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Abstract: Non-intrusive load monitoring (NILM) can obtain fine-grained electricity consumption
information of each appliance by analyzing the voltage and current data measured at a single point on
the bus, which is of great significance for promoting and improving the efficiency and sustainability
of the power grid and enhancing the energy efficiency of users. NILM mainly includes data collection
and preprocessing, event detection, feature extraction, and appliance identification. One of the most
critical steps in NILM is signature extraction, which is the basis for all algorithms to achieve good
state detection and energy disaggregation. With the generalization of machine learning algorithms,
different algorithms have also been used to extract unique signatures of appliances. Recently, the
development and deployment of the voltage–current (V-I) trajectory signatures applied for appliance
identification motivated us to present a comprehensive review in this domain. The V-I trajectory
signatures have the potential to be an intermediate domain between computer vision and NILM. By
identifying the V-I trajectory, we can detect the operating state of the appliance. We also summarize
existing papers based on V-I trajectories and look forward to future research directions that help to
promote the field’s development.

Keywords: non-intrusive load monitoring; load identification; voltage–current trajectory; deep
learning

1. Introduction

Energy is the backbone of human civilization and an essential foundation for social
development and progress. Secondary energy, dominated by electricity consumption, has
gradually become the main form of energy consumption. Currently, electricity production
mainly depends on the combustion of fossil fuels, which poses a considerable threat to
the environment. In order to achieve carbon peaking and carbon neutrality, countries
are accelerating the construction of new power systems with the theme of new energy.
Demand-side energy management is an integral part of new power systems; however,
due to the lack of fine-grained energy consumption information, it remains a challenge
for individual consumers to participate in demand response. Reference [1,2] showed that
fine-grained energy consumption information feedback to energy users can reduce energy
by approximately 5–20%. Real-time load monitoring (LM) is considered as a good approach
to obtaining valuable feedback information that helps to perform energy-saving measures
and implement more effective energy management strategies, such as energy efficiency
programs [3], demand side management, and peak load shedding [4].

Load monitoring includes intrusive load monitoring (ILM) and non-intrusive load
monitoring (NILM) [5,6]. ILM needs to install a sensor for each appliance, and the mon-
itoring results of this method are relatively accurate. However, its cost is high, later
maintenance is complex, and it is easy to violate consumers’ privacy, making it difficult
for users to accept. NILM only needs to install a sensor at the power supply entrance. The
physical architecture of NILM can be seen in Figure 1. Fine-grained information about the
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user’s power consumption can be obtained by analyzing the terminal voltage and current
data. This method is low-cost, easy to implement, and easy for users to accept. Therefore,
the NILM method has become a research hotspot for many researchers. NILM has two
tasks: state detection, which detects changes in the electrical consumption signal due to
on/off events of the concerned appliance, and energy disaggregation to estimate the energy
consumption of the target appliance [7]. The performance of state detection and energy
disaggregation mainly depends on the choice of appliance signatures.
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Figure 1. The physical architecture of non-intrusive load monitoring.

The algorithms of NILM are mainly divided into event-based and event-free-based [8].
Event-based methods first need to detect the switching state of the appliance and then
extract the signatures of the appliance. On the other hand, event-free-based methods
mainly disaggregate the total power data. Hidden Markov model (HMM)-based NILM
methods are one kind of original event-free-based statistical NILM methods, which usu-
ally define multiple states for each appliance, where each state has its own probability
distribution [9]. Furthermore, the formulated conditional factorial hidden semi-Markov
model outperforms typical FHMMs, and the authors consider this method as a promis-
ing unsupervised approach for energy disaggregation [10]. Q. Liu et al. [11] described
a low-complexity unsupervised solution inspired by a fuzzy clustering algorithm called
entropy-constrained competitive clustering, and the demonstrated results show that the
proposed method enables the generalization of the features and produces a set that can
be considered for model learning. Recently, with the emergence of massive user data and
the general improvement of hardware resources, deep learning has developed rapidly.
Algorithms based on deep learning can automatically extract the signatures of appliances
and classify them. Dandan Li et al. [12] propose a one-to-many model and a transfer
one to-many model for multi-target energy disaggregation to improve the effectiveness
and practicality of NILM. Reference [13] proposed an adaptive NILM based on feature
fusion, and this paper used the V-I trajectories extracted from the BLUED dataset to train
the autoencoder to extract features from the V-I trajectories of appliances. In the test, first
of all, the fast Fourier transform (FFT) was used to extract the harmonic features of the
appliance after dimensionality reduction in the V-I trajectory features. Then, the feature
library was established by using the features of the known appliance. The distance between
the samples and the templates in the feature library was calculated by the Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) algorithm, and the distance
was compared with the threshold to determine whether the appliance was unknown.

In recent years, with the widespread use of smart meters, the sampling frequency of
data has gradually increased and the sensitivity to computing resources has
decreased [14,15]. The V-I trajectory signatures are extracted based on events, and re-
searchers are able to accurately detect appliance events from the data collected and extract
the V-I trajectory signatures of appliances. Compared with other signatures, the V-I trajec-
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tory has a good discriminability. By identifying the appliances’ V-I trajectory signature, the
running state of the appliance can be accurately monitored, which has been widely used.
Many methods based on V-I trajectory signatures have achieved great success in identifying
appliance states, so researchers used different methods to construct the V-I trajectory of the
appliance. With the excellent performance of machine learning in image processing results,
the V-I trajectory signature has the potential to serve as the intermediate domain between
computer vision and NILM. The main reason is that the V-I trajectory can be transferred to
visual representation and then used in appliance recognition [16]. At the same time, using
V-I trajectories can also detect unknown loads, which is of great significance to the integrity
and practicability of the NILM framework. It has to be mentioned that, although the V-I
trajectory signature can improve the performance in many NILM scenarios, there are some
constraints for the application of the V-I trajectory signature. For example, the V-I trajectory
signature requires a higher sampling frequency, which requires higher hardware conditions
and data storage [17]. In addition, the extraction of V-I trajectory features depends on the
detection of appliance switching events: if the event detection is not accurate, the methods
will not be able to accurately identify the appliance’s state [18].

The rest of this paper is arranged as follows. Section 2 mainly introduces the recent
literature on NILM based on V-I trajectory. Datasets for acquiring V-I trajectories are
described in Section 3. Section 4 introduces how to transfer the appliance V-I trajectory
signature to visual representation. Performance metrics are listed in Section 5. Finally,
Section 6 concludes this study and future work.

2. Literature Review of NILM Based on V-I Trajectory

Extracting the unique signatures of the appliance is the premise of realizing load
disaggregation and identification. The load features can be divided into transient-state,
steady-state, and non-traditional features [3]. Non-traditional features are often combined
with traditional load features to improve the performance of load disaggregation and
identification. The NILM algorithms based on steady-state analysis make use of steady-
state signatures that are derived under the steady-state operation of the appliances. The
transient behavior of major appliances is found to be distinct and their signatures are less
overlapping in comparison with steady-state signatures; however, the major limitation
is the high sampling rate requirement in order to capture the transient state [19]. These
steady-state and transient-state signatures can be further subdivided, as shown in Figure 2.
This section discusses the steady-state V-I trajectory signature used in the NILM system.

To comprehensively and systematically summarize the existing research on NILM
based on V-I trajectory features, we searched the relevant literature on load identification
based on V-I trajectory signatures in recent years. Next, we describe these literatures
in detail.

H. Y. Lam et al. [20] first introduced the concept of a V-I trajectory signature, which was
obtained by plotting the operating current of the appliance against the voltage. After that,
the load signatures, such as the area, symmetry, and looping direction, were extracted from
the V-I trajectory. After plotting the V-I trajectory, H. Y. Lam et al. [21] used the appliance
signature in the form of a two-dimensional voltage–current (V-I) trajectory to characterize
and classify the electrical loads. A hierarchical clustering method was employed to classify
the appliances and construct the taxonomy of the appliances. The results show that the
appliance classification method based on V-I trajectory shape signatures was effective for
appliance classification and had engineering significance. Following this study, T.Hassan et
al. [22] extended and evaluated appliance load signatures based on the V-I trajectory for
the precision and robustness of prediction in classification algorithms. Nur Iksan et al. [23]
identified the load by analyzing the shape of the V-I trajectory and using its characteristics.
The simulation results show that using V-I trajectory signatures can assist in the identifi-
cation of electrical appliances. Reference [17] presented an analysis of the performance
of different appliance signatures on the classifier of the PLAID dataset. In addition, the
accuracy under varying sampling rates using the V-I trajectory signatures with the same



Energies 2023, 16, 939 4 of 15

data-splitting strategy was discussed, and the results show sampling rates higher than 4
kHz provided relatively constant average accuracy results for most classifiers. Further,
Liang Du et al. [24] first proposed mapping the V-I trajectories into a grid of cells with bi-
nary values. Graphical signatures can then be extracted for many appliances. This method
improves the load classification performance and dramatically reduces computational costs
compared to existing frequency-domain signature extraction algorithms.

Appliance Features

Steady State Transient State Non-Traditional

Transient Power
Start-up Current 

Waveforms
Voltage Noise

Power Change 

Features

Time and Frequency 

Domain V-I Features
V-I trajectory Voltage Noise

Figure 2. Taxonomy of appliance signatures for NILM.

Deep learning has been an active research field with abundant applications in pattern
recognition, data mining, statistical learning, computer vision, natural language processing,
etc. Many deep learning algorithms are also channeled into NILM for load identification
and power disaggregation. Leen De Baets et al., in [25], used the contours of binary V-I
trajectories to characterize appliances. From these contours, elliptic Fourier descriptors
were computed and used as the input for neural networks outputting the appliance name.
This method not only improves the prediction accuracy, but it also leads to significant
storage savings compared to the original V-I trajectory image. In [26], a weighted pixelated
image of the V-I trajectory was proposed as the input for a convolutional neural network
that automatically extracts key features for load classification on the PLAID and WHITED
datatset. The F-measure per appliance showed that the method give good results for a large
number of appliances. Compared with the previous methods, which mainly focused on
classifying the isolated V-I trajectory of a single appliance, Leen De Baets et al. [27] extracted
the voltage and current data of a single appliance from the aggregated measurements by
considering the difference in the current before and after the event, and validated that
appliance classification using the extracted single appliance current and voltage works
reasonably well. Reference [28] used a convolution neural network implemented on
hardware to identify the appliance through the V-I trajectory. For the implementation
on hardware, a field programmable gate array (FPGA) was used to exploit processing
parallelism in order to achieve an optimal performance. Xiaomin Chen et al. [16] proposed
an NILM method based on features of the V-I trajectory on the REDD dataset. First, the
events were detected by the variation in the overall apparent power, and the V-I trajectory
was extracted by smoothing and interpolation. Then, ten V-I trajectory signatures were
quantified based on physical significance, and a support vector machine multi-classification
algorithm was employed for load recognition.

Recently, with more researchers joining the research of NILM, more algorithms have
been proposed to solve the problems faced by NILM. To detect unknown appliances, Leen
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De Baets et al. proposed a Siamese network to map the V-I trajectories of loads to a newly
learned feature space [29], and then used DBSCAN clustering to detect the V-I trajectories
of unknown appliances. To further improve the identification accuracy and efficiency,
reference [30] extended a set of new signatures for the V-I trajectory that was extracted
in a steady and transient regime of an electrical appliance. The experimental results on
the COOLL dataset show the effectiveness of the proposed features. In [31], a fast online
appliance identification algorithm based on the V-I trajectory signature was proposed. A
fast optimization model was established according to the similarity of appliance current
waveforms. The appliance identification under the constraints of user operation and
appliance signatures was realized by optimizing the switching coefficient of the template
current in the library. Yanchi Liu et al. [32] proposed a transfer learning method based
on the V-I trajectory to solve the problem of limited data label acquisition. Moreover,
the V-I trajectory was also transferred to visual representation by color encoding, which
enhanced the appliance signature’s uniqueness and enabled the NILM implementation
of transfer learning. Ref. [33] proposed adaptive weighted recurrence graphs blocks for
appliance signature representation in event-based NILM. By transforming the activation
current of one cycle into a weighted recursive graph to guarantee the uniqueness of the
appliance signatures, the proposed method achieved better recognition results on LILACD
and PLAID public datasets than traditional V-I-trajectory-based methods.

Lately, to solve the problem of the V-I trajectory signatures not being able to represent
the energy information and the pixel utilization rate of the V-I trajectory image being low,
Reference [34] added motion and momentum information to original V-I trajectory images
through color encoding. Then, the active and reactive power information was discretized
using the Chi2 method, and the result was added to the background’s invalid pixels.
Finally, the V-I trajectory was classified using a deep forest. A reconstructed V-I trajectory
was proposed, and the PSO algorithm was introduced to determine the best threshold
parameters to maximize the model’s ability to classify, which can solve the problem of the
existing V-I trajectory-based methods finding it difficult to identify similar appliances [35].
To ensure the identification accuracy of known appliances and realize the identification of
unknown appliances, Zhao, Q et al. [36] proposed a V-I-trajectory-enabled deep pairwise-
supervised hashing (DPSH) method for NILM. This method adopted a simple convolutional
neural network for high-dimensional feature extraction. Then, to ensure the accuracy of
identified appliance recognition and realize unknown appliance recognition, the method
adopted a two-layer symmetric network structure and hash function learning to determine
the coding rules. Therefore, the Hamming distance between the V-I trajectory codes of
different known appliances was maximized to accurately recognize known appliances.
This method can generate a new hash code for the unknown appliance when it appeared
in the user environment. It can ensure the accuracy of the known appliance recognition
while realizing the unknown appliance recognition. Yinghua Han et al. [37] proposed an
asymmetric deep supervised hashing (ADSH) method based on the V-I trajectory signatures
for NILM. This method used the V-I trajectory as the input for model, which solved the
problems of the low calculation efficiency of massive data and low discrimination of
manually extracted signatures. At the same time, hash code learning was performed with
an asymmetric learning architecture; that is, for some training trajectories, high-dimensional
feature extraction and hash function learning were used to determine the coding rules
through a convolutional neural network model. For all training trajectories, the coding
rules were directly learned to ensure that both codes were consistent in order to realize
appliance recognition, which significantly improved the accuracy of appliance recognition
while ensuring that the code length was small and the space complexity was reduced. To
solve the problem of the label data being challenging to obtain and the V-I trajectory of
the multi-state appliances being difficult to correctly identify, a semi-supervised learning
method was proposed that was based on the semi-supervised teacher graph network [38].
This method made the feature distribution of the multi-state appliance more compact by
constructing the teacher graph to improve the recognition results.
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3. Datasets for the Study of V-I Trajectory Signature

The algorithm based on the V-I trajectory signature is mainly used to identify the
switching events of the appliance correctly and, at the same time, detect the appliance’s
power according to the appliance’s voltage and current. Therefore, the current literature
predominantly uses public high-frequency datasets, mainly because the low-frequency
data cannot capture the switching events of the appliance. Next, we will introduce some
commonly used datasets for V-I trajectory extraction.

The REDD [39] dataset consists of whole-home and circuit/device-specific electricity
consumption for seven real houses over a total period of 119 days from the US. The REDD
dataset contains two main types of home electricity data: high-frequency current/voltage
waveform data of the two power mains (as well as the voltage signal for a single phase)
sampled at 15kHz from House3 and House5. The data are logged at a frequency of
approximately once a second for the mains and once every three seconds for the circuits
from House1 to House6. All file measurements are provided as generic data (DAT) files.
The REDD dataset can be obtained from the website: http://redd.csail.mit.edu accessed on
23 November 2022. It can be downloaded upon requesting the logging credentials by email.

The PLAID [40–42] dataset includes current and voltage measurements for different
residential appliances in Pittsburgh, Pennsylvania, USA. It has a 2014 release (PLAID
1), a 2017 release (PLAID 2), and a 2018 release. The 2014 release contains measure-
ments for more than 200 different appliance instances representing 11 appliance types in
56 households, and a total of 1094 records collected at 30 kHz. The 2017 release contains
measurements for more than 82 different appliance instances representing 11 appliance
types in 9 households, and a total of 719 records collected at 30 kHz. The 2018 release
contains measurements for more than 330 different appliance instances representing 17 ap-
pliance types in 65 households, and a total of 1876 records collected at 30 kHz. Additionally,
1314 records of the combined operation of 13 of these appliance types are contained in the
PLAID. All file measurements are provided in CSV format. The PLAID dataset can be
obtained from the website: http://www.plaidplug.com accessed on 23 November 2022.

The WHITED [43] dataset records the first 5 s of the appliances’ voltage and current
start-up measurements sampled at 44.1 kHz. WHITED comprises 1100 different records for
110 different appliances, which can be grouped into 47 different types (classes) in 6 different
regions, and these single-phase measurements of households and industries are collected
from Germany, Austria, Indonesia, and, recently, Canada. All data are saved as FLAC
files. The WHITED dataset can be obtained from the website: https://www.in.tum.de/i13/
resources/whited accessed on 23 November 2022.

The COOLL [44] dataset records 6 seconds of voltage and current measurements
corresponding to 42 different appliances representing 12 appliance types’ start-ups from
a French University, where the sampling frequency is 100 kHz. Researchers performed
measurements using an acquisition system coupled with an additional control system,
allowing for the precise control of the turning on and turning off of appliances. As a result,
20 different energy consumption variations for each appliance were captured. The COOLL
dataset contains 1680 “.flac” files (840 current and 840 voltage measurement instances)
representing current and voltage measurements. All data are provided in FLAC format. The
COOLL dataset can be obtained from the website: https://coolldataset.github.io accessed
on 23 November 2022.

The LILACD [45] dataset measures the electricity consumption of three-phase and
single-phase industrial appliances from Germany, where the voltage and current are
sampled at 50 kHz. The dataset contains 15 different types of loads, resulting in a to-
tal of 1302 measurements: 381 for a single appliance, 864 for a combination of two
appliances, and 56 for a combination of three appliances. All measurements are pro-
vided in TDMS format. The LILACD dataset can be obtained from the website: https:
//www.in.tum.de/i13/resources/lilacd accessed on 23 November 2022.

http://redd.csail.mit.edu
http://www.plaidplug.com
https://www.in.tum.de/i13/resources/whited
https://www.in.tum.de/i13/resources/whited
https://coolldataset.github.io
https://www.in.tum.de/i13/resources/lilacd
https://www.in.tum.de/i13/resources/lilacd
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The BLUED [46] dataset collects single-phase voltage and current measurements at the
main panel and separate appliance channels for a whole week in Pittsburgh, Pennsylvania.
The sampling frequency of the collection system is 12 kHz, and there are approximately
50 appliances in the household. Once all of this was completed, there was a total of
2355 events labeled in the dataset. All data are provided in TXT and MAT formats. The
BLUED dataset can be obtained from the website: http://nilm.cmubi.org accessed on
23 November 2022.

4. V-I Trajectory Extraction

The basic implementation framework of NILM is shown in Figure 3. First, NILM needs
to obtain the user’s terminal voltage and total current measurements or total power con-
sumption data and extract the corresponding to signatures, and then detect the switching
events of the appliance and extract appliances’ signatures to train the NILM model, which
establishes the mapping relationship between the signatures and the appliance operating
state. Among them, the weather data and appliance signature libraries can help to improve
the performance of the model. Appliance identification or energy disaggregation results
could be communicated to grid companies and electricity consumers.

Event Detection

Appliance modeling & 

NILM model training

Appliance state 

identification & 

energy disaggregation

Terminal voltage &

 total current data

Result

Consumer electrical data, 

weather data

Appliance signature 

library

Grid User

R
esu

lt

Figure 3. Typical event-based NILM framework.

As described in the previous literature, the classification algorithm based on the V-I
trajectory signatures can accurately detect the switching events of the appliance. To extract
the V-I trajectory of each appliance, we assume that only one appliance switches state at one
moment and extract the total voltage and current values before and after the event, marked
as Von, Vo f f , Ion, and Io f f , respectively. Then, the steady state current and voltage values

http://nilm.cmubi.org
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of the appliance where the switching event occurs can be calculated using the following
formula [16,32]:

V = (Von + Vo f f )/2 (1)

I = (Io f f − Ion) (2)

According to the voltage and current data of the load, a two-dimensional V-I trajectory
image can be plotted.

The V-I trajectory features of loads can be visualized for an easy understanding. We
draw some appliances’ V-I trajectory images on the PLAID dataset, as shown in Figures 4–6.
As we can see, Figure 4 shows the original V-I trajectory image. We normalize the voltage
and current so that the trajectories of all appliances have the same scale. For each appliance,
the one-cycle-long steady-state voltage and current are used to plot the V-I trajectory. The
shape signatures can be preliminary defined to describe the shapes of the trajectories. The
shape signatures contain asymmetry, the looping direction, the area, the curvature of the
mean line, self-intersection, the slope of the middle segment, the area of the left and right
segments, and the peak of the middle segment [16,21]. Figure 5 is a binary V-I trajectory
image, which is one channel. We converted the amplitude-normalized V-I trajectories
into binary images by setting up a w × w mesh on the raw V-I trajectories and making
each cell 1 if there exist points within it, and 0 otherwise. In Figure 5, the w was set to 16,
and the V-I trajectory mainly includes the appliances’ shape signatures. Some researchers
recently input binary V-I trajectories directly into deep neural networks, transformed the
original data into higher-level and more abstract signature expressions through some
simple nonlinearities, and then identified the appliance. The artificial neural network
automatically extracts the signature extraction in the deep learning method. In contrast,
the deep learning method not only has lower requirements for signature extraction and
does not need the participation of experts but also has less human intervention, and the
signature extraction itself is more comprehensive. To make the V-I trajectory image contain
unique information about the appliance and facilitate the classification of the appliance [32],
more appliance information is added to the V-I trajectory image to form three-channel V-I
trajectory images, as shown in Figure 6. We calculated the pixel values of the three channels
of the V-I trajectory according to the voltage and current values of different appliances,
and then drew the color V-I trajectory images of different appliances, which were then
identified by the deep learning algorithm. As a result, they are unique and can better
identify appliances.

(a) (b) (c)

Figure 4. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4. The generated original images of (a) air conditioner, (b) compact fluorescent lamp, (c) fan,
(d) fridge, (e) hairdryer, (f) heater, (g) incandescent light bulb, (h) laptop, (i) microwave, (j) vacuum,
and (k) washing machine for PLAID dataset.

(a) (b) (c) (d)

Figure 5. Cont.
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(e) (f) (g) (h)

(i) (j) (k)

Figure 5. The generated binary images of (a) air conditioner, (b) compact fluorescent lamp, (c) fan,
(d) fridge, (e) hairdryer, (f) heater, (g) incandescent light bulb, (h) laptop, (i) microwave, (j) vacuum,
and (k) washing machine for PLAID dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6. The generated color images of (a) air conditioner, (b) compact fluorescent lamp, (c) fan,
(d) fridge, (e) hairdryer, (f) heater, (g) incandescent light bulb, (h) laptop, (i) microwave, (j) vacuum,
and (k) washing machine for PLAID dataset.



Energies 2023, 16, 939 11 of 15

5. Performance Metrics

The appliance identification of a specific V-I trajectory image is a binary classification
problem. The classification prediction labels are divided into target appliance labels (correct
prediction) and other appliance labels (prediction errors). The goal of load identification is
to accurately identify more target load V-I trajectory images and avoid misjudging other
appliance V-I trajectory images as target appliances as much as possible. The confusion
matrix is a standard tool for the overall performance evaluation of binary classifier models.
As shown in Table 1, the confusion matrix shows all possible classification results of the
binary classifier, in which the row indicates the category that the V-I trajectory image
belongs to, and the column indicates whether the V-I trajectory image predicted by the
classifier belongs to the target appliance or other appliance.

Table 1. Confusion matrix applied in load identification.

Reference
Prediction

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

In the table, True Positive (TP) indicates the number of true classes. The real class of
the sample is a positive class, and the result of model identification is also a positive class.
False Negative (FN) indicates the number of false negative classes. The real class of the
sample is positive, but the model identifies it as negative. False Positive (FP) indicates the
number of false positive classes. The real class of the sample is negative, but the model
identifies it as positive. True Negative (TN) indicates the number of true negative classes.
The true class of the sample is negative, and the model identifies it as such.

According to the confusion matrix, multiple evaluation indicators can be deduced:
Precision, Recall, and F1 score (F1-score). The details are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

The F1-score measures the overall accuracy of the load identification algorithm and is
a weighted average of Precision and Recall. The larger the value of F1-score, the higher the
identification accuracy of the appliance and the better the identification performance.

Fmacro =
N

∑
i=1

F1,i (7)

where Fmacro is the average of F1-score scores of all of the appliances. N is the number of
appliances in the dataset and F1,i is the F1-score score of the ith appliance.

We conclude the current algorithm for load identification based on V-I trajectory fea-
tures in Table 2, where the publication year of the paper, the datasets used, the number
of types of appliances, the frequency of datasets, and the evaluation metrics and perfor-
mance are listed. It can be observed from Table 2 that the results of the load identification
algorithm based on the V-I trajectory signatures are increasing, mainly because the V-I
trajectory contains more and more appliances’ signature information due to the application
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of machine learning algorithms on the V-I trajectory classification. These results can meet
the needs of practical NILM.

Table 2. Existing methods for load identification based on V-I trajectory features.

Methods Year of Publication Dataset Frequency Number of Appliances Metrics Performance

[20] 2006 - - - - -

[21] 2007 - - - - -

[22] 2013 REDD 16.5 kHz 22 Precision 0.909

[17] 2015 PLAID 30 kHz 11 Accuracy 0.8603

[23] 2015 REDD 16.5 kHz 22 Accuracy 0.9134

[24] 2016 private 30.72 kHz 23 Accuracy 0.99

[25] 2017 PLAID 30 kHz 11 Accuracy 0.8175

[26] 2018 PLAID 30 kHz 11 F-measure 0.7760
[26] 2018 WHITED 44 kHz 22 F-measure 0.7546

[27] 2018 PLAID(2018) 30 kHz 12 F-measure 0.8795

[28] 2018 PLAID 30 kHz 11 F-measure 0.7816

[16] 2018 REDD 16.5 kHz 22 F-measure 0.9643

[29] 2018 PLAID 30 kHz 11 RI 0.996
[29] 2018 WHITED 44 kHz 22 RI 0.879

[30] 2019 COOLL 100 kHz 42 Accuracy 0.99

[31] 2019 BLUED 20 kHz 22 Accuracy 0.90
[31] 2019 Laboratory data - 12 Accuracy 0.90

[32] 2019 PLAID 30 kHz 11 F-macro 0.9540
[32] 2019 WHITED 44 kHz 54 F-macro 0.9866

[33] 2020 PLAID 30 kHz 12 F-macro 0.9777
[33] 2020 LILACD 50 kHz 16 F-macro 0.9833

[34] 2021 PLAID 30 kHz 11 Accuracy 0.985

[35] 2021 PLAID 30 kHz 11 F-macro 0.9736
[35] 2021 IDOUC 30 kHz 23 F-macro 0.9878

[36] 2021 REDD 16.5 kHz 10 F-macro 0.984
[36] 2021 PLAID 30 kHz 6 F-macro 0.969

[37] 2021 REDD 16.5 kHz 10 F-macro 0.974
[37] 2021 PLAID 30 kHz 6 F-macro 0.961

[38] 2022 PLAID 30 kHz 11 F-macro 0.928
[38] 2022 WHITED 44 kHz 54 F-macro 0.9838

6. Conclusions

NILM can provide fine-grained data for appliances and is an effective means for power
grid companies and users to obtain the appliance operating status and energy consumption
information at a low cost. In this paper, these state-of-the-art load identification methods
based on the V-I trajectory signature in NILM were analyzed and discussed in detail. First,
the existing literature was surveyed and analyzed separately. Then, dataset selection, V-I
trajectory signature extraction, and evaluation metrics based on the V-I trajectory were
analyzed in detail.

Given the current analysis of V-I trajectory signature extraction and classification,
these methods based on the V-I trajectory still have open work:

1. At present, the V-I trajectory is obtained by normalizing the voltage and current data,
which leads to the lack of energy information.
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2. An appliance with continuously varying power is difficult to be represented by the
V-I trajectory; examples are dimmers and tools.

3. When a new appliance is added, or the appliance works abnormally, it is necessary to
detect these abnormal V-I trajectories.

4. Due to the difficulty in obtaining high-frequency data and the expensive data storage,
it is necessary to reduce the necessary number of training data.

5. How to obtain the power consumption information of an appliance through the
identification of the V-I trajectory is still an open work.
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