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Abstract: With the increasing integration of energy sources and the growing complexity of distri-
bution networks, it is crucial to monitor and early detection of topological changes to ensure grid
stability and resilience. Current methods, for optimizing the placement of micro Phasor Measurement
Units (µPMUs) focus on achieving observability and efficient monitoring. These algorithms aim to
minimize the number of µPMUs needed while maintaining system observability or meeting criteria
for observability. However, they may not consider all real-world constraints and uncertainties. In
this study, we introduce a strategy for placing µPMUs with the objective of enhancing observability
and monitoring capabilities. Our proposed algorithm employs a technique that makes optimal
decisions at each step to approximate the global optimum. To determine the locations for µPMUs
our algorithm takes into account parameters such as network structure, key nodes, and system
stability. One distinguishing feature is its adaptability to distribution networks, including changes, in
topology or potential device failures. Unlike classical approaches, our algorithm can continuously
provide optimal placement solutions even in evolving network conditions. We have demonstrated
that our suggested method achieves better results in terms of observability value and the required
number of µPMUs compared to the state-of-the-art. By strategically placing µPMUs, operators can
improve system observability, quickly detect and locate faults, and make informed decisions for
effective network operations. This research helps improve optimal placement strategies for µPMUs
by providing practical and effective solutions to improve distribution network reliability, resilience,
and performance in the face of changing dynamics.

Keywords: micro phasor measurement unit; distribution networks; optimal placement; dynamic
network; device failures

1. Introduction

The integration of Phasor Measurement Units (PMUs) in transmission networks brings
significant advantages to system control and operation [1]. PMUs provide synchronized
measurements of voltage and current phasors across the network, offering a real-time view
of the system’s dynamic behavior. This synchronized data enables precise monitoring and
control of the transmission network, facilitating efficient grid management and decision-
making [2,3]. By integrating PMUs, operators gain a comprehensive understanding of
system conditions, including voltage stability, phase angles, and power flows. This infor-
mation empowers operators to detect and respond swiftly to any abnormal conditions or
disturbances, such as voltage fluctuations, oscillations, or line overloads [4,5]. With PMUs
providing high-resolution data in real time, operators can accurately assess system stability,
implement corrective actions promptly, and maintain the reliability and security of the
transmission network [6]. Additionally, PMUs enable advanced applications like wide-area
monitoring and control systems, enabling system-wide coordination and optimization [7].
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Overall, the integration of PMUs in transmission networks offers enhanced control capabil-
ities, improved situational awareness, and better grid reliability, leading to efficient and
secure operation of the transmission infrastructure [8,9].

Distribution networks are highly complex and dynamic systems due to the increas-
ing integration of renewable energy sources, the adoption of electric vehicles, and the
growing demand for electricity. The presence of distributed energy resources, varying
loads, and intermittent renewable generation introduce fluctuations and uncertainties in
the system. As a result, accurate monitoring becomes essential to ensure the stability,
reliability, and resilience of the distribution network [10,11]. DNs face several challenges
and exhibit distinct characteristics compared to transmission networks. DNs typically
have a significantly larger number of nodes compared to transmission networks. This is
due to the extensive distribution infrastructure required to supply electricity to residential,
commercial, and industrial consumers. The large number of nodes poses challenges in
terms of network management, control, and coordination [12].

Monitoring the distribution network provides real-time visibility into the system’s
operational status, allowing operators to detect and address issues promptly. By con-
tinuously measuring and analyzing parameters such as voltage, current, power factor,
and frequency, operators can identify potential faults, voltage violations, and abnormal
operating conditions. Moreover, monitoring enables better load management, optimal
utilization of resources, and improved energy efficiency. It allows operators to balance
supply and demand, adjust power flows, and optimize energy distribution across the
network [13]. This, in turn, reduces losses, enhances power quality, and mitigates the
risk of power outages. With the distribution network being a critical link between the
transmission grid and end-users, effective monitoring is essential for maintaining a stable
and resilient power supply. µPMUs play a crucial role in this context by providing syn-
chronized, high-resolution data that enables advanced monitoring, grid control, and fault
detection [14]. The need for online or real-time operation depends on the specific goals
of the µPMU placement, the level of automation and adaptability required, and the oper-
ational characteristics of the power grid being monitored. In many cases, a combination
of offline planning and periodic online adaptation suffices to maintain an effective and
efficient placement of µPMUs while ensuring observability and reliability in the power grid.
The choice between offline and online placement depends on the specific requirements and
characteristics of the grid being monitored.

The PMUs, located within the Distribution Networks (DNs) highlight their smaller
scale and localized monitoring capabilities. They are valuable assets in distribution net-
works [15]. The deployment of µPMUs brings significant advantages to grid monitoring and
control at the distribution level. µPMUs offer real-time and synchronized measurements of
voltage and current phasors, enabling operators to gain a comprehensive understanding
of the network’s dynamic behavior [16]. By incorporating PMUs, operators can precisely
monitor key parameters such as voltage magnitude, phase angles, frequency, and power
quality at different locations within the distribution grid. This real-time visibility allows
for rapid detection of voltage fluctuations, power imbalances, harmonics, and other dis-
turbances that may impact the grid’s performance and reliability. With µPMUs providing
high-resolution data, operators can quickly assess the network’s condition, identify po-
tential issues, and implement appropriate corrective measures [17]. µPMUs also facilitate
fault detection, localization, and isolation, contributing to faster restoration times and
improved overall grid resilience. Furthermore, the integration of PMUs supports advanced
grid control applications, such as volt/VAR optimization, power flow analysis, and de-
mand response management, enabling more efficient utilization of resources and enhanced
system operation. Overall, µPMUs in distribution networks offer improved monitoring,
control, and optimization capabilities, leading to a more reliable and resilient distribution
grid [9,18].

Given a large number of nodes in distribution networks, it becomes essential to deter-
mine an optimal placement strategy for a limited number of µPMUs. The objective is to
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strategically position the PMUs in a way that ensures effective monitoring and observability
of the network while minimizing the number of PMUs required. The optimal placement
of µPMUs helps overcome the challenge of limited resources by maximizing the coverage
and observability of the network with a minimal number of PMUs. This approach enables
operators to monitor key points in the distribution network, detect abnormalities, and make
informed decisions for efficient system operation, fault detection, and quick restoration.
Additionally, the optimal placement of µPMUs facilitates cost-effective deployment by
minimizing the investment required for µPMUs and their associated communication in-
frastructure. It ensures that the limited number of µPMUs are strategically positioned to
provide the maximum benefit in terms of network monitoring and control.

Existing algorithms for the optimal placement of µPMUs in distribution networks have
made significant contributions to enhancing system observability and fault detection [19].
These algorithms utilize various optimization techniques, such as heuristic algorithms [20],
mathematical programming [21], and machine learning to identify the optimal locations for
µPMU placement. They consider factors like load characteristics, fault history, and system
observability requirements. However, these algorithms have certain limitations. They often
rely on simplified network models, which may not accurately represent the complexity
of real-world distribution networks. Additionally, some algorithms focus solely on min-
imizing the number of PMUs without considering other important factors, such as cost,
communication infrastructure, and cybersecurity. Furthermore, the existing algorithms
may not adequately account for dynamic changes in the network, such as variations in
load patterns, distributed generation integration, or device failure. Thus, there is a need
for advanced algorithms that can address these limitations and provide more robust and
adaptive solutions for the optimal placement of µPMUs in distribution networks [18].

In this context, our algorithm for the optimal placement of µPMUs in distribution
networks will take into account topology changes in the network and the possibility of
device failure. Unlike existing algorithms, which may overlook these factors, our algorithm
aims to provide a more comprehensive and adaptive solution. By considering both dy-
namic changes and device failure, our algorithm will provide a more robust and adaptive
solution for the optimal placement of µPMUs in distribution networks. This will result in
enhanced monitoring, control, and reliability of the network, enabling efficient operation
and effective response to system changes and potential failures. Distribution systems in
power grids often contain various switches that can change the system’s structure dynami-
cally. These switches are used for the purpose of reconfiguring the distribution network,
managing faults, optimizing performance, and ensuring the reliability of electricity supply
to end-users. When a switch is open, it may isolate certain parts of the distribution network,
creating new branches or altering the topology. This dynamic nature of the network due
to switch status changes can significantly impact the observability of the system. Our
algorithm takes these topology changes into account and performs a thorough evaluation
to determine the most optimal placement of µPMUs considering the network’s current
configuration. The combined consideration of open switches and device failure allows
our algorithm to dynamically adapt to changing network conditions and uncertainties. It
continuously evaluates and adjusts the placement of devices, ensuring optimal observabil-
ity and monitoring capabilities even in the presence of topology changes and potential
device failures. By addressing both open switches and device failure, our algorithm pro-
vides a more comprehensive and robust approach to optimize the placement of devices
in distribution networks. This feature distinguishes our method from conventional ap-
proaches, making it well-suited for real-world applications where network dynamics and
uncertainties are critical factors in the decision-making process.

Our optimal placement algorithm for µPMUs stands out for its adaptive approach,
adjusting PMU locations to accommodate changing network topologies caused by device
failures and open switches. This algorithm prioritizes grid observability under diverse
conditions. Its robustness is evident in its consideration of worst-case scenarios.
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Addressing communication security issues and noise interference is essential for
maintaining the reliability and trustworthiness of µPMU measurements and, by extension,
the effectiveness of the power grid monitoring system [22,23]. Robust security measures
and data quality assurance techniques are critical components of a resilient and accurate
monitoring infrastructure [24,25]. The algorithm identifies candidate locations for µPMUs
based on network observability objectives. Thus, these locations provide good network
coverage while minimizing the impact of noise interference. At each step of the greedy
algorithm, the location of the next µPMU is determined based on the scoring function.
The algorithm prioritizes sites with the highest scores, indicating better data quality and
less noise interference. Additionally, the algorithm adds redundancy to the placement by
placing multiple µPMUs in critical areas, such that the µPMUs are strategically distributed
to maximize data quality and redundancy.

This paper presents the results and analysis of the proposed algorithm using the IEEE
7-bus, 9-bus, 13-bus, 34-bus, 37-bus, and 123-bus standard systems. To account for topology
changes, our algorithm takes into consideration the presence of open switches in the
network. By considering the state of these switches, we ensure an accurate representation
of the network’s dynamic topology. A comparison of the proposed method with previous
methods shows that our approach allows us to obtain a higher System Observed Repeat
Index (SORI), which indicates the effectiveness of the µPMUs in providing complete
observability of the power system, with a minimal number of µPMUs.

The rest of this article is organized as follows. Following the Section 1, in Section 2,
we define and explain the micro phasor measurement unit. Then, the Section 3 introduces
the state of the art of optimal placement. Moving forward, in Section 4, parameters and
challenges of placement algorithms are presented. After that, in the Sections 5 and 6 the
proposed algorithm and results are described. Important observations from this work are
summarized in the Section 7.

2. Micro Phasor Measurement Unit in Distribution Networks

It should be emphasized that the integration of renewable energy sources can pose
challenges to power quality. However, these challenges can be successfully addressed
through careful planning and implementation of advanced control strategies. By utilizing
advanced technologies, energy storage systems, and smart grid solutions, the adverse
effects of renewable energy on power quality can be mitigated, resulting in a dependable
and consistent power supply [26,27].

To ensure the reliable and efficient delivery of electricity to end consumers there are
some requirements that need to be achieved: Refs. [28–31].

• Proper Voltage: Ensuring stable voltage levels at consumers’ terminals is essential for
the proper functioning of electrical devices and equipment. Voltage variations should
remain within acceptable limits, typically ±6% of the rated voltage. This minimizes
the risk of equipment damage and malfunction due to voltage fluctuations.

• Availability of Power on Demand: The distribution network should be designed to
meet consumers’ varying power demands promptly. Whether consumers need a small
amount of power or a larger supply, the network should be capable of delivering it
without interruption.

• Reliability: The dependence of various industries and services on electrical power
underscores the importance of a reliable distribution network. Interruptions in power
supply can lead to production halts, loss of revenue, and inconvenience to con-
sumers. A reliable network is crucial to prevent such disruptions and maintain
consistent service.

In this context comes the µPMU is a device used in power systems to measure electrical
quantities with high accuracy based on time synchronization. It provides real-time data on
voltage, current, phase angles, and frequency, enabling detailed monitoring and analysis of
power system behavior (see Figure 1). It has an accuracy angle of 0.01◦, total vector error
allowance of ±0.05% (precision), angle resolution of 0.002◦, and magnitude resolution of
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±0.0002%. Its sampling rate is adjustable in the range (of 10–120) samples per second for a
60 Hz system [32,33].

Figure 1. Functional block diagram of PMU.

µPMUs are used for multiple control and diagnostic applications. Data from multiple
µPMUs can help us observe, analyze, and understand events. If the data is of sufficient
quality, the operator can locate the source of the events [26,34].

3. State of the Art of Optimal Placement

Given the large number of nodes in power networks, it becomes essential to determine
an optimal placement strategy for a limited number of PMUs [35]. The objective is to
strategically position the PMUs in a way that ensures effective monitoring and observability
of the network while minimizing the number of PMUs required [34].

Placement algorithms can be classified into three groups, namely: the heuristic method,
the meta-heuristic method, and the deterministic method [36].

The heuristic method, commonly known as an approximation algorithm, is a type
of mathematical optimization technique for locating the optimal solution using optimal
computing time and memory space. Heuristic methods are often used to speed up the
process of finding a reasonable solution when an exhaustive search is impractical [37].
Examples of heuristic methods include the depth-first algorithm, the domination set,
etc. [32,36].

The meta-heuristic Method, which is an improvement of the Heuristic Method, in-
volves smart search processes that can treat discrete variables and non-continuous cost
functions. Fundamentally, it combines a randomized algorithm and a local optimization al-
gorithm to solve the optimization problem. Two types of Meta-Heuristic Methods that were
applied to the OPP problem were the Genetic Algorithm and Particle Swarm Optimisation
Method. A deterministic algorithm can be defined as an algorithm capable of predicting
behavior. In other words, given a particular input parameter, the system will generate
the predicted output. Deterministic algorithms are by far the most studied and familiar
type of algorithm, and they can be effectively measured on the TOMLAB Optimization
Toolbox [38].

Recursive Quadratic Programming (RQP) is used for optimizing PMU placement in
power systems. It allows for a systematic and efficient approach to finding the optimal loca-
tions for PMUs, taking into account both observability and controllability objectives while
adhering to various constraints. This approach helps enhance the monitoring and control
capabilities of the power grid, ultimately contributing to its stability and reliability [1].

The Generalized Pattern Search (GPS) algorithm is a numerical optimization method
used to find the minimum (or maximum) of a scalar objective function in a multidimen-
sional space. Adapting GPS for PMU placement allows you to systematically explore the
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space of potential PMU locations, optimize observability and controllability objectives,
and consider cost constraints. It provides a structured approach to solving the complex opti-
mization problem associated with PMU placement in power systems, ultimately enhancing
the grid’s monitoring and control capabilities [39].

PMU placement algorithms are essential for the efficient and cost-effective deploy-
ment of PMUs in power systems. They enable operators to ensure complete observability,
enhance system monitoring, detect and locate faults accurately, and support various appli-
cations such as state estimation, stability analysis, and control. The choice of the algorithm
depends on factors such as system size, complexity, available data, computational resources,
and specific requirements of the power system operator [40,41].

Our algorithm for optimal placement of µPMUs based on topology change can be
related to existing placement algorithms by considering the dynamic nature of the network.
It can incorporate the concept of topology change, which involves adjusting the placement
of µPMUs in response to changes in the network configuration. By considering dynamic
network conditions and topology changes, our algorithm can provide an innovative and
adaptive approach to PMU placement, ensuring effective monitoring and control in a
changing power system environment.

4. Placement Algorithms: Parameters and Challenges

For real-time measurements using measuring devices, it is unfeasible to place the
devices on every node of a network for the following reasons:

• High cost of measuring devices.
• High implementation costs of the communication infrastructure.

Otherwise, it is possible to calculate the voltage phasors of the nodes without mea-
suring devices installed. It is sufficient that one of its surrounding nodes contains a device
installed. This way, if the line impedance is known, it is possible to calculate the voltages
of these nodes using Ohm’s law. This theory is demonstrated with a simple network of
4 nodes (see Figure 2).

Figure 2. Placement in a 4-Node Network.

A µPMU is only placed on node 2, which is surrounded by nodes 1, 3, and 4,
and presents the impedance values of the incident lines at node 2. The µPMU will measure
the voltage value V2 of node 2 and the current values of the incident lines. Using (1)–(3),
the voltage values, and of nodes 1, 2, and 3 could be calculated.

V3 −V2 = Z23 ∗ I23 (1)

V4 −V2 = Z24 ∗ I24 (2)

V1 −V2 = Z21 ∗ I21 (3)
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1. Key Parameters

• Observability
The optimization method attempts to find out the places with the highest ob-
servation. Observability is defined as the ability to uniquely estimate the states
of a bus in a power system using certain measurements. Observability analysis
is necessary for deciding on the location of the device in order to maintain the
solvability of the observation equations under different conditions. An observ-
ability constraint vector is used to store information about the observability of
the network. Observability can be classified into Numerical Observability and
Topological Observability. Observability is evaluated by the Bus Observability
Index BOI (βi) which presents the number of devices that are able to observe a
given bus. A bus is said to be observable if its voltage and branch currents are
measurable. Consequently, the maximum bus observability index is limited to
the maximum connectivity (mci) of a bus plus one as presented in (4).

βi = mci + 1 (4)

where mc is the maximum connectivity and i is the number of the bus.
• Number of placed devices

One of the criteria that must be considered in the placement problem is the
number of placed devices. The goal of a placement problem is to accomplish this
task with as few devices as possible [42].

• System Observability Redundancy Index (SORI)
SORI is the total count of observability of a bus by different measuring devices
either directly or indirectly. It refers to the number of buses, which achieve
observability. Increasing the SORI value helps reduce the uncertainty in mea-
surements. When multiple measurements corroborate each other, it enhances
the confidence in the accuracy and reliability of the data, contributing to better
observability [42]. The System Observability Redundancy Index βi for all the
busses of a system is presented in (5).

γ = ∑ βi (5)

When the SORI value is higher, it indicates that more of the system will remain
visible and more reliable in the event of a device failure [15].

2. Distribution Network Challenges

Many of the placement algorithms have been previously used for transmission sys-
tems. Because of the clear difference between transmission and distribution systems
in terms of topology and the number of nodes, these algorithms would not lead to
optimal results in distribution systems because they did not take into consideration
the specifications of distribution networks. In addition, the distribution network is
a dynamic system due to the existence of switches in it, which makes the network
topology changeable. The placement algorithms of the distribution network should
be improved for the following three reasons:

• Computing time: Distribution systems contain more nodes than transmission
systems, resulting in higher compute time in the network.

• Topology: A radial network is a common configuration in electrical power
distribution.

• Switches: Distribution systems contain switches that make the system structure
subject to change.

Placement algorithms should be optimized by making them consider these character-
istics of the distribution system, in order to solve its complexities [38].
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5. Proposed Solution

A group of approaches has considered the placement problem as a special case of
the maximum coverage problem. In these approaches, the problem is formulated so that
a greedy algorithm can produce near-optimal results with approximation boundaries. A
greedy algorithm is an algorithmic paradigm that follows the problem-solving heuristic of
making the locally optimal choice at each stage with the hope of finding a global optimum.
In fact, a greedy algorithm always makes the choice that seems to be the best only at a
particular moment. It is a simple, intuitive algorithm that is used in optimization problems.
In many problems, a greedy strategy does not usually lead to an optimal solution. The key
is to know which problems will work with this approach and which will not. Generally,
the problems that could be solved by the greedy technique must exhibit two properties,
which are the greedy choice property and optimal substructure. Greedy algorithms are
used to solve optimization problems, where local optimal decisions may be used to build a
globally optimal solution in a reasonable amount of time [42].

The state of the art in the placement of µPMUs has witnessed significant progress,
with advanced methodologies and optimization techniques emerging to enhance the per-
formance of these methods. Traditional placement methods focused on placing µPMUs
at strategic locations, such as key substations or transmission lines, to achieve system
observability. However, recent research has embraced more sophisticated approaches,
leveraging advanced algorithms and computational techniques to optimize PMU place-
ment for enhanced observability and analysis of the power grid. These methods take into
account factors such as grid complexity, load variations, and critical system components to
determine the optimal locations for µPMUs. They employ optimization algorithms, includ-
ing convex optimization, genetic algorithms, and particle swarm optimization, to solve the
placement problem and find the optimal set of PMU locations. The performance of these
state-of-the-art placement methods has demonstrated substantial improvements in system
observability, accuracy of state estimation, fault detection, and overall grid resilience [43].
These advancements contribute to a more efficient and effective operation of power systems,
enabling enhanced situational awareness, faster fault identification, and improved response
to grid events. The new contributions in the placement of µPMUs highlight the potential to
optimize the grid monitoring infrastructure and support the transition towards smarter,
more reliable power systems.

The key novelty of our method lies in its unique ability to account for both topology
changes and device failures in the optimal placement of µPMUs in distribution networks.
Unlike traditional approaches that often overlook these dynamic factors, our method offers
a comprehensive solution that considers the impact of topology changes and potential
device failures on the observability and stability of the grid.

Our algorithm for PMU placement is based on a greedy approach. By utilizing a
greedy algorithm for PMU placement, our approach can prioritize the immediate benefits
and optimize the placement of PMUs while considering specific criteria or constraints. The
proposed optimal placement solution for µPMUs introduces a novel approach that brings
new advancements to the field. This solution leverages innovative algorithms, advanced
data analytics, and sophisticated optimization techniques to address the challenges associ-
ated with PMU placement. What sets this solution apart is its ability to consider multiple
factors simultaneously, including system observability, measurement redundancy, cost
considerations, and operational constraints, to determine the optimal locations for PMU
deployment. By incorporating these factors into the optimization process, the proposed so-
lution aims to achieve enhanced grid observability, more accurate state estimation, efficient
fault detection and localization, and improved grid operation. The introduction of this new
approach represents a significant contribution to the field of optimal PMU placement, as it
offers a comprehensive and effective methodology for the strategic positioning of PMUs
within the power grid.
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Even though greedy algorithm may find local solutions rather than global ones, there
are several merits and considerations specific to the context of µPMU placement in a
power system:

• Greedy algorithms are relatively simple to implement and computationally efficient.
They often have low time complexity, which is essential for solving optimization
problems in large-scale power systems with real-time requirements.

• While greedy algorithms do not guarantee finding the global optimum, they can often
find solutions that are near-optimal or good enough for practical purposes. In many
cases, near-optimal solutions are sufficient to improve the observability and control of
the power system.

• The placement of µPMUs can be a combinatorial optimization problem, which can be
computationally intensive. Greedy algorithms can reduce the combinatorial complex-
ity by making incremental decisions based on a local criterion. This can significantly
speed up the solution process compared to exhaustive search methods.

• Greedy algorithms can be adapted to incorporate different criteria and constraints,
allowing for flexibility in addressing specific power system objectives. For example,
we can modify the greedy algorithm to consider cost constraints or communication
network limitations.

• The nature of µPMU placement problems may make greedy strategies particularly
effective. Depending on the specific problem formulation and objectives, a greedy
algorithm may produce solutions that meet the power system’s observability and
control requirements.

1. Assumptions
The proposed algorithm was developed based on several assumptions concerning
both the distribution network and the µPhasor Measurement Units. These assump-
tions serve as foundational principles for the algorithm’s design:

• The distribution networks under consideration are balanced and are modeled as
single-phase power systems.

• Each µPMU is equipped with multiple channels, enabling them to be connected
to all the incident lines. This configuration enables a µPMU to measure the
voltage phasor of its own node and the current phasors of the lines connected
to it.

• The impedances of the lines in the distribution network are known. This knowl-
edge of line impedances facilitates the calculation of voltage values for nodes
that are not equipped with µPMUs, ensuring a comprehensive understanding of
the entire network.

Modeling distribution networks as balanced and single-phase power systems
is indeed more suitable for certain types of applications, particularly residential
areas where loads are predominantly single-phase and relatively small. It may be
particularly well-suited for apartment buildings or blocks of flats where individual
apartments are typically supplied with single-phase electricity. µPMUs can have
applications in various settings, including apartment buildings or blocks of flats,
although their deployment in such environments may differ from larger-scale power
systems. µPMUs can monitor the voltage quality within apartment buildings. They
can detect issues such as voltage sags, swells, or harmonics, which can affect the
operation of sensitive electronic equipment in residential units. In addition, in areas
with distributed energy resources like rooftop solar panels, µPMUs can help assess
the stability of the local grid and ensure that energy generation and consumption
are balanced.

These assumptions provide a structured framework upon which the proposed
algorithm is built, allowing it to effectively optimize the placement of µPMUs while
accounting for the distribution network’s characteristics and the capabilities of the
measurement units themselves.
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2. Objectives
The developed algorithm aims to achieve the following objectives:

• Achieving full network observability: full network observability entails the
installation of µPMUs strategically throughout the distribution network. This
strategic placement ensures the measurement and observation of all voltage
and current values across the network, resulting in a comprehensive monitoring
system. This approach facilitates the accurate analysis and understanding of the
behavior of voltage and current quantities at every node within the network.

• Minimize the number of µPMUs: optimize the deployment of µPMUs in such
a way that the total count of these units utilized is minimized. This objective
seeks to ensure an efficient and cost-effective solution by strategically selecting
only the essential locations for installing µPMUs across the distribution network.
By achieving this objective, the monitoring system can effectively capture critical
data points while keeping the infrastructure investment and operational costs to
a minimum.

• Achieve a high redundancy index: as indicated by the System Overall Redun-
dancy Index value, this emphasis on SORI underscores the importance of en-
hancing system reliability and robustness. By attaining a high SORI value,
the distribution network becomes better equipped to handle potential failures,
ensuring uninterrupted operation even in the presence of disturbances or faults.

3. Considerations
In order to face the real challenges of the distribution network, certain constraints
have been taken into account in this algorithm, they are listed below:

• Topology Change: The existence of switches in the distribution network makes
the network dynamic by switching their status from open to close or vice versa.
This fact makes the topology of the distribution network changeable, that some
nodes of the network could be totally disconnected from the rest of the nodes.
This challenge affects directly the placement problem. In fact, µPMUs need to be
placed in such a way that complete observability is achieved regardless of the
switch (es) status.

• Devices Failure: Device failure is a possible event that could occur at µPMUs
placed on the distribution network for technical or environmental reasons. This
event could also affect the complete observability of the system. The goal is to
find a location, which has the minimum number of unobserved nodes in the
event of a device failure. The key parameter that depends on the number of
unobserved nodes in the event of a device failure is the SORI value. The higher
the SORI value, the fewer unobserved nodes are reached in the event of a device
failure. Taking this constraint into account improves the reliability of the system.

4. Functioning of the Algorithm
The proposed algorithm has the connectivity matrix of the network as input.

To consider the topology change of the network, this matrix is built with all switches
set to “open” status, which is the worst case.

To avoid the manual creation of the connectivity matrix, a user interface is used
to draw the graph of the desired network and an algorithm would automatically
generate the connectivity matrix into an Excel file. This Excel file will be the input of
the algorithm.

The algorithm is composed of a pre-processing step and a greedy algorithm
followed by three configurations. The result of this algorithm is the placement of the
µPMUs on the network graph as well as the number of, the SORI values, and the
nodes where the µPMUs have been optimally placed. The algorithm also detects the
location of switches on the network. The block diagram of this algorithm is presented
in Figure 3.
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A greedy algorithm, by nature, focuses on making locally optimal decisions at
each step of a problem-solving process without considering the global consequences.
While it may not inherently prioritize data quality assurance. Consider adding
redundancy to the placement by placing multiple µPMUs in critical areas. The greedy
algorithm can distribute µPMUs strategically to maximize both data quality and
redundancy. In each step of the greedy algorithm, select the next µPMU location
based on the scoring function. The algorithm should prioritize locations with the
highest scores, indicating better data quality and lower noise interference.
Connectivity Matrix
The connectivity matrix is the binary admittance matrix of a power system network
and essentially shows which buses are connected to one another (see Algorithm 1).
Usually gets the variable A, and its mathematical definition is defined in (6).

A(i; j) =

{ 1, if i = j
1, if bus i and bus j are connected

0, otherwise
(6)

Algorithm 1: Connectivity Matrix
Result: Connectivity Matrix
Variable: int i,j,N; Matrix A;
for i← 1 to N do

for j← 1 to N do
if i = j then

A[i, j]← 1;
else

if i and j are connected then
A[i, j]← 1;

else
A[i, j]← 0;

end
end

end
end

Pre-processing
The aim of this step is to place µPMUs on nodes connected to the final nodes and
eliminate the placement on the end nodes because a µPMU placed on an end node
could observe only two nodes and a failure of a device, in this case, increase the
number of unobserved nodes.
Otherwise, a µPMU placed on nodes connected to an end node would observe three
or more nodes. This step improves the SORI value and reduces the search space
of the network to provide a faster search for the next steps (see Algorithm 2). As
the connectivity matrix is the input of this step, end-nodes and nodes connected to
end-nodes must be identified from it.
Greedy Algorithm
Once the µPMUs have been placed on the nodes connected to the end nodes, the greedy
algorithm runs.
In the first step of the greedy algorithm, the number of observed nodes of each node
except fixed and end nodes is determined. Then the results are presented in the
observability matrix O. The fixed and end-nodes get the number 0 in this matrix
because no µPMU would be placed on them. The greedy algorithm always takes the
first best solution it encounters. The algorithm will therefore place a µPMU on this
node then the observability will be tested using the matrix T presented in (7). If the
observability is reached, the results will be saved and the greedy algorithm stops
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here. Otherwise, the algorithm will continue to place on the other nodes that have the
greatest number of nodes observed in the matrix O as in Algorithm 3.

T(i; j) =

{
A(i;j), if a µPMU is placed at node j

0, otherwise
(7)

After placing the µPMU on the node and calculating the matrix T, the complete
observability of the system can be easily tested by following these steps:

• Verification of each row of matrix T.
• Calculate the number of 1 in each row.
• If the number of 1s in each row equals at least 1, then the system is completely

observable. The µPMUs placed from the greedy algorithm are unfixed µPMUs
and could change their placement in the following steps.

Algorithm 2: Preprocessing
Result: µPMUs in nodes connected to End Node
Variable: int x,y,N,l,g,count,t; Matrix A; Table C, output,output1;
for x ← 1 to N do

for y← 1 to N do
if A[x][y] == 1 then

count← count + 1;
C[t]← y;
t← t + 1;
;

end
end
t← 0;
if count == 2 then

output1[l]← x;
if C[0] 6= x then

output[l]← C[0];
l ← l + 1;

else
output[l]← C[1];
l ← l + 1;

end
end
count← 0;

end

Configuration steps
After performing the pre-processing and greedy algorithm, placement is done and
observability is obtained. Otherwise, this is not enough, as other key parameters
such as the number of µPMU and the SORI value have not yet achieved their best
results, compared to the results of other algorithms [35–37]. The configuration steps
are performed in order to improve these parameters by achieving the minimum
number of µPMUs as possible and the highest value of SORI possible to ensure
system workability and minimize implementation costs see Algorithm 4.

• Configuration 1
The objective of this configuration is to reduce the number of µPMUs installed
without affecting the complete observability of the network.

• Configuration 2
The goal of this configuration is to improve the system observability redundancy
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index (SORI) value. This step gives priority to free nodes that have a higher
degree than nodes with unfixed µPMUs because a node with a higher degree can
observe more nodes and as a result, the SORI value will increase.

• Configuration 3
This configuration search also for a placement situation where it is possible to
remove a µPMU without affecting the complete observability of the system.

Figure 3. Block diagram of the proposed algorithm.
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Algorithm 3: Greedy
Result: Unfixed µPMUs
Variable: int x,y,N,l,m; Matrix A,T; Table pmu,output1; boolean Observability;
while observability == False do

for x ← 1 to N do
O[x]← 0;
if xnotinoutput and f notinoutput1 then

for y← 1 to N do
if A[x][y] == 1 then

m← m + 1;
end

end
end
O[x]← m;
m← 0;

end
for x ← 2 to N do

max ← O[1];
if O[x] > max then

max ← O[x];
pmu[l]← f ;
l ← l + 1;

end
end
for x ← 1 to N do

for y← 1 to N do
if y 6= pmu[1] or y 6 inoutput1 then

T[x][y]← A[x][y];
end
T[x][y]← 0

end
end
for x ← 1 to N do

for y← 1 to N do
if T[x][y] == 1 then

m← m + 1;
if m >1 then

m← 0;
Observability← True break;

else
Observability← False

end
end

end
if Observability == False then

break;
end

end
end
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Algorithm 4: Configuration
Result: Optimal locations, SORI
Variable: int x,y,N,L,l; Matrix T,T1; Table pmu; boolean Observability;
for l ← 1 to L do

for x ← 1 to N do
for y← 1 to N do

T1[x][y]← T[x][y];
end
T1[x][pmu[l]]← 0;

end
Check observability ;
if observability == True then

T[x][pmu[l]]← T1[x][pmu[l]];
end

end
if unfixed µPMU adjacent to a free node N then

µPMU on node N;
end
if free node connected to 2 unfixed µPMUs then

µPMU on the free node in-between;
end

5. Applications

The proposed method for optimal placement of µPMUs in distribution networks has
several practical applications in real-world power system operations and management.
Enhanced Fault Detection and Localization: By strategically placing µPMUs in crit-
ical locations, the proposed method improves the observability of the distribution
network. This enables rapid detection and precise localization of faults when they
occur. With accurate fault information, utilities can quickly dispatch crews to the
affected areas, reducing outage durations and improving overall system reliability.
Grid Stability and Resilience: The proposed method ensures better observability of
the distribution system, which is crucial for maintaining grid stability and resilience.
With the number of µPMUs strategically placed, operators can detect voltage fluctua-
tions, frequency deviations, and other system dynamics promptly, enabling them to
take corrective actions to prevent instability or cascading failures.
Distribution Network Planning and Expansion: The placement results obtained
from the proposed algorithm can be used for long-term distribution network planning.
Utilities can use this information to identify areas with inadequate observability and
plan for future expansions or upgrades to ensure grid reliability as the demand for
electricity and distributed generation resources increases.
Integration of Renewable Energy Sources: As renewable energy sources (e.g., so-
lar, wind) are integrated into distribution networks, their intermittent nature poses
challenges for grid management. The proposed method optimizes the placement of
µPMUs to monitor the impact of renewable energy generation, enabling utilities to
balance supply and demand efficiently and maintain power quality.
Grid Restoration and Blackout Prevention: In the event of a major grid disruption
or blackout, the high observability provided by the optimal placement of µPMUs
allows for faster restoration and post-event analysis. Utilities can identify affected
areas and assess the system’s response during the event, aiding in grid restoration
and learning from such incidents for future grid resilience.
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6. Results and Analysis

The algorithm has been tested on IEEE 7-Node, IEEE 9-Node, IEEE 13-Node, IEEE
34-Node, IEEE 37-Node Networks. A graphical representation of each network is plotted
with the locations of the µPMUs colored in red.

6.1. IEEE 7-Node Network

The IEEE 7-Node network consists of 7 nodes and a switch. One node is a generator
bus and the others are load buses. The network includes loads and generators connected
to different buses. The loads represent the power consumption at each bus, while the
generators represent the power generation (see Figure 4).

Figure 4. IEEE 7-Node Network design on PSAT Toolbox.

The IEEE 7-Node Network is used as a test case for various power system analysis
and optimization problems. Researchers often apply algorithms, such as optimal power
flow, state estimation, and observability analysis, to evaluate and validate their perfor-
mance on this test network. The status of open switches in the distribution network is
considered to optimize the placement of devices. Open switches represent the locations
where switches are not connected, allowing the network to be reconfigured for different
operational scenarios. By analyzing the status of these open switches, we can identify
potential locations where µPMUs can be strategically installed to enhance observability
and monitoring capabilities. The simulation output can be seen in Figure 5. The algorithm
runs on the assumption that the switch is still open so as not to let the change in topology
influence the placement results.

The algorithm achieves Observability, the switch is shown in node 4. 3 µPMUs are
integrated into nodes 2, 4, and 6 with a SORI value equal to 9.
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Figure 5. Simulation results on 7-Node Network.

6.2. IEEE 9-Node Network

The IEEE 9-Node Network is comprised of 9 nodes and no switches. One node is a
generator bus and the others are load (see Figure 6). The IEEE 9-Node Test System provides
a more realistic representation of distribution systems compared to the IEEE 7-Node
Network. It includes additional nodes, meshed connections, and distributed generation,
making it more suitable for studying various power system analysis and optimization
problems specific to distribution networks.

Figure 6. IEEE 9-Node Network design on PSAT Toolbox.
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As the goal is also to find a location, which has the minimum number of unobserved
nodes in the event of a device failure. So the higher the SORI value, the fewer unobserved
nodes are reached in the event of a device failure. In this case, the SORI is equal to 13.
And 4 µPMUs are installed in nodes 2, 3, 6, and 8 (see Figure 7).

Figure 7. Simulation results on 9-Node Network.

If a device in node 8 malfunctions, 8 nodes are still observed, so more than 88% of the
network is observable. Only if the device, which is installed in node 6, malfunctions so 6
nodes are still observed, 66% of the network is observable.

IEEE 13-Node Network

The IEEE 13-Node Network is comprised of 13 nodes and one switch. One node is a
generator bus and the others are load buses (Figure 8). The IEEE 13-Node Test Feeder is a
widely used benchmark system in the field of distribution system analysis and optimization.
It is designed to represent a small-scale distribution network and is commonly used to
evaluate the performance of various algorithms and methodologies for distribution system
studies. The nodes are connected by distribution lines, forming a radial configuration.
Radial distribution networks have power flowing in one direction, from the substation to
the loads. The IEEE 13-Node Test Feeder is often used to evaluate various aspects of distri-
bution systems, such as power flow, voltage regulation, fault analysis, and optimization of
distributed energy resources.

The output of the simulation can be seen in Figure 9. The algorithm reaches the
observability and produces the implementation of 6 µPMUs in nodes 3, 4, 5, 8, 9, and 10,
with a SORI value of 20.
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Figure 8. IEEE 13-Node Network design on PSAT Toolbox.

Figure 9. Simulation results on 13-Node Network.
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6.3. IEEE 34-Node Network

The IEEE 34-Node Network is comprised of 34 nodes and no switches. One node is
a generator bus and the others are load buses (Figure 10). The IEEE 34-Node Test Feeder
is another commonly used benchmark system in the field of distribution system analysis
and optimization. It is designed to represent a medium-scale distribution network and
provides a more complex and challenging test case compared to smaller test feeders like
the IEEE 13-Node Test Feeder.

Figure 10. IEEE 34-Node Network design on PSAT Toolbox.

Also in this case, our algorithm takes into consideration both the status of open
switches and the possibility of device failure in the distribution network to optimize the
placement of devices. The algorithm accounts for the possibility of device failure in the
network. Devices, including µPMUs, can experience failures due to various reasons, such
as equipment malfunctions or external factors. By factoring in the likelihood of device
failures, the algorithm can assess the robustness and reliability of the placement strategy.
Only 12 µPMUs are put in nodes 25, 7, 2, 4, 11, 13, 17, 21, 23, 28, 32, and 31, with a SORI
value of 42 reached. The simulation output can be seen in Figure 11.
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Figure 11. Simulation results on 34-Node Network.

IEEE 37-Node Network

The IEEE 37-Node Network is comprised of 37 nodes and one switch. One node is a
generator bus and the others are load buses (Figure 12).

Figure 12. IEEE 37-Node Network design on PSAT Toolbox.
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The algorithm reaches the observability and it gives 12 µPMUs implemented in nodes
3, 29, 2, 4, 9, 12, 15, 19, 22, 25, 33, 30. SORI is equal to 46. It accounts for the possibility of
device failure in the network. If a device crashes always more than 90% will be observable.

The simulation output can be seen in Figure 13.

Figure 13. Simulation results on 37-Node Network.

6.4. IEEE 123-Node Network

The IEEE 123-Node Network is comprised of 123 nodes. The feeder includes a variety
of loads and distributed generation sources connected to different nodes. Loads represent
the power consumption at various locations, while distributed generation represents power
generation sources integrated into the distribution system. Its larger size and increased
complexity provide a more realistic representation of modern distribution systems, enabling
more comprehensive and in-depth studies. The µPMU placement results can be seen in
Figure 14, where 48 µPMUs have been used to achieve full observability.

The algorithm outputs give the following results:

• Observability: Achieved
• Number of µPMUs: 48
• Locations of µPMUs: 18, 25, 72, 63, 98, 1, 3, 5, 14, 8, 15, 19, 21, 23, 31, 27, 36, 38, 40, 42,

45, 47, 55, 58, 60, 65, 70, 74, 78, 82, 84, 87, 89, 91, 93, 95, 103, 106, 110, 113, 30, 52, 35, 51,
108, 67, 100, 101

• SORI value: 171
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Figure 14. Simulation results on 123-Node Network.

6.5. Comparison with Previous Algorithms

The comparison of our algorithm with other existing approaches was conducted based
on a review of the literature in the field of optimal µPMUs placement for distribution
networks. We identified and collected relevant research papers, journal articles, conference
papers, and technical reports that proposed various µPMU placement algorithms. All the
previous algorithms have been tested on a limited number of test feeders. Tables 1 and 2
compare the proposed greedy algorithm with the other algorithms in terms of µPMUs
number and SORI value. Our algorithm yields a minimal number of devices with a high
SORI value compared to the existing algorithms.

The proposed algorithm demonstrates its superiority over previous works by achiev-
ing comparable or improved results in terms of SORI value and the number of µPMUs
required. What sets this algorithm apart is its unique capability to consistently achieve
optimal results in the majority of tested networks. Unlike other algorithms, it goes beyond
relying solely on the connectivity matrix as an input. It takes into account the dynamic
nature of the network and considers the effect of topology changes, which has not been
addressed by other algorithms. By incorporating the impact of topology changes, the al-
gorithm provides optimal placement solutions. This distinguishing feature makes the
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algorithm highly valuable, offering enhanced performance and addressing a critical aspect
that has been overlooked in previous methods.

Table 1. Comparison in terms of µPMUs number.

Algorithm 13-Node Network 34-Node Network 37-Node Network 123-Node Network

Integer
Programming [19,44] 6 13 - 47

Simulated
Annealing [41] 5 12 12 -

Graph Theory [40,43] 5 12 12 -

Proposed Algorithm 6 12 12 48

Table 2. Comparison in terms of SORI value.

Algorithm 13-Node Network 34-Node Network 37-Node Network 123-Node Network

Integer
Programming [19,44] 16 40 - 147

Simulated
Annealing [41] 20 42 47 -

Graph Theory [40,43] 20 42 47 -

Proposed Algorithm 20 42 46 171

The algorithm’s performance improves as the number of nodes in a network increases,
it aligns with the expectation that larger networks often benefit from more extensive
monitoring and optimization efforts. This can be especially valuable for distribution
networks, which can be quite extensive and complex in practice.

The placement of µPMUs plays a crucial role in accurately monitoring and analyzing
the dynamic behavior of power systems. The results indicate that the chosen placement
method has a significant impact on the quality and comprehensiveness of the measurements
obtained. By strategically positioning the µPMUs, the method allows for capturing critical
information from key points within the power system. This leads to improved observability
as in Table 2 and a better understanding of the system’s dynamics, enabling more accurate
analysis and control. Additionally, the results shed light on the optimal number of PMUs
required for achieving desired system observability, striking a balance between the cost
of deployment and the accuracy of measurements. The analysis of the results provides
valuable insights for power system operators and planners in determining the optimal
placement of µPMUs to enhance the monitoring and control of the power grid.

7. Conclusions

In conclusion, this paper presents an optimal placement algorithm for µPhasor Mea-
surement Units in distribution networks. The algorithm addresses the important problem
of determining the strategic locations for deploying µPMUs to achieve maximum observ-
ability while minimizing the number of units required.

Through extensive testing and analysis, the algorithm demonstrates its superiority
over previous approaches. It consistently delivers comparable or better results in terms of
the SORI value and the number of µPMUs needed. What makes this algorithm stand out is
its consideration of the dynamic nature of the network, particularly the effect of topology
changes. Unlike other algorithms, it goes beyond simply relying on the connectivity matrix
as an input. By factoring in topology changes, the algorithm ensures optimal results even
in evolving network conditions.

The findings of this paper have significant implications for the effective monitoring and
control of distribution networks. By strategically placing µPMUs, operators can enhance
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situational awareness, detect faults promptly, and make informed decisions for efficient
system operation. The proposed algorithm’s ability to achieve optimal results in most tested
networks, while considering topology changes, establishes it as a valuable contribution
to the field. This work opens up new possibilities for improving the reliability, resilience,
and performance of distribution networks through the optimal placement of µPMUs.

Our future work aims to enhance the robustness, security, and adaptability of µPMU
placement algorithms in dynamic distribution networks, and accommodate a wider range
of network topologies with different impedance conditions. By integrating continuous noise
monitoring, strengthening data security measures, and quantifying cybersecurity metrics,
we seek to ensure the reliability of critical power system data. Real-time adaptability
to changing communication conditions and delays, combined with the use of hybrid
algorithms that balance placement optimality and robustness, will further advance the
effectiveness of our approach. As we embrace the evolving landscape of distribution
network management, these advancements will contribute to safer and more resilient
electrical grids, ultimately benefiting both utilities and consumers.
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The following abbreviations are used in this manuscript:
µPMU µPhasor Measuring Unit
REG Renewable Energy-based Generator
DNs Distribution Networks
DER Distributed Energy Resource
SORI System Observed Repeat Index
LV Low Voltage
MV Medium Voltage
PQ Power Quality
RES Renewable Energy Sources
EVs Electric Vehicle
RES Renewable Energy Sources
ADC Analog-to-Digital Converter
DSP Digital Signal Processor
DG Distributed Generator
SPI Serial Peripheral Interface
RQP Recursive Quadratic Programming
GPS Generalized Pattern Search
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