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Abstract: Solar energy is considered the most abundant form of energy available on earth. However,
the efficiency of photovoltaic (PV) panels is greatly reduced due to the accumulation of dust particles
on the surface of PV panels. The optimization of the cleaning cycles of a PV power plant through
condition monitoring of PV panels is crucial for its optimal performance. Specialized equipment and
weather stations are deployed for large-scale PV plants to monitor the amount of soil accumulated
on panel surface. However, not much focus is given to small- and medium-scale PV plants, where
the costs associated with specialized weather stations cannot be justified. To overcome this hurdle,
a cost-effective and scalable solution is required. Therefore, a new centralized cloud-based solar
conversion recovery system (SCRS) is proposed in this research work. The proposed system utilizes
the Internet of Things (IoT) and cloud-based centralized architecture, which allows users to remotely
monitor the amount of soiling on PV panels, regardless of the scale. To improve scalability and
cost-effectiveness, the proposed system uses low-cost sensors and an artificial neural network (ANN)
to reduce the amount of hardware required for a soiling station. Multiple ANN models with different
numbers of neurons in hidden layers were tested and compared to determine the most suitable model.
The selected ANN model was trained using the data collected from an experimental setup. After
training the ANN model, the mean squared error (MSE) value of 0.0117 was achieved. Additionally,
the adjusted R-squared (R2) value of 0.905 was attained on the test data. Furthermore, data is
transmitted from soiling station to the cloud server wirelessly using a message queuing telemetry
transport (MQTT) lightweight communication protocol over Wi-Fi network. Therefore, SCRS depicts
a complete wireless sensor network eliminating the need for extra wiring. The average percentage
error in the soiling ratio estimation was found to be 4.33%.

Keywords: internet of things; solar energy; solar efficiency; cloud; edge device; machine learning

1. Introduction

Around 75% of the world’s fossil fuel consumption is used to generate heat and
electricity [1]. The extensive use of fossil fuels is damaging to the environment. The
burning of conventional fossil fuels, such as coal, natural gas, and petrochemicals, release
toxic gases and chemicals into the environment, causing land and air pollution. The
resulting pollution from burning of fossil fuels is the major cause of global warming and the
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health problems that negatively affect human life [2]. In addition to the environmental and
health concerns, fossil fuels are also limited in supply. Since fossil fuels are non-renewable,
their complete depletion should be avoided, in order to preserve these resources for future
generations. It is estimated by some experts that at the current rate of consumption, oil
and gas reserves will decrease to 14% and 18%, respectively, by the end of year 2050 [3].
All of the above-mentioned issues have forced governments all over the world to look
for alternative clean and renewable energy sources. Therefore, the adoption of renewable
energy is on the rise all over the world. This trend is expected to accelerate over the
coming years. Out of all the available renewable energy sources, solar energy, or the energy
harvested from solar radiation, is the most abundant form of energy. The surface of earth
receives solar radiation at an average rate of 343 W/m2. Ref. [4] presented a study to assess
the potential of solar photovoltaic power generation in China. The results show that China
has potential to generate 131.942 PWh of energy by using solar radiation. This value is
approximately 23 times the overall electrical energy demand of China. Solar radiation is
directly converted to electrical energy by using photovoltaic (PV) systems [5,6].

The efficiency of PV panels is affected by environmental conditions. One of the
main causes of degradation of PV panel is soil or dust accumulation on the surface [7,8].
Soiling induces transmittance losses in PV panels. Transmittance loss causes a decrease
in the power generation from PV panels. Reduction of the soiling in PV systems has
been one of the major topics in PV systems research and development [9–11]. Ref. [12]
presented an experimental work to study the effects of soiling on PV efficiency. A maximum
transmittance loss of 69.06% and a power loss of 29.76% were recorded during dry period
encountering no rain. In addition to this, accelerated soiling can also occur due to unusual
environmental conditions. These environmental conditions rapidly decrease PV panel
efficiency if regular cleaning is not performed. A study was presented in [13], where panels
were placed near a construction site, and the soiling of PV panels was recorded. It was
found that the PV system output efficiency was reduced to an alarming value of 20% within
a period of 5 months. Similarly, a detailed study was presented in [14], highlighting the
effects of soiling on PV modules deployed at five different locations. To reduce the effect
of soiling and to achieve maximum efficiency, PV panels need to be regularly monitored
to calculate the amount of dust accumulated. It is challenging to experimentally study
the soiling losses in PV plants everywhere because of the ever-changing environmental
conditions. As the world is moving towards solar energy, people are giving more attention
to accurate soiling loss modeling over time [15]. Generally, PV plants use dedicated soiling
stations to monitor and reduce the effects of soiling [16]. A soiling station is used to help
operators determine when and where the PV panels require cleaning. A soiling station
does not provide a physical measurement of the dust and particulates on the actual PV
panels. Rather, it is used as a reference point to understand what percentage of power loss
is due to soiling. It provides a value that represents the amount of soiling on the surface of
the PV panel.

The soiling station-based method can be broadly divided into two categories: (i) Opti-
cal measurement-based methods; (ii) electrical parameter measurement-based methods.
Optical-based methods utilize digital imagery or measurement of light reflection from
reference reflective surface to approximate amount of soiling. An aerial imaging method
was proposed in [17] to quantify soiling on PV panels. This method used a metric called
the black and white ratio to calculate the soiling on proxy surfaces. However, the results
were dependent on camera settings and imaging conditions, which may vary significantly
from one location to another. Ref. [18] proposed a novel soiling detection scheme by using
an image entropy technique on a reference piece of plasticized paper mounted alongside a
PV panel. Similarly, some electrical parameter measurement-based soiling detection kits
are available for large-scale PV installations [19,20]. However, these solutions are often
available as part of complete and specialized weather stations, and are not suitable for
small- and medium-scale PV plants because of cost constraints. Additionally, the majority
of the PV soiling stations require two PV modules placed adjacent to each other under the
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same physical and environmental conditions [21]. One of the modules is required to be
cleaned regularly, in order to provide reference parameters, which are then compared to
the parameters obtained from the soiled panel to determine the soiling ratio. Electrical pa-
rameters (short circuit current, power output) are measured for both panels and compared
to the approximate soiling loss.

A new cost-effective and scalable solution is required that can be integrated with
small-, medium-, and large-scale PV plants. The recent advancements in technologies such
as artificial neural networks (ANN), IoT, and cloud computing have made the deployment
of cost-effective and scalable systems possible [22,23]. This is achieved by integrating tech-
nologies such as artificial neural networks (ANN) [24,25] and IoT [26,27]. Artificial neural
networks have already found applications in the field of renewable energy [28,29]. ANNs
are extensively used in the area of energy generation and consumption forecasting [30]. A
deep learning-assisted framework AB-Net uses a combination of an auto-encoder and bidi-
rectional long short-term memory algorithms for short-term one-step forecast of renewable
energy generation [31]. Short-term energy production is helpful in efficient trading, inte-
gration, storage management, and control systems for renewable energy systems. Similarly,
ANNs can be used to predict the amount of soiling on the surface of PV panels, in order to
optimize cleaning cycles, hence boosting the efficiency of PV plants and renewable energy
generation. Therefore, authors have proposed a complete centralized soiling detection
system based on IoT and ANN that requires only one PV panel per soiling station to operate.
In the proposed system, clean or reference panel is replaced by ANN. The ANN model is
trained to predict the short circuit current (I

′
sc) of the clean PV panel by using the electrical

and environmental parameters of the soiled panel, which is then compared to the short
circuit current obtained from the soiled panel (Isc) to approximate the soiling, therefore
eliminating need for the clean PV panel altogether. The advantage of this scheme is twofold:
not only to eliminate one physical panel, but also to eliminate the need to regularly clean
the reference panel. This research work presents a cloud-based centralized solution for
monitoring soiling losses. The ANN algorithm used for soiling loss measurement is hosted
on a cloud server. The benefit of this type of centralized scheme is that all the processing
required is performed on a centralized server. This reduces the complexity of the equipment
used in the soiling station, as it only needs to measure and transmit the parameters to
the server. IoT provides the communication infrastructure between the sensors and cloud
server. The main contributions of this research work are as follows:

• SCRS uses the least number of input parameters, when compared to other techniques
used in the available literature. Only three parameters are required by SCRS to
estimate the soiling ratio. SCRS uses environmental and electrical parameters to detect
soiling that can be obtained using low-cost sensors and microcontroller. This helps
with the further reduction of the overall cost required for the detection of soiling losses
per unit area of PV panels.

• Traditional methodology found in the literature requires two panels to monitor soiling,
one of which is cleaned regularly to provide reference parameters for soiling detection.
We have presented a new and simplified design of a soiling station by replacing
the reference panel with the ANN model. The model was trained to predict the
short circuit current of the reference panel by using the environmental and electrical
characteristics of the soiled panel. The predicted short circuit current and actual short
circuit current of the soiled panel are used to calculate the soiling ratio.

• A centralized cloud-based architecture [32] was introduced to further reduce the cost
and complexity of the equipment used in soiling stations. IoT architecture was intro-
duced to make the system scalable and more accessible by offloading the processing
and communication infrastructure to a cloud server. Google cloud services were
used in the proposed system. A microcontroller-based Wi-Fi capable communication
module was used to communicate to the internet gateway device. This increases the
reliability of the system, as additional wiring is not required and eliminates the cost in-
frastructure required for the wired connection for each soiling station. The lightweight
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Internet of Things protocol (MQTT) was used to define the message format between
the soiling stations and cloud server. MQTT has become the industry standard be-
cause of the low packet overhead and user customization feature set, as compared
to protocols such as Hypertext Transfer Protocol (HTTP) [33,34]. Additionally, the
implementation of centralized cloud-based architecture allows multiple SCRS systems
to share cloud computing resources.

The rest of the paper is structured as follows: An overview of the proposed system
is presented in Section 2. Section 3 explains the IoT architecture. The experimental setup
for data collection is provided in Section 4. Section 5 presents the results and discussion.
Section 6 includes the limitation and future work. Finally, the conclusion is provided in
Section 7.

2. Solar Conversion Recovery System (SCRS) Overview

Figure 1 shows the proposed system for the detection of soiling ratio. As shown in the
diagram, SCRS relies only on one PV panel to predict the soiling ratio. SCRS comprises
of two main components: (i) the performance measuring cabinet (PMC) and (ii) cloud
server. PMC is a weatherproof enclosure that houses all the electronic equipment. Different
sensors measure the performance parameters (short circuit current (Isc), light intensity
(L), open circuit voltage (Voc), and temperature (T)) of the PV panel at regular intervals.
“NodeMCU”, an open source IoT platform [35], acts as edge device and collects the perfor-
mance parameters. The edge device sends performance parameters to a centralized cloud
server instance hosted at Google cloud services. The cloud server hosts the ANN algorithm
that is responsible for the prediction of the reference parameter (I

′
sc). ANN uses electrical

and environmental parameters to predict I
′
sc. The actual short circuit current (Isc) of the

soiled panel and the predicted short circuit current (I
′
sc) are used to calculate the soiling

ration (SR), according to Equation (1).

Figure 1. SCRS components and block diagram.

The SR value is then transmitted for visualization at the control center using MQTT.
Figure 2 shows the proposed IoT architecture for the SCRS. The initial stage of the IoT
system is the perception layer. The main objective of this layer is to bridge the real and
digital worlds. The perception layer would host PV panels with attached sensors. The
real-world analogue signals are converted to digital format in this layer. Digital signals are
then handed over to the next layer for transmission. The second layer in this architecture is
network layer or communication layer. This layer oversees all the communication between
the devices, networks, and cloud that make up the entire IoT system. The edge device is
used in this layer to communicate sensor information from physical devices to data centers.
Additionally, some intelligence can be added to the edge device to make context-aware
decisions based on the data from perception layer [36]. While both wired and wireless com-
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munication technologies can be used, IoT systems generally rely on wireless technologies,
as they are easier and more cost-effective to deploy in distributed environments.

SR =
Isc

I ′sc
(1)

In the proposed architecture of Figure 1, “Node MCU” is used as the edge device in
network layer [37,38]. Furthermore, edge intelligence has been added by using a real-time
clock (RTC) module. The edge device uses RTC to keep track of the time and transmit
data only during the specified time intervals. The middleware layer can be considered as
the brains of IoT system, as it contains the most intelligent and high resource components
mainly responsible for the accumulation, storage, and processing of the data received from
the previous layer. This layers also holds the data messaging tools that define the format of
the messages exchanged between various components of the IoT system. While there are
many protocols available for IoT messaging, we have used MQTT as the messaging protocol.
MQTT is a light weight publish and subscribe messaging protocol specially built for IoT
applications, and it works well even for constrained networks. Ref. [39] presented a study
on various IoT messaging protocols. It was found that MQTT is the most suitable protocol
for cloud-based applications. After processing the data in the middleware, the results are
sent to the application layer where stakeholders can visualize the data and interact with
the system. The application layer comprises of user interfaces, such as mobile applications,
browser-based applications, or other visualization tools. The application layers can allow
stakeholders to change the operational parameters of the system at run-time, such as
changing the data reporting frequency of edge devices.

Figure 2. An IoT-based architecture for soiling detection system.

3. ANN Architecture Selection and Data Collection for Machine Learning

ANNs are powerful mathematical frameworks. The robustness of these models is
manifested in the modeling of very complex systems, for which the analytical modeling is
not possible. For this reason, ANNs have been vastly used for a variety of applications in
the last three decades [40–42]. ANNs are inspired by biological functioning of human brain.
They consist of some number of neurons interconnected to each other, as shown in Figure 3.
A single neuron can have one or more inputs (xn), and each input is assigned a weight (wn).

These weights are fixed during testing, but these numbers can change during the
training process to “tune” the ANN. A neuron consists of two parts; first is the linear
combination of the inputs and weights, as defined in Equation (2), and the second part
consists of a nonlinear activation function [43]. The rectified linear unit (ReLU) was used in
the proposed neural network because of its faster convergence rates and reduced likelihood
of vanishing gradients [44], as shown in Equation (3). Thus, the output F(X) of a neuron, as
shown in Figure 3, can be defined with Equation (4).

f (X) = b1 + x1w1 + x2w2 + ... + xnwn (2)
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ReLU(x) = max(0, x) (3)

F(X) = max(0, b1 + x1w1 + x2w2 + ... + xnwn) (4)

Figure 3. Architecture of proposed ANN model.

The ANN architecture is divided into three main parts: an input layer, the hidden
layers, and an output layer. The ANN model used in this work is composed of one input
layer, one hidden layer, and one output layer. The maximum number of epochs was set to
1000. Early stopping was enabled with a patience parameter of value 10. The batch size
was selected equal to 32. “RMSprop” was used as a optimizer, and the learning rate was
set to 1 × 10−3.

An ANN with one hidden layer presents a simpler computation and lower weight error
propagation [45,46]. The input layer was composed of three input features shown in Table 1.
The dataset was randomly divided into 80% for training, and 20% for validation and testing.
To collect the training data, outdoor experiments were conducted at National University of
Sciences and Technology, Islamabad, Pakistan campus. A testbed was installed as shown
in Figure 4. During the data collection stage, clean and soiled panels were installed side-
by-side under same environmental conditions. The data were collected at 5 min intervals
for a period of 2 months. Each set of measurements were stored with timestamps. Only
the data recorded between 7:00 am and 7:00 pm were used for each day. A summary of
the parameters recorded is presented in Table 1. Notice that the input parameters have
significantly varying ranges, as evident from the maximum and minimum values. Training
data with varying ranges can cause a slower convergence and biased training due to very
large or small weights [47,48]. Therefore, the input parameters were normalized between 0
and 1 by using the min-max normalization, which is given by Equation (5).

xi =
x− xmin

xmax − xmin
(5)

where xi represents the normalized value of feature x, xmin represents the minimum value
of the feature vector, and xmax represents the maximum value of the feature vector.
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Table 1. Summary of parameters collected for training process of artificial neural network.

Parameter Min Max Unit

Input parameters for neural network
Open circuit voltage
of soiled panel (V) 11.97 24.1 Volts

Cell temperature (T) 25.62 64.12 ◦C
Light intensity (L) 1152 77,783 lux

Output labels for neural network
Short circuit current

of clean panel
(Isc_clean)

0 1.61 Ampere

Figure 4. Hardware setup for collection of training data for artificial neural network used in SCRS.

4. Experimental Setup

An experimental setup was built to validate the performance of SCRS. Operational
block diagram of the experimental setup is shown in Figure 5. Jinko Solar 270 W photo-
voltaic panel is deployed in this experiment, with the PMC containing electronic circuitry
for data acquisition. In order to measure temperature and light intensity, DS18B20 digital
temperature sensor and max44009 ambient light sensors are used. ACS712 current sensor
and a voltage divider is used to measure current and voltage of the PV panel. Note that
we are using ambient light intensity, instead of solar insulation, as data input to the neural
network. This approach was used to keep the cost of SCRS low, as the ambient light inten-
sity can be measured using low-cost sensors, such as max44009. Jinko 270 Watt PV panels
were used with maximum power current and maximum power voltage values of 8.52 A
and 31.7 V, respectively. The PV panels were placed on an angle of 40◦ with a horizontal
plane. A relay module was used to switch between the voltage-measuring circuit and the
current-measuring circuit. The sensors are connected to NodeMCU which is a low-cost
Wi-Fi capable micro-controller, as shown in Figure 6. To compensate for the unavailability
of analog-to-digital converter (ADC) channels on NodeMCU, an ADS1115 analog-to-digital
converter module is used to convert analog current and voltage readings to 16-bit digital
format. The RTC module is used to keep track of time.

The RTC module enabled the micro-controller to transmit sensor data only during
the daylight hours. The sensor data is encoded using javascript object notation (JSON),
a lightweight format for storing and transporting data. Encoding can be described as a
given sequence of characters or converting the data, into a specified format, for secured
transmission of data. On the other hand, decoding is the reverse process of encoding,
which is used to extract the information from the converted data. The data is transmitted
between devices using the MQTT protocol. The cloud server waits for the data arriving
from NodeMCU. The ANN model uses the sensor information to estimate I

′
sc. At the end,

the soiling ratio is calculated using Equation (1). The results are transmitted to the client
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application available at the monitoring station. The client application was built in the .NET
Framework using the C# programming language.

Figure 5. Operational block diagram of solar conversion recovery system (SCRS).

Figure 6. (a) Electrical circuit for SCRS placed in performance measurement box. (b) Light intensity
sensor. (c) Digital temperature sensor.

5. Results and Discussion

One of the important parameters in ANN model design is the choice of the number of
training epochs to use. A large number of epochs can lead to the over-fitting of training data,
whereas too few may result in an under-fitting model. To avoid over-fitting or under-fitting
conditions, the “Early stopping” feature was used. The early stopping feature automatically
stops the training process once the model performance stops improving on the validation
dataset. Multiple ANN models were tested by varying the number of neurons between 5
and 35 in increments of 10, while keeping the activation functions same. ANN models with
a different number of neurons and their mean squared error values are listed in Table 2. An
ANN model with 25 neurons in the hidden layer proved to be the optimum, giving most
reasonable correlation between the predicted and measured values, with an MSE value
of 0.0117. Figure 7 shows the performance of the neural network during training. As the
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validation set was picked at random from a large training set representing wide range of
operating points (V, T, L), it is expected that the ANN will generalize well for every case.

Table 2. Selection of best performing ANN model based on number of neurons in hidden layer.

Architecture Neurons in Hidden Layer Mean Squared Error (MSE)

1 5 0.0185
2 15 0.0124
3 25 0.01176
4 35 0.0134

Figure 7. ANN’s training and validation process.

Figure 8 shows the performance of the ANN model with the test data. The test data
provides an unbiased evaluation of the final model fit on training data. As mentioned
previously, 20% of the initial dataset was set aside for testing purposes. A coefficient of
determination (R2) value of 90.5% was achieved, as shown in Figure 8. This shows that our
ANN model does not over-fit and generalizes well for unknown data.

In order to further validate the performance of the ANN model, it was compared with
similar soiling detection solutions available in the literature. These techniques involve the
use of an ANN model with a single hidden layer for detecting soiling losses in PV [49–51].
These models have been trained on different datasets because of the difference in the nature
of input parameters. The detailed performance comparison of above-mentioned techniques
with the proposed solution is presented in Table 3. Note that our solution provides better
accuracy, with R2 value of 0.905, as compared to the work of [49,50] and comparable
performance to [51], while using least number of input parameters. Ref. [49] uses the daily
average values of input parameters such as ambient dust mass concentration, wind speed,
and relative humidity. A R2 value of 0.537 was achieved which is lower than the proposed
solution despite using the maximum number of input parameters of all solutions listed in
Table 3. Refs. [50,51] use same number of input parameters. Four out of six parameters are
same, such as wind velocity, wind direction, temperature, and humidity. Ref. [51] achieved
higher value of R2 (0.928), as compared to R2(0.872), achieved by [50]. The difference in R2

value of can be due to difference of input parameters or the different number of neurons in
the hidden layer. The R2 metric shows that performance achieved by proposed solution is
between [50,51], despite using half number of hidden layer neurons.
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Table 3. Performance comparison of ANN model with different ANN architectures available in
the literature.

Parameter [49] [50] [51] Proposed
Model

Hidden layers 1 1 1 1
Neurons in

hidden layer 20 10 35 25

Input
parameters 10 6 6 3

R2 0.537 0.872 0.928 0.905

Figure 8. Real vs. Predicted values of short circuit current after training of ANN on by using
unknown dataset.

Besides this, we have used input parameters that are easily available using low-cost
sensors. The available literature is mostly focused on presenting solutions for soiling detec-
tion without providing practical infrastructure for data communication and observability.
Due to the lack of information and communication technology (ICT) infrastructure, the
available literature does not provide a complete and scalable solution. Therefore, we have
provided a complete solution, in terms of data collection, transmission, and observability,
using IoT and cloud computing. The SR predicted by SCRS and measured soiling ratio
(SRm) have been compared in Table 4. The SRm value was obtained by using a short circuit
current from an actual clean PV panel placed under same environmental conditions as
SCRS. The difference between the estimated SR and measured SR has been represented
in terms of percentage error. Percentage error is calculated according to Equation (6).
On average, an error of 4.4% was observed, with 0% and 10.7% being the minimum and
maximum values, respectively.

Error =
SRm − SR

SRm
(6)
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Table 4. Test results of SCRS, predicted SR is compared to the actual SR to evaluate error.

Plain Data (Soiled Panel) Normalized Data (Soiled Panel) Isc
(Soiled) I

′
sc

Estimated
SR

Measured
SR Error %

V (volts) T (◦C) L (lux) V (volts) T (◦C) L (lux)

20.33 62.25 53,084 0.689 0.951 0.678 1 1.19 0.84 0.88 4.5
20.53 61.38 51,609.6 0.705 0929 0.658 1.06 1.17 0.91 0.89 2.2
20.43 58.5 4,478.76 0.697 0.854 0.569 0.87 1.06 0.82 0.78 5.12
20.43 59.63 37,416.96 0.678 0.883 0.490 0.79 0.97 0.81 0.87 6.8
20.48 55.25 31,334.4 0.702 0.770 0.394 0.74 0.85 0.87 0.88 1.1
20.78 53.38 25,067.52 0.702 0.721 0.312 0.69 0.74 0.93 0.84 10.7
20.58 53.25 19,537.92 0.710 0.718 0.24 0.58 0.6 0.89 0.95 6.3
20.33 48.63 13,455.36 0.689 0.598 0.161 0.37 0.49 0.75 0.77 2.6
21.55 53.00 67,461.13 0.790 0.711 0.865 1.03 1.26 0.82 0.86 4.6
21.16 57.13 64,880.64 0.757 0.818 0.832 1.06 1.27 0.83 0.83 0

6. Limitations and Future Work

The SCRS presented in this research uses WiFi technology as a communication channel
between the PMC and cloud server. Although WiFi technology allows digital devices to be
connected without the need for wires, it is limited in terms of range. If multiple SCRS are
deployed at large distances apart, each SCRS system would require a separate WiFi access
point. To address this problem, a SCRS data communication architecture with different
long range data transfer technology, such as LoRaWAN, is proposed for future research
work. LoRaWAN operates on a lower radio frequency band than WiFi; therefore, data can
be transferred over long distances without additional costs. LoRaWAN-enabled design will
have the following design characteristics.

• SCRS will be equipped with a LoRaWAN transceiver. Each SCRS will transfer data
to a central LoRaWAN internet gateway. The gateway will transfer data to the cloud
server using a wired or wireless internet connection.

• Using a single gateway as a point of connection between multiple SCRS systems and
cloud servers will introduce a single point of failure (SPOF) problem. If the internet
gateway device fails, each LoRaWAN-based SCRS will lose its connection to the cloud.
To address this issue, a backup gateway device can be added to the network. This
backup device will provide an alternate path for the SCRS systems to access the
internet and communicate with the cloud server in the case of a failure of the main
gateway device.

• Edge intelligence can be improved further by adding context awareness. Data from
a SCRS system will be transferred by gateway if it differs from the previous data by
a certain amount, therefore reducing the redundancies in the data transfer. This will
help to conserve the channel bandwidth between the gateway and cloud server.

7. Conclusions

PV plants vary in terms of the number of PV arrays and amount of area covered. This
means that multiple soiling stations are required for larger installations, and a simplified
low-cost solution is required for small-scale deployments. In this research, a new method,
“SCRS”, was proposed for the detection of soiling losses in PV plants. A cloud-based
IoT infrastructure was proposed, where the ANN algorithm was hosted on a centralized
cloud server. SCRS used an ANN model with single hidden layer to estimate the soiling
ratio. The ANN algorithm was trained successfully, with a mean squared error of 0.0117.
The proposed ANN model was also compared to another model present in the literature.
We proposed a complete scalable solution for the detection of soiling losses. The main
role of the soiling station was to collect the electrical and environmental parameters. The
parameters were transmitted to the cloud server using the IoT communication protocol
(MQTT). The ANN model was implemented in the cloud server to detect the soiling ratio,
and the results were transmitted to the graphical user interface. The integration of IoT-
based communication provided the added benefit of eliminating the wiring required from
soiling stations to monitoring station, as data could be transmitted wirelessly through
the internet. A test dataset was used to validate the performance of SCRS. An adjusted
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R-squared (R2) value of 0.905 was achieved on the test data. Furthermore, the estimated
soiling ratio from SCRS was compared to the actual soiling ratio to calculate the percentage
error. The average, maximum, and minimum values of percentage error were found to be
4.33, 10.7, and 0, respectively.
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