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Abstract: Nitrate (NO3
−-N) and nitrites (NO2

−-N) are common pollutants in various water bodies
causing serious threats not only to aquatic, but also to animals and human beings. In this study, we
developed a strategy for efficiently reducing nitrates in microbial fuel cells (MFCs) powered by a
granular activated carbon (GAC)-biocathode. GAC was developed by acclimatizing and enriching
denitrifying bacteria under a redox potential (0.3 V) generated from MFCs. Thus, using the formed
GAC-biocathode we continued to study their effect on denitrification with different cathode materials
and circulation speeds in MFCs. The GAC-biocathode with its excellent capacitive property can
actively reduce nitrate for over thirty days irrespective of the cathode material used. The stirring
speed of GAC in the cathode showed a steady growth in potential generation from 0.25 V to 0.33 V. A
rapid lag phase was observed when a new carbon cathode was used with enriched GAC. While a
slow lag phase was seen when a stainless-steel cathode was replaced. These observations showed
that effective storage and supply of electrons to the GAC plays a crucial role in the reduction process
in MFCs. Electrochemical analysis of the GAC properties studied using electrochemical impedance
spectroscopy (EIS), cyclic voltammetry (CV), and zeta potential showed distinct properties with
different abiotic and biocathode conditions. We found that the enrichment of electrotrophic bacteria
on GAC facilitates the direct electron transfer in the cathode chamber for reducing NO3

−-N in MFCs
as observed by scanning electron microscopy.

Keywords: granular activated carbon; direct electron transfer; microbial fuel cells; biocathode; stored
charge transfer; denitrification

1. Introduction

Among the nitrogenous compounds, nitrate (NO3
−) is the most widespread contami-

nant present in wastewater due to its high solubility in water and the thermodynamically
difficulty to fix in the environment [1,2]. It is a highly mobile and stable anionic contami-
nant that is in the most oxidized state and exists both synthetically and naturally [3,4]. Due
to its strong redox potential, it is considered a potent toxicant for cellular respiration in all
living organisms [3,5]. The biogeochemical cycles taking place in sludge and similar anoxic
environments demonstrate that NO3

−-N reduction is carried out by a group of denitrifying
bacteria [6]. However, denitrification can be observed in an aerobic environment [7]. Elec-
trotrophic denitrification, which differs from autotrophic and heterotrophic denitrification,
is a peculiar phenomenon seen in bioelectrochemical systems (BES) [8].

Biological denitrification is a preferable route, wherein bacteria can reduce NO3
− to

N2 with the combination of biological and electrochemical mechanisms in a BES [4,8,9].
Heterotrophic denitrifiers utilize organic substrates (electron donors) and reduce NO3

− to
N2 under anoxic conditions, resulting in a high-denitrifying rate and treatment capacity in
the treatment system [4,7] Nevertheless, nitrite (NO2

−), the denitrification intermediate,
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can accumulate in the process if the organic substrate does not fulfill the stoichiometric re-
quirements [10]. Thus, autotrophic denitrification is an alternative process to heterotrophic
denitrification, which is based on the activity of chemolithotrophic autotrophs which can
accept electrons flowing through the cathode to reduce NO3

− while fixing carbon dioxide
(CO2) [2,9,11]. In this process, autotrophic bacteria can derive their carbon source from
inorganic compounds, such as bicarbonate, and can utilize hydrogen (H2), reduced sulfur,
iron, or manganese as their electron sources necessary for metabolism [11,12].

Nevertheless, low power generation is one of the main challenges for the application
of microbial fuel cells (MFCs) in real-time. MFCs are a type of bioelectrochemical cells
which uses biocatalysts, such as bacteria, for catalyzing the reaction. Ohmic losses, slug-
gish kinetics, and the development of a concentration gradient between the electrodes are
the major reasons for the low performance of the MFCs [13,14]. Several attempts have
been made to improve the performance of the MFCs by modifying the reactor configu-
rations, using different electrode materials, applying transient operations, and adjusting
the pH [4,12]. In recent years, the application of low-cost carbon-derived biomass, such as
activated carbon powder (ACP), granular activated carbon (GAC), and activated carbon
nanofibers (ACNs) has attracted a lot of attention due to their excellent electrochemical
stability [9,15,16]. Among them, GAC is one of the most promising, readily available, and
inexpensive materials, which can store electrons in the form of an electrical double layer
(EDL), and a continuous current can be generated with intermittent contact between the
GAC particles and the current collector [9,17].

It has been proven that GAC particles possess capacitive properties and thus, are
used in MFCs to enhance power generation [9]. When GAC is used in an MFC, there is
a possibility of charge storage by the formation of an EDL on the electrode–electrolyte
interface [18,19]. However, there are very limited studies on the use of GAC in the cathode
chamber for the denitrification process.

In this study we investigated the NO3
− reduction in an MFC complemented using

GAC in the cathode compartment while monitoring its biochemical activity during the pro-
cess. GAC for electron storage and transfer for NO3

− reduction is a novel study conducted
by this group. We also studied the role of GAC in NO3

− reduction in a two-chambered
MFC under different conditions, such as different cathode conditions, different electrodes,
and the effect of rotations per minute (RPM). Deep analysis of the GAC properties was
also studied using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV),
and zeta potential. In addition, the bacterial growth on the GAC was investigated. To the
best of our knowledge colonization of electroactive bacteria on GAC for denitrification and
MFC studies has not reported in the literature.

2. Materials and Methods
2.1. MFC Configuration

An H-type two-chamber MFC was designed for this study. The two chamber of the
MFC were constructed by joining two Scott Duran glass bottles together with a working
volume of 100 mL. Both the anode and cathode chambers contained two side ports for
sampling. The anode and cathode chambers were separated by a cation exchange mem-
brane (CMI 7000, Membrane International, Ringwood, NJ, USA) with a surface area of
8.04 cm2. Before use in the MFC, the membrane was pre-treated by immersion in a 5%
sodium chloride (NaCl) solution for 12 h to activate the membrane pores. A carbon cloth
(Fuel cells store, Bryan, Texas, USA) of 2.5 cm × 5 cm was used as the anode and cathode
electrodes, respectively, unless otherwise stated. A copper wire (2 mm) was used to connect
the anode and cathode electrodes using a conductive epoxy, Eccobond 56 C (Emerson and
Cuming, Randolph, MA, USA) followed by a waterproof non-conductive epoxy (Devcon,
Solon, OH, USA).
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2.2. Inoculum and Operating Conditions

The MFC was operated at 30 ◦C. The anode chamber was inoculated with 10 mL of
anaerobic sludge from the Chuncheon wastewater treatment plant (Republic of Korea).
Both the anode and cathode medium contained (per liter) 4.33 g Na2HPO4, 3.04 g NaH2PO4,
0.31 g NH4Cl, and 0.13 g KCl. 10 mM of sodium acetate was added in the anodic chamber
as the electron donor. The MFC was operated with an aerating cathode and continued
operating for two to four weeks to enrich the electroactive bacteria in the anode. After
reproducible cycles of electric potential generation, the cathode media was changed to an
anoxic media with the following composition (per liter) of 4.4 g KH2PO4, 3.4 g K2HPO4,
0.5 g NaCl, 0.2 g MgSO4.7H2O, 0.014 g CaCl2, and 2 g NaHCO3. The cathode chamber
was inoculated with 10 mL anaerobic sludge from the Chuncheon wastewater treatment
plant (Republic of Korea) as an inoculum source for denitrifying bacteria. Potassium
nitrate (KNO3) was added at a concentration of 100 mg/L NO3

−-N which served as the
sole electron acceptor for the cathode reduction. The anodic chamber was operated in
semi-continuous mode by feeding 10 mM sodium acetate using a peristaltic pump (Longer
Precision Pump Co., Tucson, AZ, USA) to maintain the stable condition of the anode.

2.3. Enrichment of Bacteria on GAC

Approximately 200 g of GAC was filled in the 250 mL media bottle. GAC particles, in
the size range of 2–5 mm, were used in the cathode chamber to enhance electron storage
and transfer efficiency. Before use, GAC flakes were washed by soaking in distilled water
overnight followed by drying at room temperature to remove contaminants. Thereafter,
100 mL of cathode medium was filled inside the bottle. Finally, 20 mL of anaerobic sludge
was added to the bottle as an inoculum for the electroactive bacteria. The cathode medium
consisted of 100 mg/L NO3

−-N. The system was operated in anaerobic conditions and
batch mode. To check the activity of the GAC, a three-electrode system was set up in the
bottle: plain carbon cloth as the working electrode, Pt. wire as the counter electrode, and
Ag/AgCl as the reference electrode. NO3

− was fed into the system at 4-day intervals. Once
the GAC was enriched with electroactive bacteria, it is used in the MFC.

2.4. MFC Operation with Enriched GAC

The cathode remained in batch operation during all experiments. The cathode cham-
ber was supplied with a 100 mg/L nitrate-N whenever there was a decrease in potential,
corresponding to a depletion of NO3

−-N in the media. 2 g of enriched GAC was added in
the cathode chamber and operated at different RPM using a magnetic stirrer (2.5 cm). A
fixed external resistance of 1000 Ω was plunged between the anode and cathode electrodes.
The potential generated was measured every 10 min using a digital precision data acquisi-
tion system (Model 2700 Keithley Instruments, Inc., Beaverton, OR, USA) integrated into a
personal computer.

2.5. Electrochemical Analysis and Calculation

The electrochemical properties of the cathode were performed by cyclic voltammetry
(CV) and electrochemical impedance spectroscopy (EIS) using a Ivium potentiostat (Ivi-
umStat, AJ Eindhoven, The Netherlands.) with a three- and four-electrode system. The
cathode was used as the working electrode (WE), Ag/AgCl (+197 mV vs. SHE) served
as the reference electrode (RE) and the anode chamber was used as the counter electrode
(CE). The CV was performed in a fully operational MFC in the voltage range of −0.9 V to
+0.3 V at the scan rate of 10 mV. sec−1. Similarly, the EIS was performed in the frequency
range of 10 kHz–0.1 Hz. Before polarization analysis, the MFC was left in open circuit
mode for one to two hours to stabilize the voltage after which current was drawn from
the system in a step-by-step manner from 0.01 mA to 1 mA and the corresponding volt-
age was measured at each step for 300 to 600 s. The current and power produced from
the system were calculated using Ohm’s law. For example, power (P) was calculated as
P = IV (I = V/R), where I (A) is the current, V (V) is the voltage, and R (Ω) is the external



Energies 2023, 16, 709 4 of 11

load connected to complete the circuit. The power density was obtained by normalizing
the power produced to the surface area of the electrode.

2.6. Scanning Electron Microscope

The morphology of the biofilms formed on the GAC was examined by a scanning
electron microscope (SEM; S-4800, Hitachi, Japan). The samples for the SEM were processed
for imaging according to the method described elsewhere [20]. In detail, the GAC from the
cathode chamber was removed and immediately fixed with 2.5% glutaraldehyde overnight
at 4 ◦C. After being dried, the samples were serially dehydrated in a series of ethanol
solutions (i.e., 30, 50, 70, 80, 90, 95, and 100%), and then dried at a critical point for 12 h. All
the above-mentioned steps were performed under sterile conditions to avoid contamination
and the loss of desired outcomes.

2.7. Nitrate Analysis

NO3
−-N analysis was carried out in an Ion Chromatography Advanced Compact IC

813 with a conductivity detector (Metrohm, AJ Eindhoven, The Netherlands). The column
used was a metrosep-Asup 5, eluent system composed of 1 mM NaHCO3 and 3.2 mM
Na2CO3, and 50 mM sulfuric acid as a suppressor. Samples for analysis were collected
freshly every 12 and 24 h from the cathode, filtered, and performed with an optimized
method with standards with a flowrate of 0.7 mL min−1 in an autosampler.

3. Results
3.1. Denitrifying Bacteria on GAC

In this work, we studied the electron transfer system in which GAC was used in the
cathode chamber to store electrons. Enrichment of desirable bacteria on the GAC employed
with two different strategies showed excellent results. The enrichment with electroactive
bacteria on the GAC, as depicted in Figure 1a, showed similar results as those enriched
in MFCs. The desired electrochemical potential and media composition resulted in the
main role of acclimatizing and enriching the desired bacteria in the reactors which was
noted by the potential measured from the system. To confirm this, when the thus-formed
GAC-biocathode was inoculated and tested for NO3

−-N reduction, similar results were
seen in the MFC.
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3.2. NO3
−-N Removal in the MFC Using the GAC-Biocathode

The MFC was operated for at least three cycles with multiple replicates to reproduce
the attainable voltage output with an air cathode. Once the MFC started to reproduce a
voltage output of 0.30 V, the operating condition of the cathode chamber was then changed
to NO3

− media (per liter) containing 4.4 g KH2PO4, 3.4 g K2HPO4, 0.5 g NaCl, 0.2 g
MgSO4.7H2O, 0.014 g CaCl2, and 2 g NaHCO3 and inoculated the GAC-biocathode. Then,
the cathode was operated in biocathode mode using a mixed culture (anaerobic sludge)
as the inoculum. KNO3 was added to a concentration of 100 mg/L NO3

−-N as the sole
electron donor.

Figure 2 shows the removal of NO3
−-N in the MFC under different cathode conditions.

The GAC-biocathode showed a significant amount of NO3
−-N reduction at the same time

compared to GAC and without the GAC cathode systems. Faster denitrification with the
GAC-biocathode was due to the bacteria enriched on the GAC surface which resulted in a
maximum reduction of NO3

−-N on the first day (close to 40%), thereafter the rate dropped
slightly due to the availability of stored charge in the GAC. GAC without the enriched
bacteria showed the next best results with an approximately 50% NO3

−-N reduction,
observed over three days. However, the effect of GAC was noticeably higher irrespective of
enrichment compared to the MFC without GAC. Throughout the four-day run experiment
in the MFC, more than 90% denitrification was observed with the GAC-biocathode. The
effect of denitrification was also observed with the potential generation in the MFC, where
the electric potential ceased concerning NO3

−-N availability in the cathode chamber.
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Figure 2. Denitrification observed in the MFC under different cathode conditions. Noticeably, the
GAC-biocathode outperformed all the cathode systems tested in this study with the efficiency of
reducing over 90% of NO3

−-N in four days.

3.3. Effect of GAC (Enriched and New GAC) in the Cathode Chamber

Figure 3 shows the effect of GAC on power generation. Once the voltage output was
acclimatized in the biocathode mode, the effect of GAC on charge storage was examined in
the cathode chamber at different operatic conditions. Using new media and the new cathode
electrode, the MFC took approximately 14 h to regain its maximum voltage output. A
similar result was observed when fresh media with the same composition was replenished
in the subsequent cycle. The immediate potential generation in the new cathode electrode
could be due to the charge stored in the GAC. It can be concluded that the enriched GAC
with electroactive bacteria is efficient and reproducible in the biocathode.
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The denitrification MFC was run with 2 g of enriched GAC and enriched cathode
electrode in the new cathode media to investigate the electron transfer phenomenon of
GAC in the cathode chamber. Even though enriched GAC and enriched cathode electrodes
were employed, a modest increase in voltage was seen. To reach its maximum voltage
output again, it took roughly 55 h. The adaption of or the use of novel cathodic media may
be the primary cause of this constant potential. The enriched cathode was changed for a
new cathode electrode after the MFC had reached its maximum voltage output. In this case,
the voltage output quickly increased. The voltage output started at 0.16 V and increased
to its maximum voltage output in 2 h. When the stainless-steel cathode was employed,
and the cathode chamber was refilled with 100 mg/L NO3

−-N in subsequent transfer, the
voltage output also increased quickly even with the stainless steel cathode.

When the voltage output reached approximately 0.26 V, the effect of different RPMs
(0, 50, 100, 150, and 200) was tested in the cathode chamber. The cathode electrode was
replaced with an enriched GAC and a stainless steel electrode. With the stainless steel,
the power did not increase rapidly and took approximately 2 days to generate 0.25 V.
Figure 4 shows the potential generation in the denitrification MFC operated under different
cathode conditions.

Figure 5 shows the potential generation in the denitrification MFC without enriched
GAC. To further investigate the electrochemical properties of GAC in the MFC, enriched
carbon cloth was used as a replacement for the GAC-biocathode and operated under
similar conditions. With the enriched biocathode, a similar efficiency was observed as
the GAC-biocathode. Upon the addition of GAC particles in the media, the potential
was found to decrease steadily even in the presence of NO3

−-N. This could be due to
the phenomenon that electrons were utilized for charging GAC rather than reducing the
NO3

−-N and potential generation. When operated at different RPMs (0, 50, 100, 150 and
200), there was no noticeable effect on potential or denitrification as observed with the
enriched GAC-biocathode. The power gradually decreased after the introduction of a
new cathode electrode in the cathodic chamber. The voltage output decreased from 0.32 V
to 0.22 V within 10 h and continued to drop. The potential effect was further decreased
when the cathode was changed to stainless steel, the maximum voltage output was only
0.07 V. Ecell is the total cell potential, which is cumulative of the anode and cathode. The
similar Ecat of 0.12 V suggests that the reduction reaction in the biocathode (denitrification)
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was taking place at a similar rate, while the oxidation of organics in the anode resulted
in Ean. The same Ecat dropped down when switched to a new cathode and stainless
steel, indicating that the enriched electro-trophic denitrifying bacteria were distracted
during the transfer process. There is a strict need for this biocathode for acclimatizing,
enriching and culturing. This observation strongly recommends that the GAC-biocathode
enriched with electrotrophic, denitrifying bacteria can serve as an excellent material for
reduction reactions in MFCs. The capability of GAC to store and release charge depending
on the potential makes it an excellent material for the source and sink of electrons for
electrochemical and bio-electrochemical studies.
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3.4. Electrochemical Properties of the Biocathode

The electrochemical properties of the cathode were investigated by CV and EIS. The
EIS test performed in the presence and absence of GAC-biocathode enrichment showed that
the internal resistance and charge transfer of the MFC decreased with the GAC-biocathode
compared to one without (Figure 6). These results strongly suggest that the electrochemical
performance of the MFC in power generation can be improved with the application of a
biocathode and can minimize the losses associated with the system. The use of GAC helps to
decrease the internal resistance of the MFC thereby improving charge/electrons recovery.
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in the MFC for reduction reactions. NO3
−-N and NO2

−-N were used as reducing species
for this purpose due to their similar properties to become reduced by a similar bacteria
during denitrification reactions when occurring in wastewater, anaerobic sludge, and other
environmental conditions. A small hump during the forward scan was observed with
NO3

−-N indicating there was an oxidation reaction at high concentrations (100 mg/L
NO3

−-N concentration) which was inconsistent with low concentrations under the same
conditions. However, the reduction peaks showed consistency in all reverse scans in
CV indicating the effectiveness of the GAC-biocathode in reduction reactions. Similar
observations were also noted when operated with NO2

−-N. The reduction peaks observed
with NO2

−-N were more consistent with all tested concentrations. There was no observance
of the peak current at 0 mg/L of NO2

−-N and NO3
−-N in the MFC.

3.5. SEM Images of Bacteria Grown on Enriched GAC on the Biocathode

The micrographs from scanning electron microscopy are shown in Figure 8. A group
of bacteria appearing to be similar in morphology (slender rods with 0.5 µm) were found
adhered to the surface of the GAC. These bacteria were seen to have adhered to the surface
of the GAC and had direct communication with it rather than forming a biofilm, which
is a commonly observed phenomenon in electroactive bacteria. In general, GAC has a
large porosity and adsorptive capacity that can spread clumped microbes adsorbed onto
the electrode surface and increase the surface area of the electrode [21]. Consequently,
the higher specific area enabled the more effective collection of electrochemically active
microorganisms and the performance of GAC increased accordingly. The GAC acted as
a porous material with a variety of internal large holes and mesoporous structures. The
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rough surface of the GAC facilitated the attachment and growth of these bacteria and
possibly directed electron sharing. The attachment and enrichment of bacteria as well as
the colonization of the surface had a direct impact on the voltage output of the MFC.
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4. Discussion

The potential generation test, EIS, and CV characterizations demonstrate that enriched
GAC with electroactive bacteria is efficient for charge storage and transfers to the electrodes.
The SEM images also revealed that GAC entrapped bacteria on its surface. The presence
of enriched GAC in the biocathode helped to transfer electrons to the electrode thereby
assisting in generating the reproducible potential even when a new cathode electrode was
used. However, this scenario was different when the biocathode was operated without
enriched GAC.

In recent years, materials with electrochemical capacitive properties are used in MFCs
to improve the overall performance of the system [15,22]. GAC is increasingly used as a
capacitor in MFCs because it has a high specific surface which is the surface area created
by the porous structure of carbon granules, and an EDL can form on this porous surface
when the electrolyte is present [17,23,24]. When GAC is used in MFCs, two phenomena
can occur: (i) the electroactive biofilm releases electrons during the oxidation of organics,
and (ii) these electrons are stored at the pore surface of the carbon, while cations are
required to maintain the charge balance in the EDL [17,24]. Using this concept, GAC has
previously been used in the anode of MFCs to form a capacitive bioanode enhancing the
performance of MFCs [15,22,24,25]. Liu et al. 2020 reported that integration of GAC in the
anode chamber provides a larger surface area for the growth of exoelectrogenic bacteria
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at the anode, improving the power output as well as decreasing the internal resistance of
the system.

GAC has previously been integrated into the anode to form a capacitive bioanode to
increase the power density. Thus far, GAC has not been integrated with the biocathode to
form a capacitive biocathode. We conducted this novel study by integrating GAC into the
biocathode to form a capacitive biocathode and evaluated the overall performance of the
denitrification MFC. The study revealed that the integration of GAC into the biocathode
enhanced the performance of the system. The enhanced performance of the MFC could
be the result of the highly conductive properties and high specific surface area of GAC.
When the amount of GAC increased in the cathode chamber, the denitrification rate also
increased. The high-denitrification efficiency is the result of the high specific surface area
that provides sufficient surface area for the attachment of cells.

5. Conclusions

The study extensively investigated the power generation and NO3
−-N removal in

the MFC with and without GAC. The electrochemical and biochemical characteristics of
GAC in the cathode chamber were comprehensively explored. Moreover, the performance
of enriched and non-enriched GAC with electroactive bacteria in the cathode chamber
were compared. Four major conclusions were drawn from this study. First, the enrichment
of GAC with electroactive bacteria is essential for enhancing the overall performance of
the MFC. Second, enriched GAC is efficiently aids in generating a reproducible poten-
tial. Third, the denitrification rate increased when the amount of GAC in the biocathode
increased. Finally, the MFC with enriched GAC resulted in a lower internal resistance
of the overall system. As evidenced by this study, the use of GAC may result in lower
cathode overpotentials compared to non-conductive granules. Recently, many studies have
investigated the effect of GAC on methanogenesis. In future, we will investigate the effect
of GAC on hydrogen generation in microbial electrolysis cells (MEC). As GAC allows for
direct interspecies electron transfer in anaerobic granules it may consequently improve the
hydrogen production rate and overall performance of the anaerobic system. In addition,
we will study the absorption of heavy metals using GAC in the BES.
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