sand microfacies, the overbank sand microfacies, and the
interdistributary microfacies. The type classification of microfacies is conducive to charac-
terizing the planar heterogeneity of terrigenous clastic rock reservoirs. It helps to accurately
characterize the lateral changes in a given reservoir’s sand bodies using horizontal well
information, which is convenient for the segmented description of individual facies in
horizontal wells.

Using the above classification and the information from the horizontal and vertical
wells in the study area, the relationship between the sedimentary microfacies of a horizontal
well and the electrical property, lithology, oil content, and total hydrocarbon content (Tg) of
the drilled reservoir is established. Four types of microfacies criteria for horizontal wells are
determined. The intuitive and maneuverable microfacies-determination plate for a single
horizontal well is established, and the reservoir in which the horizontal well is located
is described in detail. Finally, the boundary of the distributary channel’s sand body in
the reservoir is reasonably corrected by combining the vertical and horizontal well data,
and the development range and scale of the channel sand body in the reservoir are more
objectively revealed.

The research results can provide the necessary geological basis for developing and
exploiting other similar reservoirs in this block. It can also provide a necessary refer-
ence for the broad application of horizontal well technology in similar reservoirs in other
blocks. Therefore, it is of great significance to carry out research on the criteria for sed-
imentary microfacies identification and the description of horizontal wells’ segments to
realize an efficient development of horizontal well areas and fine reservoir descriptions of
similar reservoirs.

2. Geological Setting

The study area is located in the eastern transition block of the Daqing oilfield in
Songliao Basin, China (Figure 1). The structure of the study area is relatively gentle, the for-
mation dip angle is 2–3◦, and no faults have developed. Saertu and Putaohua oil reservoirs
are in the area and belong to a set of large fluvial delta deposits in the northern Songliao
Basin, formed in the middle of the early Cretaceous [24,25]. The reservoirs were formed
in a significant inversion during the depression process of Songliao Basin, between the
late stage of the Qingshankou Formation regression cycle and the early stage of the Yaojia
and Nenjiang Formations transgression cycle (Figure 2). The sedimentary environment
is fluvial delta deposit, with a typical subfacies deposit of delta distributary plains, and
the sand body mainly composed of a distributary channel, an abandoned channel, main
overbank sand, overbank sand, an interdistributary bay, and other microfacies [26–28]. The
burial depth of the target oil reservoir is about 990~1230 m and belongs to a clastic reservoir.
The horizontal section of the horizontal well is located in formation SII7+8b, also the target
layer of the study. The lithology is mainly siltstone and muddy siltstone, and the main
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components are quartz and feldspar. The cementation type is mainly contact with a pore
contact type. The cement is mainly argillaceous. The main component of clay minerals in
the cement is kaolinite, followed by illite, and the secondary diagenesis is weak.
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Figure 2. Upper Jurassic–Cenozoic stratigraphy of the Songliao Basin [29].

3. Materials and Methods
3.1. Logging Response Mechanism of Horizontal Wells

Conventional logging instruments are usually employed in the detection of horizontal
well logging in China. The horizontal well trajectory often changes relative to the formation,
resulting in the logging response mechanism of the horizontal well that is different from
that of the vertical well [30,31]. During logging detection in vertical wells, the current
loop is parallel to the stratification plane when using a measuring instrument, and the
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detection result obtained is the horizontal resistivity Rh. In the detection process of inclined
and horizontal wells, the measuring instrument may pass through the stratification plane,
and the obtained result is the combined resistivity of horizontal resistivity Rh and vertical
resistivity Rv. The result is usually affected by the anisotropy of formation resistivity
(Figure 3). Therefore, the logging data for horizontal well cannot be directly used for
logging evaluation, and the anisotropy of the formation resistivity in horizontal wells needs
to be corrected [32–34].
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Figure 3. Schematic diagram of resistivity anisotropy measured in vertical, horizontal, and inclined
wells. (a) Vertical well; (b) horizontal well; (c) inclined well.

The resistivity measured in vertical wells is generally considered to better reflect the
horizontal resistivity of the formation. When the thickness of the formation is less than
the resolution of the logging instrument, the resistivity measured using the instrument is
inconsistent with the actual resistivity, which is usually characterized by introducing the
anisotropy coefficient λ (the arithmetic square root of the ratio of Rv to Rh):

λ =
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where Rv is vertical resistivity, Ω·m; Rh is horizontal resistivity, Ω·m; Rsd is sandstone resis-
tivity, Ω·m; Rsh is mudstone resistivity, Ω·m; hsd is the cumulative thickness of sandstone,
m; and hsh is the cumulative thickness of mudstone, m.

The study area is a thin sand–mudstone interbed. Without considering the influence of
borehole and mud intrusion, the plane model of anisotropic formation in the horizontal well
was simulated using a three-layer horizontal layered medium model. Since the thickness
and permeability of the upper and lower rocks surrounding the sandstone group are
different from those of the sandstone group, they have different irreducible water saturation
in the formation and produce different influences on resistivity. After the thickness and
resistivity of sand and mudstone of the vertical well around the horizontal well in the target
layer were calculated, the thickness of the model was assumed to be unit thickness, and the
proportion of upper and lower surrounding rocks and sandstone in the target layer was
calculated. It is assumed that the thickness ratios of the upper surrounding rock, sandstone,
and lower surrounding rock in the model are α, β, and γ; the sum of α, β, and γ is 1; and
the resistivity is Rα, Rβ, Rγ.

Since the resistivity of each formation is continuously measured using the logging in-
strument when measuring vertical wells, each formation can be treated as one resistance in
the resistance series to obtain the vertical resistivity Rv = αRα + βRβ + γRγ. When detecting
horizontal wells, the resistivity of the target layer is measured using the logging instrument
in parallel, and each formation can be considered as one resistance in the parallel resistance
to obtain the horizontal resistivity Rh =

(
α

Rα
+ β

Rβ
+ γ

Rγ

)
R2

h. The anisotropy coefficient
λ of formation resistivity of the horizontal well can be obtained using Equation (1). The
anisotropy coefficients λ of various types of sand bodies in the target layer are shown in
Table 1.
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Table 1. Values of different types of sedimentary microfacies in horizontal wells.

No. Sedimentary
Microfacies

Cumulative
Thickness of

Sandstone
/m

Cumulative
Thickness of

Mudstone
/m

Average
Resistivity of

Sandstone
/(Ω·m)

Average
Resistivity of

Mudstone
/(Ω·m)

Horizontal
Resistivity Rh

/(Ω·m)

Vertical
Resistivity Rv

/(Ω·m)

Anisotropy
Coefficient

λ

1 Distributary channel 3.60 0.00 16.70 / 16.70 16.70 1.00
2 Main overbank sand 1.20 0.80 11.88 4.25 9.35 6.83 1.13
3 Overbank sand 0.40 1.60 8.63 4.25 4.47 3.90 1.04
4 Interdistributary bay 0.00 2.50 / 4.25 4.25 4.25 1.00

The true resistivity Ra of horizontal formation can be obtained using the anisotropy
coefficient λ of formation resistivity of horizontal well in Equation (2):

Ra =
λRh√

1 + (λ2 − 1)cos2θ
(2)

where Ra is the apparent resistivity, Ω·m; Rh is the horizontal resistivity, Ω·m; λ is the
anisotropy coefficient; and θ is the included angle between the axis of the electrode system
and the direction of vertical layer interface (◦). Since the dip angle of formation is 2~3◦, the
value of θ in this study is 87◦.

3.2. Method Establishing the Pattern for Identifying Sedimentary Microfacies of Single
Horizontal Well

The electrical property, lithology, and total hydrocarbon content (Tg) of the reservoir
showed good consistency. On the basis of the above analysis of the logging response
mechanism of the horizontal well, the electrical connection between the horizontal well
and the vertical well was established. The relationship between sedimentary microfacies
of the horizontal well, natural gamma, and resistivity was quantitatively characterized by
establishing the chart of the relationship between sedimentary microfacies of the horizontal
well and electrical properties. Then, the logging facies mode for the horizontal well was
qualitatively built in the form of logs. Next, the relationship between the microfacies of
the horizontal well and cuttings and gas-logging data was studied, and the pattern for
identifying sedimentary microfacies of the horizontal well was established.

4. Results
4.1. Quantitative Characterization of Electrical Parameters of the Sedimentary Microfacies in the
Horizontal Well

Logging facies analysis is an indispensable means to divide sedimentary microfacies
of reservoirs based mainly on the quantitative characteristics of logging curves and the
qualitative characteristics of the form of logs [35–38].

In our research, we have studied the sedimentary environment and logging response
characteristics, analyzed the sedimentary microfacies and logging patterns in the study area,
determined the relationship between the reservoir’s electrical properties and sedimentary
microfacies, and established the standard microfacies map for identification via logging
information. As a result, the electrical standards of sedimentary microfacies in the study
area were divided using the corresponding logging curves’ characteristics (natural gamma
and deep and shallow lateral resistivity) of vertical wells, and the cross plot of GR-LLD
curves was drawn to define the electrical standards of different sedimentary microfacies in
the study area (Figure 4).

As shown in Figure 4, by establishing the GR-LLD cross plot of vertical wells, the
quantitative electrical criteria of different sedimentary microfacies of vertical wells in the study
area were defined as GR < 90, LLD > 10 for the distributary channel microfacies, 90 < GR < 100,
7 < LLD < 10 for the microfacies of the main overbank sand, 100 < GR < 112, 5 < LLD < 7 for
the overbank sand microfacies, and GR > 112, LLD < 5 for the interdistributary microfacies.



Energies 2023, 16, 7053 7 of 19Energies 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

Figure 4. Relationship between microfacies types of a vertical well and electrical properties. 

As shown in Figure 4, by establishing the GR-LLD cross plot of vertical wells, the 

quantitative electrical criteria of different sedimentary microfacies of vertical wells in the 

study area were defined as GR < 90, LLD > 10 for the distributary channel microfacies, 90 

< GR < 100, 7 < LLD < 10 for the microfacies of the main overbank sand, 100 < GR < 112, 5 

< LLD < 7 for the overbank sand microfacies, and GR > 112, LLD < 5 for the interdistrib-

utary microfacies. 

With the established electrical criteria for vertical wells, the resistivity curve of hor-

izontal wells was corrected using the conversion relation between horizontal resistivity 

and the vertical resistivity in Equation (2), and the chart of the relationship between mi-

crofacies types in the horizontal well and electrical properties was established (Figure 5). 

 

Figure 5. Relationship between microfacies types of horizontal well and electrical properties. 

0

5

10

15

20

25

30

35

40

45

50

507090110130

L
L

D
/ 

Ω
·m
 

GR/API

Distributary channel Main overbank sand Overbank sand Interdistributary bay

112 100 90

10

7

5

0

5

10

15

20

25

30

35

40

45

50

507090110130

L
L

D
/ 

Ω
·m
 

GR/API

Distributary channel Main overbank sand Overbank sand Interdistributary bay

112 100 90

11

8

6

Figure 4. Relationship between microfacies types of a vertical well and electrical properties.

With the established electrical criteria for vertical wells, the resistivity curve of hori-
zontal wells was corrected using the conversion relation between horizontal resistivity and
the vertical resistivity in Equation (2), and the chart of the relationship between microfacies
types in the horizontal well and electrical properties was established (Figure 5).

Energies 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

Figure 4. Relationship between microfacies types of a vertical well and electrical properties. 

As shown in Figure 4, by establishing the GR-LLD cross plot of vertical wells, the 

quantitative electrical criteria of different sedimentary microfacies of vertical wells in the 

study area were defined as GR < 90, LLD > 10 for the distributary channel microfacies, 90 

< GR < 100, 7 < LLD < 10 for the microfacies of the main overbank sand, 100 < GR < 112, 5 

< LLD < 7 for the overbank sand microfacies, and GR > 112, LLD < 5 for the interdistrib-

utary microfacies. 

With the established electrical criteria for vertical wells, the resistivity curve of hor-

izontal wells was corrected using the conversion relation between horizontal resistivity 

and the vertical resistivity in Equation (2), and the chart of the relationship between mi-

crofacies types in the horizontal well and electrical properties was established (Figure 5). 

 

Figure 5. Relationship between microfacies types of horizontal well and electrical properties. 

0

5

10

15

20

25

30

35

40

45

50

507090110130

L
L

D
/ 

Ω
·m
 

GR/API

Distributary channel Main overbank sand Overbank sand Interdistributary bay

112 100 90

10

7

5

0

5

10

15

20

25

30

35

40

45

50

507090110130

L
L

D
/ 

Ω
·m
 

GR/API

Distributary channel Main overbank sand Overbank sand Interdistributary bay

112 100 90

11

8

6

Figure 5. Relationship between microfacies types of horizontal well and electrical properties.

As shown in Figure 5, after the conversion of electrical properties, the electrical criteria
of different sedimentary microfacies of the horizontal well in the study area were defined as
GR < 90, LLD > 11 for the distributary channel microfacies, 90 < GR < 100, 8 < LLD < 11 for
the microfacies of the main overbank sand, 100 < GR < 112, 6 < LLD < 8 for the overbank
sand microfacies, and GR > 112, LLD < 6 for the interdistributary microfacies.
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4.2. Relationship between Sedimentary Microfacies of Horizontal Well and Logging
Curve Characteristics

Facies logging analysis is vital in studying sedimentary facies and sand body devel-
opment [39–41]. The form, amplitude, amplitude difference, top–bottom contact mode,
smoothness, and logging curve combinations are often closely related to the sedimen-
tary environment and geological characteristics of the study area [42–44]. The natural
gamma and deep and shallow lateral resistivity curves in the study area were selected
to comprehensively analyze the characteristics of the logging curves and qualitatively
analyze the relationship between the sedimentary microfacies of the horizontal well and the
well logging data to establish the horizontal well facies log mode. The analysis indicated
the following.

The logging curve of the distributary channel microfacies (Figure 6a) is a typical bell
or box shape with high amplitude and amplitude difference. The curve is smooth and has
a typical positive rhythm, with gradual contact at the top and sudden contact at the bottom.
The bottom has a scoured surface;
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Figure 6. Horizontal well logging microfacies modes of formation SII7+8b. (a) Distributary channel;
(b) interdistributary bay; (c) main overbank sand; (d) overbank sand. GR—natural gamma ray;
DEP—well depth; JS—logging interpretation; LLD—deep lateral resistivity; LLS—shallow lateral
resistivity; Tg—total hydrocarbon in gas logging.

The logging curve of the interdistributary microfacies (Figure 6b) is linear, with very
low amplitude and amplitude difference;

The logging curve of the microfacies of the main overbank sand (Figure 6c) is finger-
like or a finger-like interbed and slightly toothed, with moderate amplitude and amplitude
difference, and it is a thin sand–mudstone interbed;

The logging curve of the overbank sand microfacies (Figure 6d) is finger-like and
severely toothed, with low amplitude and amplitude difference.
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4.3. Relationship between Horizontal Well Sedimentary Microfacies and Logging Parameters
4.3.1. Relationship between Sedimentary Microfacies of Horizontal Well and Cutting
Logging Parameters

Cutting data can be as important as logging data in sedimentary facies research but
with visible and intuitive advantages. By directly observing and describing the color,
lithology, and oil-bearing properties of cuttings, the cuttings’ histogram can be plotted
to analyze the lithology rhythm, sand body genesis, the sedimentary facies sequence
and cycle, the sand body comparison and prediction, the sedimentary facies belt, and the
direction of sediment transport [45–49]. The analysis of cuttings’ logging data shows a good
correspondence between sedimentary microfacies, lithology, and oil-bearing properties
in the study area. Figure 7 shows the ratio of sedimentary microfacies and lithology
distribution in the horizontal well of the study area. According to the figure, the lithology
of the reservoir in the study area is mainly siltstone, muddy siltstone, silty mudstone, and
mudstone. The main composition is quartz, followed by feldspar. The cementation type is
argillaceous cement, which is relatively loose. They are moderately sorted and subangular
after rounding, without reaction after dripping acid.
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Figure 7. Proportion of corresponding lithology of sedimentary microfacies.

The lithology of the distributary channel is mainly siltstone and contains a small
amount of muddy siltstone. It is brownish-gray or grayish-brown. The lithology of the
main overbank sand is mainly siltstone and muddy siltstone and contains a small amount
of silty mudstone. It is gray or brownish-gray. The lithology of the overbank sand is
mainly muddy siltstone and gray and also contains a small amount of silty mudstone and
mudstone. The interdistributary lithology is mainly mudstone of greenish-gray color.

4.3.2. Relationship between Sedimentary Microfacies of Horizontal Well and
Gas-Logging Parameters

Oil and gas bearing is an important reservoir-evaluation index, and gas-logging data
strongly correlate with reservoir oil and gas bearing [50,51]. Gaslogging data on under-
ground oil and gas relate only to the abundance of organic hydrocarbons in the reservoir
and the content percentage of each component in hydrocarbons. The data are slightly
affected by reservoir lithology, formation water properties, and physical properties [52,53].
The total hydrocarbon content (Tg) can indicate fluid changes in the reservoir in real time.
According to the cross plot method of total hydrocarbon and natural gamma, a larger
cross area indicates that the reservoir has good gas-bearing properties and reservoir space,
and the trend of change in he total hydrocarbon value is positively correlated with the
gas-producing capacity. The comprehensive chart of gas-logging curves in the study area
shows good correspondence between the change in total hydrocarbon content and log-
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ging curves (natural gamma and deep and shallow lateral resistivity curves), lithology,
and gas-bearing properties. At the same time, we divided it into four levels according
to gas-bearing properties, reservoir space capacity, gas-logging curve, and sedimentary
microfacies of the reservoir. The total hydrocarbon contents of distributary channel sand,
the main overbank sand, the overbank sand, and the interdistributary bay were greater
than 3%, 1.5~3%, 1~1.5%, and less than 1%, respectively.

The pattern for identifying horizontal well sedimentary microfacies was established
based on the relationship between sedimentary microfacies of a horizontal well and reser-
voir electrical parameters, log forms, lithology, and total hydrocarbon content (Tg), as
shown in Table 2.

Table 2. Pattern for identifying horizontal well sedimentary microfacies.

Characterization Parameters
Microfacies Types Distributary

Channel Main Overbank Sand Overbank Sand Interdistributary
Bay

Electrical
Criteria

GR/API <90 90~100 100~112 >112

LLD/(Ω·m) >11 8~11 6~8 <6

Form of logs

High resistivity,
low natural gamma
ray, high amplitude,

high amplitude
difference, box or
bell shape, visible
positive rhythm,

thick

Slightly toothed,
medium to medium-high

resistivity,
medium to medium-high

natural gamma ray,
medium to medium-high

amplitude,
medium to medium-high

amplitude difference,
thin sand–mudstone

interbedded, with a certain
thickness

Severely toothed, medium
to medium-low resistivity,
medium to medium-low

natural gamma ray,
medium to medium-low

amplitude,
medium to medium-low

amplitude difference, thin

Linear curve,
very low

amplitude

Logging
Criteria

Cuttings
logging

Lithology
Mainly siltstone

mixed with muddy
siltstone

Mainly siltstone, muddy
siltstone

Mainly muddy siltstone
mixed with silty mudstone

and mudstone

Mainly
mudstone mixed

with silty
mudstone

Color Brownish gray or
grayish brown Gray or brownish gray Gray Greenish gray

Gas
logging

Total
hydrocarbon
content (%)

>3 1.5~3 1~1.5 <1

4.4. Determination of Sedimentary Microfacies of a Single Horizontal Well

Reservoir sectional description is the basis for identifying sedimentary facies of the
horizontal well. Using the principle of continuous description of the horizontal well,
1–3 complete sandstone sections were placed into one section, and the electrical parameters,
log form characteristics, lithology, and total hydrocarbon content of horizontal well were
determined in sections using the pattern for identifying sedimentary microfacies shown in
Table 2 (Figure 8).

As shown in Figure 8, 14 sandstone sections are developed in the P4 well in the target
layer, and their thicknesses are 37.8 m, 52.4 m, 33.4 m, 44.7 m, 65.0 m, 24.4 m, 13.5 m, 14.1 m,
115.1 m, 10.9 m, 336 m, 10.2 m, 149.4 m, and 50.3 m. The porosity of most sandstones in the
single layer ranges from 19% to 27%, and the permeability ranges from 103 mD to 392 mD.

At depths of 1399.09–1447.50 m and 1649.80–1722.20 m, the natural gamma curve is
continuously at 90~100 API, and the resistivity curve is continuously at 8~11 Ω·m. The
curves are finger-like and slightly toothed, with a moderate amplitude and amplitude
difference. The lithology is mainly grayish-brown or brownish-gray siltstone, and the
total hydrocarbon content (Tg) is continuously at 1.5~3%. According to the pattern for
identifying sedimentary microfacies of the horizontal well in Table 2, it is determined as
the sedimentary microfacies of the main overbank sand.
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Figure 8. Determination of sedimentary microfacies of horizontal well P4 in formation SII7+8b. SP—
spontaneous potential; GR—natural gamma ray; DEP—well depth, JS—logging interpretation; YX—
effective thickness of sand; SY—water flooded; POR—porosity; K—permeability; CJX—sedimentary
facies; LLD—deep lateral resistivity; LLS—shallow lateral resistivity; Tg—total hydrocarbon in
gas logging.

At the depths of 1447.50~1524.40 m, 1584.70~1649.80 m, and 1861.70~1900.10 m,
the natural gamma curve is continuously greater than 112 API, the resistivity curve is
continuously less than 6 Ω·m. The curve is linear, with a very low amplitude and amplitude
difference. The lithology is mainly greenish-gray mudstone mixed with greenish-gray silty
mudstone, and the total hydrocarbon content (Tg) is continuously less than 1%. According
to the pattern for identifying sedimentary microfacies of the horizontal well in Table 2, it is
determined as the interdistributary sedimentary microfacies.

At the depths of 1524.40~1584.70 m, 1722.20~1861.70 m, and 1900.10~2445.20 m,
the natural gamma curve is continuously less than 90API, and the resistivity curve is
continuously greater than 11 Ω·m. The curve is box-shaped, with very high amplitude and
amplitude difference. The lithology is mainly grayish brown or brownish gray siltstone,
and the total hydrocarbon content (Tg) is continuously greater than 3%. According to
the pattern for identifying sedimentary microfacies of the horizontal well in Table 2, it is
determined as the sedimentary microfacies of the distributary channel.

4.5. Identification of Sedimentary Microfacies of Target Formation

According to the color, grain size, petrology, and sedimentary structure characteristics
of the mudstone in the coring well in the study area, the study area was classified on the
basis of previous research as a delta sedimentary environment and subdivided into five
microfacies types: delta distributary plain subfacies and distributary channel, abandoned
channel, main overbank sand, overbank sand, and interdistributary bay. The sedimentary
microfacies diagram of the target layer without horizontal well control was also plotted
(Figure 9). Sedimentary microfacies were identified using a sectional description of the
horizontal well, and the distributary channel boundary was corrected. The sedimentary
microfacies diagram of the target layer with horizontal well control is shown in Figure 10.
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5. Discussion

Comparing Figures 9 and 10, we can see that the channel boundary has been corrected
using the combination of vertical and horizontal wells. The channel boundary correction
mainly includes the narrowing of the channel boundary and the reverse extension of the
bifurcated channel boundary.

5.1. Narrowing of Channel Boundary

Before horizontal well P4 control is applied, a bifurcated channel in the south of the
study area starts to split from well W2-BW58. The channel width is about 140 m, and the
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channel boundary depends on one-quarter to one-half of the vertical well spacing or the
well location with prominent channel edge features (Figure 11a).
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Figure 11. Comparison diagram of channel boundary changes before and after horizontal well P4
control. (a) Channel boundary in formation SII7+8b before horizontal well P4 control. (b) Channel
boundary in formation SII7+8b after horizontal well P4 control. (c) Logging microfacies column of
horizontal well P4 at 1448~1641 m depth in formation SII7+8b. GR—natural gamma ray; DEP—well
depth; LLD—deep lateral resistivity; LLS—shallow lateral resistivity; Tg—total hydrocarbon in
gas logging.

Horizontal well P4 is located at a depth of 1530–1580 m (Figure 11c), and the well
trajectory is in the target layer of the study area. The natural gamma curve is continuously
less than 90 API, and the resistivity curve is continuously greater than 11 Ω·m. The
logging curve is bell-shaped, with very high amplitude and amplitude differences. The
curve is smooth and has a typical positive rhythm, with gradual contact at the top and
abrupt contact at the bottom, and the bottom has a scoured surface. The lithology is
brownish-gray or grayish-brown siltstone. The main composition is quartz, followed by
feldspar. The cementation type is argillaceous cement, which is relatively loose. They are
moderately sorted and subangular after rounding, without a reaction after dripping acid.
The total hydrocarbon content is continuously greater than 3%. According to the pattern
for identifying sedimentary microfacies of the horizontal well in Table 2, it is classified as
the sedimentary microfacies of distributary channel.

Horizontal well P4 has a distributary channel deposit at a depth of 1530~1580 m, and
the front and back of this depth section are argillaceous deposits or overbank sand deposits,
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so the boundary of the distributary channel can be well constrained. After horizontal
well control, the width of the bifurcated channel becomes 50 m, and the boundary of the
bifurcated channel is almost determined (Figure 11b).

5.2. Reverse Extension of Bifurcated Channel Boundary

Before the application of the horizontal wells’ P3 and P4 control, the large distributary
channel in the south of the study area splits into four branches; the second bifurcated
channel starts to diverge at Well W2-BW89. The bifurcated channel is about 140 m wide
and 550 m long (Figure 12a).
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Figure 12. Comparison of the bifurcated channel’s boundary changes before and after the control
of horizontal wells. (a) Bifurcated channel boundary in formation SII7+8b before the control of
horizontal wells P3 and P4; (b) bifurcated channel boundary in formation SII7+8b after the control of
horizontal wells P3 and P4; (c) logging microfacies column of horizontal well P3 at 1770~1840 m depth
in formation SII7+8b; (d) logging microfacies column of horizontal well P4 at 1870~1905 m depth
in formation SII7+8b. GR—natural gamma ray; DEP—well depth; LLD—deep lateral resistivity;
LLS—shallow lateral resistivity; Tg—total hydrocarbon in gas logging.

The horizontal well P3 is located at a depth of 1770–1840 m, and the well trajectory
is in the target layer. The natural gamma curve is continuously greater than 112 API,
and the resistivity is continuously less than 6 Ω·m. The logging curve is linear, with a
very low amplitude difference. The lithology in this section is greenish-gray mudstone,
which is impure, soft, and easy-to-make slurry, and the total hydrocarbon content is
continuously less than 1% (Figure 12c). According to the pattern for identifying sedimentary
microfacies of the horizontal well in Table 2, it is determined as the interdistributary bay.
Horizontal well P4 is located at a depth of 1870–1905 m, and the well trajectory is in
the target layer. The natural gamma curve is continuously greater than 112 API, the
resistivity is continuously less than 6 Ω·m, and the logging curve is linear with a very low
amplitude difference. The lithology in this section is mainly greenish-gray mudstone mixed
with silty mudstone. It is an impure, slightly sandy, easy-to-make slurry, and the total
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hydrocarbon content is continuously less than 1% (Figure 12d). According to the pattern
for identifying sedimentary microfacies of the horizontal well in Table 2, it is determined as
interdistributary microfacies.

Since there is a continuous argillaceous deposit in both horizontal wells P3 and P4,
there are good channel sands around the argillaceous deposit. It was considered that the
bifurcated channel boundary should be extended reversely to well W1-SB289, and it was
determined that wells W20-SB259 and W20-SB260 are disconnected using the inter-well-
tracer technique and the comprehensive analysis of fluid properties. According to the
above discussion, the sedimentary microfacies diagram of the reverse extension of the
bifurcated channel boundary under horizontal wells P3 and P4 control was corrected. After
correction, the bifurcated channel divides into two medium distributary channels with
widths of about 300 m and 405 m at well W1-SB289, and the length of the channel extends
southward by 1050 m (Figure 12b).

5.3. Limitations in This Study

A few limitations in this study are addressed below:

(1) This technique applies to large shallow-lake basins with fluvial delta sedimentary envi-
ronments and is well-suited for promotion and reference work in the establishment of
the criteria for identifying sedimentary microfacies of single horizontal wells and the
description of sedimentary microfacies in continuous sections of distributary channels.

(2) There could be inherent limitations in applying the variations of the criteria for
identifying sedimentary microfacies to the correction of the two types of channel
boundaries (narrowing of channel boundaries and reverse extension of bifurcated
channel boundaries). There may also be other variations in channel boundaries,
including the outward expansion of distributary channel boundaries, the change
in bifurcated channel and branch channel boundaries, the merging and splitting of
channel boundaries, etc.

5.4. The Aspects of the Microfacies Study of Horizontal Wells Requiring Attention and
In-Depth Analysis

In the comparative studies at home and abroad, mainly foreign horizontal well tech-
nology is used in the development of marine oil and gas and unconventional oil and
gas. The reservoir sedimentary environment is relatively stable, and the technology for
horizontal well development is relatively mature [54–58]. Compared with other countries,
China’s reservoir of terrigenous clastic rock sand bodies has stronger vertical and hori-
zontal heterogeneity; thus, studying the fine sedimentary microfacies of horizontal wells
is recommended [59–61]. The segmented microfacies description of a single horizontal
well combined with vertical well data is essential for objectively characterizing different
reservoir sand bodies.

However, in specific research and practical applications, three aspects of the microfa-
cies study of horizontal wells still require attention and in-depth analysis:

(1) Identifying a single horizontal well is a “multi-solution”. In applying the criteria for
well identification (its identification plate), it is necessary to include the data on the
area around the location of the vertical well to obtain fine three-dimensional seismic
information to conduct a comprehensive analysis before determining the microfacies
of a single horizontal well.

(2) The microfacies information of a single horizontal well contains “false information”.
The horizontal well can sometimes swing into the adjacent layers above and below
the target layer. Therefore, the horizontal well information is not entirely that of
the target layer but contains the information on the upper and lower surrounding
rocks. Identifying the real target layer information on horizontal wells requires further,
in-depth research and analysis.

(3) The technology for the description of horizontal well sections should be a “three-
dimensional visualization”. Because the terrigenous clastic reservoir sand bodies are
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mostly fluvial delta deposits, the reservoir sand bodies have the characteristics of
thin and quick pinch-out in the vertical direction, frequent lateral swing, and a high
proportion of suspended components, resulting in thin reservoir sand bodies, and the
overall performance of sand–mud interbeds. The segmented microfacies description
of a single horizontal well should be best carried out in the three-dimensional geologi-
cal model of the reservoir. The current two-dimensional research needs to transition
to three-dimensional research.

6. Conclusions

In this study, the combined horizontal and vertical well data, such as electrical pa-
rameters, logarithmic forms, cuttings logging, gas logging, the relationship between the
sedimentary microfacies of horizontal wells and reservoir electrical parameters, lithol-
ogy, and total hydrocarbon content (Tg), were clarified with a comprehensive method of
qualitative analysis and quantitative characterization. Using this method, the pattern for
identifying sedimentary microfacies in horizontal wells was established and applied to
determine the sedimentary microfacies type of a single horizontal well. Then, a sectional
description was developed for a single horizontal well, and the channel boundary was
delineated and corrected. The following six conclusions were drawn:

(1) The anisotropy coefficient λ of formation resistivity in different sedimentary microfa-
cies of a horizontal well in the target layer was calculated. The λ values of distributary
channel microfacies, main overbank sand microfacies, overbank sand microfacies,
and interdistributary microfacies were 1.0, 1.13, 1.04, and 1.0, respectively. The true
resistivity of horizontal formation was obtained using the anisotropy coefficient λ of
the horizontal well formation resistivity to complete the correction of the resistivity
curve of the horizontal well.

(2) If the natural gamma value is continuously less than 90 API, the resistivity value is
continuously greater than 11 Ω·m, the logging curve is a typical a bell shape or a box
shape with very high amplitude and amplitude difference, the lithology is mainly
siltstone, and the total hydrocarbon content (Tg) is continuously greater than 3%, it is
determined as distributary channel.

(3) If the natural gamma value is continuously between 90 and 100 API, the resistivity
value is continuously between 8 and 11 Ω·m, the logging curve is finger-like or
a finger-like interbed, slightly toothed, with moderate amplitude and amplitude
difference, the lithology is mainly siltstone or argillaceous siltstone, and the total
hydrocarbon content (Tg) continuously ranges from 1.5 to 3%, it is determined as
mainly overbank sand.

(4) If the natural gamma value is continuously between 100 and 112 API, the resistivity
value is continuously between 6 and 8 Ω·m, the logging curve is finger-like and
severely toothed with very low amplitude and amplitude difference, the lithology is
mainly argillaceous siltstone, and the total hydrocarbon content (Tg) continuously
ranges from 1 to 1.5%, it is determined as overbank sand.

(5) If the natural gamma value is continuously greater than 112 API, the resistivity
value is continuously less than 6 Ω·m, the logging curve is linear with very low
amplitude and amplitude difference, the lithology is mainly mudstone, and the
total hydrocarbon content (Tg) is continuously less than 1%, it is determined as
interdistributary microfacies.

(6) The sedimentary microfacies of a single horizontal well were identified using a com-
prehensive pattern for identifying sedimentary microfacies of a single horizontal
well. By applying the sedimentary microfacies identification results from a single
horizontal well to the plane sedimentary facies belt map, the variation in the two
types of channel boundaries (narrowing of channel boundary and reverse extension
of bifurcated channel boundary) was corrected.
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