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Abstract: In the process of geo-energy drilling, the real-time vibration measurement of drill pipes is
of significance for an understanding of the downhole conditions and the properties of rock. However,
the vibration sensors used in downhole areas at present require additional power sources, such as
batteries, and replacing the batteries would significantly reduce production efficiency and increase
costs. In our work, a new vibration measurement method using a triboelectric nanogenerator is
proposed which will synchronously achieve axial and lateral vibration, and also simultaneously be
self-powered. The triboelectric nanogenerator is mainly made of nanomaterials, such as polyimide
film and polytetrafluoroethylene (PTFE), and depends on the pulse signal generated by the contact
of the two friction layers to measure the vibration frequency. Axial vibration tests show that the
output voltage signal amplitude is approximately 3 V, the measurement range is from 0 to 9 Hz,
the measurement error is less than 4%, and the maximum output power is 5.63 uW. Additionally,
the lateral vibration tests show that the output voltage signal amplitude is approximately 2.5 V, the
measurement range is from 0 to 6.8 Hz, the measurement error is less than 6%, and the maximum
output power is 4.01 uW. The nanogenerator can typically work in an environment where the
temperature is less than 145 ◦C and the relative humidity is less than 90%.

Keywords: triboelectric nanogenerator; self-powered; sensor; vibration measurement

1. Introduction

The vibration of the drill pipes in the geo-energy drilling process may damage the
downhole drilling tool, decrease the drilling efficiency, and even cause a downhole accident
if the vibration is too strong [1]. Researchers have achieved results worldwide regarding the
vibration measurement of drill pipes. For example, a three-axis accelerometer can measure
the vibration frequency of a blow-out preventer (BOP) stack [2]. A designed joint can
measure the levels of axial and torsional vibration [3]. Additionally, a wire telemetry system
composed of accelerometers can measure the force, vibration, and formation parameters [4].
A measure-while-drilling (MWD) sensor can be used to measure axial, tangential, and
radial acceleration changes [5,6]. A gyro can measure the angular velocity and obtain
the vibration frequency by analyzing the output data [7]. Furthermore, sensors’ response
elaboration can be combined with machine learning to improve responses [8].

There are many vibration measurement methods for drill pipes, such as surface
measurement [9] and downhole measurement [10]. Due to the severe attenuation effect
when the vibration propagates in the drill string, it is difficult to obtain the actual motion
state of the downhole drill string by surface measurement, so the downhole measurement
is mainly used at present. However, neither of the two vibration measurement methods
has the function of self-powered supply, a deficiency which seriously affects the drilling
efficiency. Self-powered sensors do not require an external power source, saving a small
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amount of downhole space. In addition, self-powered sensors eliminate the need for
periodic power source replacements, improving drilling efficiency. Therefore, self-powered
sensors are undoubtedly more suitable for the work requirements of deep drilling. Because
of their excellent characteristics, nanomaterials are widely used in various fields, such as
machining [11–13], aerospace [14,15], photovoltaic energy [16] and so on.

The triboelectric nanogenerator was proposed in 2012 [17], and has been widely used
in the fields of energy harvesting and sensors (Figure 1). For example, in the field of
sensors, triboelectric nanogenerators have been widely used in gesture monitoring [18,19],
pressure monitoring [20,21], acceleration monitoring [22–24], speed monitoring [25,26],
rotation monitoring [27–29], health monitoring [30,31], sports monitoring [32–34], etc. In
the field of energy harvesting, triboelectric nanogenerators have been widely used to
harvest ocean energy [35,36], wind energy [37–39], vibration energy [40–42], rotational
energy [43,44], rain energy [45–47], biomechanical energy [48–50], etc. Therefore, the
triboelectric nanogenerator is very suitable for developing self-powered sensors. In this
work, a new vibration measurement sensor is designed on the basis of a triboelectric
nanogenerator. Subsequently, the sensor is installed in the existing downhole instrument,
so that the axial and transverse vibration can be measured simultaneously.
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a thickness of 0.05 mm, and a PTFE (polytetrafluoroethylene) layer with a thickness of 
0.03 mm is pasted onto its surface as the friction layer. The buffer layer of the pedestal, 
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Lingmei Co., Ltd., Dongguan, China) with a thickness of 0.1 mm, and a Cu layer with a 
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Figure 1. Application of Triboelectric Nanogenerator. (a) Triboelectric nanogenerator used to measure
acceleration [22]; (b) Triboelectric nanogenerators for energy harvesting [37].

2. Manufacturing and Working Principle
2.1. Composition and Manufacturing

As shown in Figure 2a,b, the sensor, with a size of ϕ150 × 30 mm (ϕ is the outer
diameter), is mainly composed of a pedestal, a weight block and three springs, in which
the friction layers adhere to the weight block and the pedestal. The pedestal and weight
block are 3D-printed using the polylactic acid (PLA) material, with a printing temperature
of 210 Celsius, printing layer thickness of 0.2 mm, and printing structure duty cycle of 80%.
The electrode layer of the weight block, both in the axial direction (the x axis direction in
Figure 2a) and lateral direction (the yz plane in Figure 2a), is made of Cu (copper) with
a thickness of 0.05 mm, and a PTFE (polytetrafluoroethylene) layer with a thickness of
0.03 mm is pasted onto its surface as the friction layer. The buffer layer of the pedestal,
both axial direction and lateral direction, are all made of polyimide film (PY11YG, Lingmei
Co., Ltd., Dongguan, China) with a thickness of 0.1 mm, and a Cu layer with a thickness of
0.05 mm is pasted onto its surface as the electrode layer and friction layer. The function
of the buffer layer is to convert the hard friction between the two friction layers into soft
friction, thereby expanding the contact area of the two friction layers. Since the contact
area between the two friction layers is proportional to the power generated by contact
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friction [21], the buffer layer increases the output signal amplitude and the service life of
the sensor. In addition, the sensor size is compatible with existing bits and drill pipes sizes
to ensure adequate installation space.
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Figure 2. Composition and working principle of the vibration sensor. (a) Composition of the 
vibration sensor; (b) picture of the vibration sensor; (c) working steps of the vibration sensor when 
measuring axial vibration, and c–i to c–v are the schematic diagrams of various states in the working 
process; and (d) theoretical output voltage signal when measuring axial vibration. 

2.2. Working Principle 
As shown in Figure 2a,b, the weight block and the pedestal generate the same contact 

frequency as the vibration frequency when the axial vibration (or lateral direction 
vibration) is being measured. Due to the presence of the friction layer on the weight block 
and the pedestal, a regular charge transfer will occur when two friction layers are in 
contact and separated, and so the vibration frequency of the axial direction (or lateral 
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Figure 2. Composition and working principle of the vibration sensor. (a) Composition of the vibration
sensor; (b) picture of the vibration sensor; (c) working steps of the vibration sensor when measuring
axial vibration, and c–i to c–v are the schematic diagrams of various states in the working process;
and (d) theoretical output voltage signal when measuring axial vibration.

2.2. Working Principle

As shown in Figure 2a,b, the weight block and the pedestal generate the same contact
frequency as the vibration frequency when the axial vibration (or lateral direction vibration)
is being measured. Due to the presence of the friction layer on the weight block and the
pedestal, a regular charge transfer will occur when two friction layers are in contact and
separated, and so the vibration frequency of the axial direction (or lateral direction) can be
obtained by analyzing the rule of charge. A further explanation of the working principle
for the sensor measuring the axial vibration is shown in Figure 2c; the friction layer of
the weight block is named the upper friction layer, while the friction layer of the pedestal
is named the lower friction layer for the convenience of introduction. The principle of
measuring the lateral vibration is the same as that of determining the axial vibration, and
so we do not repeat it.

Figure 2(ci) shows the initial state. Because there is no contact between the upper and
the lower friction layer, there is no electric charge generated, and the open circuit voltage
is 0. As shown in Figure 2(cii), the upper and lower friction layer contact each other due
to the inertial force when the axial vibration occurs. Because Cu is more likely to lose
electrons than PTFE [22], the lower friction layer is positively charged, while the upper
friction layer is negatively charged, and the open circuit voltage remains at 0 V. As shown
in Figure 2(ciii), the two friction layers will gradually separate from each other due to the
restoring force of the spring, which causes the open circuit voltage to gradually increase.
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As shown in Figure 2(civ), the separation distance between the two friction layers reaches
the maximum value, and the open circuit voltage also increases to the maximum value.
As shown in Figure 2(cv), the two friction layers become close again due to the inertial
force when a new axial vibration begins, which causes the open circuit voltage to gradually
decrease to 0. The theoretical output voltage signal of the above steps is shown in Figure 2d.
Every time the above process is repeated, a voltage pulse signal will be generated, so we
take the voltage pulse signal as the basis for detection.

The sensor is designed based on the triboelectric nanogenerator of vertical contact
type, and so the theoretical output of open-circuit voltage Voc and short-circuit ISC can be
expressed by the following formula [51].

Voc =
σx(t)

ε0
(1)

Isc =
Sσd0

(d0 + x(t))2
dx
dt

(2)

where σ is the charge density, ε0 is the vacuum permittivity, x(t) is the separation distance
between the two contact materials, S is the area of friction contact, d0 is effective thickness
constant of two friction contact materials.

3. Tests

The tests are divided into three parts. The first part consists of the measurement
function tests, which are mainly used to verify the performance of the sensor in measuring
vibration. The second consists of the power generation function tests, which are mainly
used to measure the power generation performance of the sensor. The last consists of the
environmental tests, which are mainly used to test the characteristics and reliability of the
sensor in different environments.

3.1. Test Devices

As shown in Figure 3, the test devices are composed of a vibration table, an electrome-
ter, and a computer. The sensor is fixed on a vibration table, where the vibration table is
composed of a motor, a crank and a connecting rod mechanism. The vibration table can
provide a maximum vibration frequency of 900 Hz by adjusting the motor output speed.
The longitudinal or transverse vibration can be measured by changing the installation
position of the sensor. The output signal of the sensor is detected by the electrometer (6514,
Keithley Co., Ltd., Cleveland, OH, USA) and then input to the computer, and the test results
are further displayed through the software in the computer.
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3.2. Measurement Function Tests

When vibration occurs, the weight block of the sensor and the base will continuously
come into contact and then separate, and a voltage pulse signal will be generated during
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every two periods of contact between the two. Therefore, the vibration frequency can be
judged by the voltage pulse signal frequency of the sensor. We tested the measurement
performance of the sensor, and the results are shown in Figure 4. As shown in Figure 4a,b,
the sensor can output voltage pulse signals when measuring axial vibration and lateral
vibration, and the number of pulses corresponds to the vibration frequency. However, the
sensor outputs a small positive pulse signal after the negative pulse signal, which is different
from the theoretical waveform shown in Figure 2d. The reason is that, in theory, the weight
block should directly return to the initial state, and there is no positive pulse signal in this
case. However, a small damping motion near the initial state is made, thus generating a
small positive pulse. Furthermore, during the measurement process, due to factors such
as weight block not rebounding in time under the action of inertia, measurement errors
will also occur. As shown in Figure 4c, when the axial and the lateral vibration frequencies
are from 0 to 9 Hz and 0 to 6.8 Hz, respectively, the output voltages of the sensor are about
3 V and 2.5 V, respectively, and the measured value of the sensor is garbled when the
frequency exceeds the above range. As such, the measurement ranges of axial and lateral
vibration are from 0 to 9 Hz and 0 to 6.8 Hz, respectively. During the measurement error
tests of the sensor, 10 groups of data are measured at each vibration frequency, and the
measurement error is defined as the ratio of the measurement difference to the standard
value. The mean values of the error are taken as the starting points of the error rod, the
standard deviations are taken as the lengths of the error rods, and the measurement results
are shown in Figure 4d. As shown in Figure 4d, the measurement errors of the sensor are
scattered and irregular at different frequencies. Therefore, the maximum value is taken as
the measurement error of the sensor, that is, the maximum measurement errors in axial
vibrations and lateral vibrations are less than 4% and 6%, respectively.
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Figure 4. Results of vibration tests. (a) Output voltage when the axial vibration frequency is 8.5 Hz;
(b) output voltage when the lateral vibration frequency is 8.5 Hz; (c) output voltage of axial and
lateral vibration at different frequencies; and (d) measurement error of axial and lateral vibration at
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3.3. Power Generation Function Tests

Furthermore, we tested the power generation performance of the sensor. First, when
the external load was 10 ohms, we tested the current of the sensor at different vibration
frequencies, and the results are shown in Figure 5a. It can be seen from Figure 5a that the
output current during axial and lateral vibration is basically proportional to the vibration
frequency. The reason for this may be that the faster the vibration is, the greater the number
of collisions per unit time there are, a situation which leads to an increase in the amount of
charge transferred per unit time. Therefore, the output current increases. Then, we tested
the power generation performance of the sensor in cases of an axial vibration of 9 Hz and
a horizontal vibration of 5.5 Hz, respectively. The results were shown in Figure 5b,c. It
can be seen that, as the load increases, the load voltage gradually increases, and the load
current gradually decreases. When the load is less than 104 ohm or more than 108 ohms,
this change trend is relatively smooth. When the load is between 104 and 108 ohms, this
change trend is more drastic. When the load is 105 ohms, both the axial vibration and
horizontal vibration reach the maximum load power. The maximum load power of the
axial vibration is 5.63 µW, and the maximum load of the horizontal vibration is 4.01 µW.
In addition, we also measured the output power under different vibration frequencies. It
can be seen from Figure 5d that the output power increases with the increase in vibration
frequency when there is a 105 ohm resistance in series. This may be the increase in the
output current per unit time due to the increase in vibration frequency, resulting in an
increase in the output power calculated by our measurement system.
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the sensor at different relative humidities. The output voltage will drop by approximately 
22% when the environmental relative humidity increases to 90%. Although the reduced 
voltage amplitude still has a high signal-to-noise ratio, moisture-proof measures are also 
necessary in order to ensure the optimal performance of the sensor. Furthermore, we 
tested the output voltage of the sensor at different cycle groups. From the results shown 
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number of cycle groups increases, but the amplitude after the decrease is still higher, 
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Figure 5. Results of power generation function tests. (a) Output current of the axial and the lateral
vibration at different frequencies; (b) output current, voltage, and power of the axial vibration under
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3.4. Environmental Tests

The environment affects the output of a sensor, and so we conducted environmental
tests; the results are shown in Figure 6. Since the temperature of coal methane drilling is
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generally not higher than 120◦, we tested the output voltage of the sensor in a range below
145 ◦C. From the results in Figure 6a, it can be seen that the output voltage for measuring
axial and lateral vibrations decreases with the increase in temperature, but the signal
attenuation is not obvious. Therefore, the sensor can still work normally in a temperature
range below 145 ◦C as the decreased voltage amplitude still has a higher signal-to-noise
ratio. In addition, the output lag of the sensor occurs when the temperature change is large
and rapid, but the sensor output is not affected in actual drilling because the downhole
temperature changes very slowly. As shown in Figure 6b, we tested the output voltage of
the sensor at different relative humidities. The output voltage will drop by approximately
22% when the environmental relative humidity increases to 90%. Although the reduced
voltage amplitude still has a high signal-to-noise ratio, moisture-proof measures are also
necessary in order to ensure the optimal performance of the sensor. Furthermore, we
tested the output voltage of the sensor at different cycle groups. From the results shown in
Figure 6c,d, it can be seen that the output voltage exhibits a slight decrease as the number of
cycle groups increases, but the amplitude after the decrease is still higher, which indicates
that the sensor has high reliability.
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4. Conclusions and Discussions

A new vibration measurement method is presented which can measure the axial and
lateral vibration of drill pipes in a self-powered model, using a triboelectric nanogenerator
for geo-energy drilling. The axial vibration tests show that the output voltage signal
amplitude is approximately 3 V, the measurement range is from 0 to 9 Hz, the measurement
error is less than 4%. When the load is 0.1 M ohms and the vibration frequency is 9 Hz,
the maximum output power is 5.63 µW. Meanwhile, the lateral vibration tests show that
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the output voltage signal amplitude is approximately 2.5 V, the measurement range is
0 to 6.8 Hz, and the measurement error is less than 6%. When the load is 0.1 M ohms and
the vibration frequency is 5.5 Hz, the maximum output power is 4.01 µW. In addition,
the sensor can work normally and with high reliability in an environment where the
temperature is less than 145 ◦C and the relative humidity is less than 90%.

Compared with the traditional downhole vibration sensor, the sensor has the following
advantages. Firstly, the sensor requires no external power, which will be it more suitable for
use in downhole working environments. Secondly, the sensor can measure not only axial
vibration, but also lateral vibration, which makes the sensor richer in functions. Thirdly,
if multiple sensors are connected in series and the output power is stored for a certain
period of time, it is possible to use this to supply power for other downhole low-power
instruments in real time.

However, there are still some limitations that need to be improved. Firstly, the lateral
vibration of the drill pipes includes general lateral vibration and torsional vibration if
strictly divided. Due to the limitations of the structure, the sensor cannot make such a fine
distinction between the two vibrations at this stage. Thus, the question how to distinguish
between the two vibrations is a key point to be considered in future study. Secondly, the
power generated by the sensor is very small, and remains is far from the real-time power
supply required for other downhole instruments. Thus, the issue of how to increase the
power generation, which must be assessed by comprehensively considering the sensor
structure, the selection and preparation of nanomaterials, and the surface characteristics of
the materials, is another key point to be investigated in our future work.
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