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Abstract: The objective of this work is to build a Digital Twin of a semi-industrial furnace using
Gaussian Process Regression coupled with dimensionality reduction via Proper Orthogonal De-
composition. The Digital Twin is capable of integrating different sources of information, such as
temperature, chemiluminescence intensity and species concentration at the outlet. The parameters
selected to build the design space are the equivalence ratio and the benzene concentration in the fuel
stream. The fuel consists of a H2/CH4/CO blend, doped with a progressive addition of C6H6. It is an
H2-rich fuel mixture, representing a surrogate of a more complex Coke Oven Gas industrial mixture.
The experimental measurements include the flame temperature distribution, measured on a 6× 8 grid
using an air-cooled suction pyrometer, spatially resolved chemiluminescence measurements of OH∗

and CH∗, and the species concentration (i.e., NO, NO2, CO, H2O, CO2, O2) measured in the exhaust
gases. The GPR-based Digital Twin approach has already been successfully applied on numerical
datasets coming from CFD simulations. In this work, we demonstrate that the same approach can be
applied on heterogeneous datasets, obtained from experimental measurements.

Keywords: digital twin; data fusion; dimensionality reduction

1. Introduction

The need for the rapid decarbonization of the global economy requires the develop-
ment of new combustion systems that are both efficient and flexible, to allow the use of
new zero-carbon fuels such as hydrogen and ammonia [1].

These requirements, coupled with the necessity of limiting the production of harmful
pollutants, impose strict operating conditions on the combustion systems. This means that
the design and control of these systems is crucial, and the margin of error is limited.

For this reason, the model of trial-and-error employed for the design of a traditional
combustion system is both too time-consuming and error prone to be applied on the
development of new combustion designs.

Luckily, the recent developments in machine-learning techniques and the increasing
availability of data offer various tools that can be exploited in the design and operation
of combustors.

In particular, the development of Digital Twins (DTs) has been increasingly regarded
as a way to substantially improve both the knowledge of industrial systems and their
control [2–4]. The DT is defined as a digital representation of a physical object that can
closely simulate its behavior in the real environment [2,4]. The DT can help in the design,
production and service phases of a product. In the design phase, the DT is useful in the
iterative optimization and the virtual evaluation, while in the production phase it can be
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employed for real-time monitoring, control and prediction. Finally, in the service phase,
the DT can be used to forecast the product’s maintenance [2,3].

Crucially, the DT has to provide a real-time prediction of the state of its physical
counterpart, so that it can supply constant reference values.

This requirement generally excludes Computational Fluid Dynamics (CFD) simula-
tions as techniques to rely on building DTs because the computing time is not negligible,
even for relatively simple geometries.

Instead, data-driven regression models, such as linear regression, Gaussian Process
Regression (GPR) and Neural Networks (NNs), are particularly suited for this kind of
application because the training phase is distinct from the prediction phase. This means
that the training phase, however long, can be performed offline while the trained model
can predict the system’s state almost instantaneously.

Among these regression methods, the GPR offers a number of advantages with respect
to the other regression models. In particular, it is a nonlinear technique based on Bayesian
inference with a limited amount of hyperparameters to tune. This probabilistic framework
means that the predictions are complemented with the model’s uncertainty [5].

Moreover, the GPR performs well with sparse datasets. The availability of sparse
datasets is often the case when dealing with reactive systems because the amount of
operating conditions explored is limited by the computational cost (for CFD simulations)
or the operating cost (for experimental campaigns).

Other important tools to build DTs are dimensionality reduction techniques, in particu-
lar the Proper Orthogonal Decomposition (POD) [6]. The POD is a linear technique capable
of finding a low-dimensional representation of the system without losing important infor-
mation. This allows for greatly reducing the complexity of the model while maintaining
high accuracy in the prediction.

Recently, the GPR and POD approach has been employed to develop a numerical DT
of a semi-industrial furnace [7], while the POD coupled with sparse sensing was used to
develop a hybrid numerical-experimental DT of the same furnace [8].

However, in some situations, it is not possible to rely on the availability of numerical
data to build a DT. For example, numerical simulations of highly turbulent reacting flows
still do not provide accurate predictions of pollutants and stability limits [9]. Moreover, the
use of state-of-the-art Large Eddy Simulation combustion models is often too expensive to
be applied to industrial facilities [10].

In these cases, an experimental campaign is often carried out with different measuring
instruments to characterize the combustion system. This usually produces various datasets
with vastly different spatial scales (the pressure field obtained using pressure probes
has a much lower spatial resolution than a velocity field measured using particle image
velocimetry, for example).

The objective of this work is to develop a DT of the ULB semi-industrial furnace which
relies solely on experimental data. The DT is capable of integrating different data streams
and it provides in real time the prediction of temperature, chemiluminescence and species
concentration, for different degrees of equivalence ratio and benzene doping in the fuel
blend. To achieve this, the experimental data are first projected into the low-dimensional
space using POD. Then, the regression is performed using GPR in the low-dimensional
manifold. Finally, the prediction can be obtained by projecting the solution found by the
GPR model in the original space.

The experimental setup is outlined in Section 2, while the methodology for the de-
velopment of the DT is explained in more detail in Section 3. The results are shown in
Section 4 and discussed in Section 5.

2. Experimental Setup

The experimental data have been collected in a semi-industrial furnace, fed with
H2/CH4/CO fuel mixtures doped with C6H6. Detailed information about the experimental
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setup and measurement techniques are provided in previous publications [11,12], while
the dataset used in this work has been published in [13].

However, some key features of the experimental set-up are also summarized below,
along with the specific operating conditions used for this dataset.

The combustion furnace used in this work consists of an insulated combustion chamber.
Figure 1 shows the schematic diagram of the vertical cross-section of the furnace-burner
assembly, while Figure 2 shows a schematic representation of the test bench.

Figure 1. Vertical cross-section of the ULB semi-industrial furnace. The dashed lines represent a
projection of the quartz window on the vertical cross-section plane.

The furnace has a cubic shape (1100 × 1100 × 1100 mm), and it is internally insulated
with a 200 mm thick high-temperature ( 1300 °C) ceramic foam layer, which limits the
heat lost through the walls. Therefore, the resulting inner dimensions of the combustion
chamber are: 700 × 700 × 700 mm.

The furnace is equipped with an air cooling system, which consists of four cooling
tubes of 80 mm of outer diameter and a length of 630 mm. By varying the cooling air flow
rate, different stable conditions are established inside the combustion chamber, and the
effect of variable industrial loads can be tested.

On each vertical wall of the combustion chamber, there is a slot (150 × 600 mm)
available for measurements. The details of the measurements through different openings
can be found in [11,12].

At the bottom of the combustion chamber, a commercial WS® REKUMAT M150
recuperative Flame-FLOX burner with a nominal power of 20 kW is mounted. Two different
air/fuel injection configurations are possible when the burner is operated in Flame or in
FLOX® combustion mode [11].

The dimension of the air injection nozzle ID can be varied (ID: 16, 20, 25 mm). However,
the experimental data reported in [13] have been measured while operating the burner only
in Flame mode and with using a fixed air injection nozzle (ID:25 mm).



Energies 2023, 16, 662 4 of 14

Figure 2. Schematic P & I of the ULB experimental test bench.

The semi-industrial facility is equipped with a fuel-feeding system, integrated with
an evaporation system and a mixing unit that allow for creating synthetic blends. The
evaporation system was used to vaporize benzene in order to homogeneously mix it with
the other gases in the static mixing unit.

Brooks SLA58XX® Series mass flow controllers are used to control and monitor the
flow of gases, and Brooks Quantim® Series Coriolis mass flow controllers of ranges, 320 g/h
and 1500 g/h are used for the benzene.

An air-cooled suction pyrometer probe equipped with a B-type (Pt-Rh 6% - Pt-Rh 30%)
thermocouple is used to perform in situ flame temperature measurements.

OH∗ and CH∗ chemiluminescence imaging was carried out by means of an Intensi-
fied Relay Optics (IRO) and a Charge-Coupled Device (CCD) camera 1.4 M (La Vision
1392 × 1040 pixels) coupled with a UV 78mm f/3.8 lens and two interferential filters to
collect the chemiluminescence emitted by OH∗ (310 ± 10 nm) and CH∗ (438 ± 24 nm). The
CCD camera has a maximum frame rate at a full resolution equal to 17 fps.

The flue gas composition was detected by using a Fourier Transform Infrared Spec-
troscopy (FTIR) analyzer from HORIBA® (HORIBA MEXA-ONE), equipped with a param-
agnetic analyzer for oxygen measurement.

Figure 3 shows the position of the experimental probes inside the furnace. The
position of the temperature and the chemiluminescence sensors was chosen to accurately
map the reactive region and by considering the design constraints of the set-up. The species
concentrations are measured at the outlet of the furnace to check the emissions of pollutants
and main combustion products.

The experimental uncertainties for the temperature and the emissions are reported in
Table 1.

Table 1. Experimental uncertainties (95% confidence interval).

T (K) XNO < 200
(Wet ppmv)

XNO > 200
(Wet ppmv)

XNO2

(Wet ppmv)

XCO (Wet
vol.

Fraction)

XH2O (Wet
vol.

Fraction)

XCO2 (Wet
vol.

Fraction)

XO2 (Dry
vol. Fraction)

±20 ±5.56 ±19.65 ±3.93 ±0.20% ±0.40% ±0.39% ±0.6%



Energies 2023, 16, 662 5 of 14

Figure 3. Position of the sensors relative to the outline of the ULB furnace.

Operating Conditions

A mixture of H2/CH4/CO has been used as fuel. It is a H2-rich fuel mixture, con-
sidered as a surrogate of an industrial Coke Oven Gas (COG) mixture. As in [14], the
H2/CH4/CO fuel mixture composition was fixed by considering only the major compo-
nents of the more complex industrial COG composition. Moreover, the relative ratios of H2,
CH4 and CO correspond to the ones in the fuel source mixture, and they are in accordance
with those related to other COG compositions available in literature [15–17].

The fuel has been doped with C6H6 up to 5% (vol.), in order to investigate the effects of
aromatic additives in H2-rich fuel mixtures, mainly on NO emissions and flame radiation,
in a semi-industrial furnace.

The compositions of the final six fuel blends tested are provided in Table 2, along with
the equivalence ratio and the benzene doping.

This was carried out to investigate the effects of aromatics doping of the under-firing
H2-fuel mixtures, at both constant and varying air excess.

The thermal input Qth was kept constant at 20 kW for all the investigated cases.
Similarly, the flow rate of the cooling air was kept constant. Moreover, the temperature
of the heated fuel pipeline, between the mixing unit and the inlet of the furnace, was
controlled to keep a constant inlet fuel temperature of 130 °C, in order to avoid any benzene
condensation before the entrance of the furnace.

Table 2. Operating conditions of the experimental investigation of H2/CH4/CO fuel mixtures, with
different levels of C6H6(%v/v) doping and equivalence ratios.

Case C6H6
(%v/v) φ H2 (%v/v) CH4

(%v/v) CO (%v/v) LHV
(MJ/Nm3)

1 0 0.80 68.68 25.34 5.98 17.24
2 0.5 0.80 68.34 25.21 5.95 17.86
3 1.12 0.80 67.91 25.06 5.91 18.63
4 2 0.80 67.31 24.83 5.86 19.73
5 3 0.80 66.62 24.58 5.80 20.97
6 5 0.80 65.25 24.07 5.68 23.45
7 0 0.91 68.68 25.34 5.98 17.24
8 0.5 0.91 68.34 25.21 5.95 17.86
9 1.12 0.91 67.91 25.06 5.91 18.63
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Table 2. Cont.

Case C6H6
(%v/v) φ H2 (%v/v) CH4

(%v/v) CO (%v/v) LHV
(MJ/Nm3)

10 2 0.91 67.31 24.83 5.86 19.73
11 3 0.91 66.62 24.58 5.80 20.97
12 5 0.91 65.25 24.07 5.68 23.45
13 0 1.00 68.68 25.34 5.98 17.24
14 0.5 1.00 68.34 25.21 5.95 17.86
15 1.12 1.00 67.91 25.06 5.91 18.63
16 2 1.00 67.31 24.83 5.86 19.73
17 3 1.00 66.62 24.58 5.80 20.97
18 5 1.00 65.25 24.07 5.68 23.45
19 0 1.05 68.68 25.34 5.98 17.24
20 0.5 1.05 68.34 25.21 5.95 17.86
21 1.12 1.05 67.91 25.06 5.91 18.63
22 2 1.05 67.31 24.83 5.86 19.73
23 3 1.05 66.62 24.58 5.80 20.97
24 5 1.05 65.25 24.07 5.68 23.45
25 0 1.10 68.68 25.34 5.98 17.24
26 0.5 1.10 68.34 25.21 5.95 17.86
27 1.12 1.10 67.91 25.06 5.91 18.63
28 2 1.10 67.31 24.83 5.86 19.73
29 3 1.10 66.62 24.58 5.80 20.97
30 5 1.10 65.25 24.07 5.68 23.45
31 0 1.20 68.68 25.34 5.98 17.24
32 0.5 1.20 68.34 25.21 5.95 17.86
33 1.12 1.20 67.91 25.06 5.91 18.63
34 2 1.20 67.31 24.83 5.86 19.73
35 3 1.20 66.62 24.58 5.80 20.97
36 5 1.20 65.25 24.07 5.68 23.45

3. Digital Twin Methodology

As mentioned in Section 1, the goal of this work was to develop a DT capable of pre-
dicting simultaneously different types of measurements, such as emissions, temperatures
and the chemiluminescence signal.

As a first step, 30 samples of temperature, chemiluminescence and emissions were
randomly selected to build the training data. The remaining six samples were used to test
the model.

After that, the temperature, chemiluminescence and emissions datasets were arranged
into the data matrices XT ⊂ RnT,p, XCL ⊂ RnCL,p and XE ⊂ RnE,p. Each column vector
contains the data for a certain operating condition, and the number of rows depends on the
type of measurement. In particular, nT = 48, nCL = 898,560 and nE = 6.

Then, the POD was applied to the data matrices, which were centered and scaled to
unitary variance. The POD allows for decomposing the dataset into two parts, of which one
is only a function of the spatial coordinates and one is only a function of the parameters:

XT(r, θ) = UT(r)ΣTVT(θ)
T , (1)

XCL(r, θ) = UCL(r)ΣCLVCL(θ)
T , (2)

where UT ⊂ RnT,p and UCL ⊂ RnCL,p represent the spatial POD modes while VT, VCL ⊂ Rp,p

contain the parametric coefficients. The diagonal matrices ΣT, ΣCL ⊂ Rp,p contain the sin-
gular values of the POD modes. The singular values are the square root of the eigenvalues
of the covariance matrix S = 1

n−1 XTX, and they reflect the amount of variance retained by
each POD mode.
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The threshold of 99.9% of explained variance was selected for truncation, resulting in
the matrices UT,r ⊂ RnT,rT , UCL,r ⊂ RnCL,rCL , VT,r ⊂ Rp,rT and VCL,r ⊂ Rp,rCL where rT = 5
and rCL = 8.

The GPR model was applied to the global data matrix XG ⊂ Rn,p, created by concate-
nating the matrices XE, VT and VCL such that n = nE + rT + rCL.

The GPR assumes that, in the classical regression framework,

y = f (x) + ε, (3)

the function f (x) is a sample from a Gaussian process

f (x) ∼ GP(m(x), k(x, x′)), (4)

where m(x) and k(x, x′) are the mean and covariance function of the Gaussian process,
which can be thought of as a Gaussian distribution over functions [5]. In this framing, the
observed and predicted data become a sample from a multivariate Gaussian distribution:[

y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
, (5)

where y represents the observed target values, and f∗ = f (X∗) is the prediction in the
unexplored part of the design space X∗. The covariance matrix of the multivariate Gaussian
distribution is built using the kernel function K. The prior distribution p(f) and the likeli-
hood p(y|f) are both assumed to be Gaussian. The prior represents the prior knowledge
before considering the data, while the likelihood is the probability of seeing the data given
the choice of the model.

By employing Bayes’ theorem, it is possible to calculate the posterior distribution
p(f|y) given the prior and the likelihood:

p(f|y) = p(y|f) p(f)
p(y)

. (6)

The predicting distribution p(f∗|y) is then calculated by marginalizing the likelihood
with the posterior distribution:

p(f∗|y) =
∫ +∞

−∞
p(f∗|f)p(f|y)df. (7)

The predicting distribution is again a Gaussian distribution p(f∗|y) = N (f̄∗, cov(f∗))
with mean and covariance:

f̄∗ = KT
∗ [K + σ2

nI]−1y (8)

cov(f̄∗) = K∗∗ −KT
∗ [K + σ2

nI]−1K∗, (9)

where, for compactness, K = K(X, X), K∗ = K(X, X∗) and K∗∗ = K(X∗, X∗). The model’s
hyperparameters, such as the kernel’s length scale and the observations’ noise, are selected
by minimizing the negative log marginal likelihood:

−log p(y) =
1
2

yT(K(φ) + σ2
nI)−1y +

1
2

log |K(φ) + σ2
nI|+ n

2
log 2π. (10)

Once trained, the GPR model is able to predict the target quantity X∗G in the unexplored
part of the design space. In this work, the GPR has been implemented using GPyTorch [18].
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The reconstruction of the temperature and chemiluminescence data are carried out by
multiplying the respective rows of X∗G times the POD modes UT and UCL and the singular
values ΣT,r and ΣCL,r:

X∗E = I X∗G[1 : nE] (11)

X∗T = UT,r ΣT,r X∗TG [nE : nE + rT] (12)

X∗CL = UCL,r ΣCL,r X∗TG [nE + rT : n], (13)

where the notation A[i : j] represents the matrix built by considering only the rows of A
between the indices i and j.

The methodology described in this section is summarized in Figure 4.

Figure 4. Diagram depicting the methodology used to build the Digital Twin.

4. Results

The testing cases randomly selected from the complete dataset are cases 2, 8, 11, 15, 16
and 29. The remaining cases are used to train the model.

The model’s training takes around 10 s, while the prediction is obtained in around 1 s.
Figure A1 shows the surface response of the scalar quantities of interest as a function

of the benzene doping and the equivalence ratio. The scalar quantities selected are the
maximum temperature and the normalized sum of the chemiluminescence counts, along
with the species concentrations.

The maximum temperature increases slightly with the benzene doping at φ < 1.0,
and it reaches the maximum at φ = 0.80 and C6H6 = 5. However, by increasing the
equivalence ratio above the stoichiometric condition, the maximum temperature drops
with the addition of benzene.

The chemiluminescence signal is strongly dependent on both the benzene doping and the
equivalence ratio. Similarly to the maximum flame temperature, the intensity of both OH∗ and
CH∗ chemiluminescence emissions increases with the presence of aromatics in the H2/CH4/CO
flames, under lean conditions, showing a distinct maximum at φ = 0.91 and C6H6 = 5.0%,
whereas under stoichiometric and rich conditions the chemiluminescence intensity of both OH∗

and CH∗ radicals decreases with benzene doping levels higher than 3%.
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Figure A1 shows also that the concentration of species such as NO, CO and O2 depends
mainly on the equivalence ratio, while the concentration of NO2, H2O and CO2 depends on
both the equivalence ratio and the level of benzene doping. The NO concentration drops
when the fuel/air mixture goes from lean to rich, while the opposite happens for the CO
concentration.

Both the H2O and the CO2 concentration peaks at φ = 1.0, and it increases with the
benzene doping.

Finally, the O2 concentration depends only on the equivalence ratio. In the lean region,
the oxygen concentration drops until it reaches the minimum value at stoichiometry. Then,
it increases with the equivalence ration in the rich region.

In general, the surface response is nonlinear for all scalar quantities, which justifies
the use of a nonlinear regression technique such as the GPR.

The constant mean function was selected to train the GPR model. The kernel function
was chosen as the sum of the linear kernel and the radial basis function kernel:

K(x, x′) = vxTx′ + exp
(
−1

2
(x− x′)T(x− x′)

Θ2

)
, (14)

where v and Θ are the variance and length scale parameters.
The observed and predicted spatial distribution of the temperature and chemilumines-

cence signal for case 2 is reported in Figure 5, while the observed and predicted emissions
are reported in Table 3.

(a) (b) (c)

Figure 5. Comparison between the predicted and observed temperature field (a); CH∗ field (b); and
OH∗ field (c) for case 2.

Table 3. Observed and predicted species emissions for case 2.

XNO (ppmv) XNO2 (ppmv) XCO (Wet vol.
Fraction)

XH2O (Wet
vol. Fraction)

XCO2 (Wet
vol. Fraction)

XO2 (Dry
vol. Fraction)

Observed 308 3.25 0 0.222 0.0828 0.0224
Predicted 304 3.01 0 0.223 0.0814 0.0231

The predictions are generally good, especially for the temperature field. However, the
model tends to overpredict the OH∗ signal, while it underpredicts the CH∗ signal. This
behavior is confirmed for the other testing conditions by looking at Figure 6, which shows
the parity plot for all six testing conditions. However, the R2 is well above 0.9 for both OH∗

and CH∗. The R2 has been calculated by considering the points with a count greater than
100, to avoid including the non-emitting region.

Figure 7 shows the parity plots relative to the prediction of the species emissions.
The predictions are good both for minor species, such as NO, and major species, such as
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H2O and O2. The prediction is slightly worse for NO2, which is also associated with the
highest relative experimental uncertainty on such a species. This is due to the low NO2
concentrations detected in the exhaust gases with respect to the total instrument error for
this species detection (2 ppmv).

If we compare the experimental uncertainty reported in Table 1 with the model’s
uncertainty, we can observe that the model’s uncertainty is higher than the experimental
uncertainty for measurements such as temperature, NO, CO, H2O, while it is lower for
NO2, CO2 and O2. This suggests that, for those measurements in which the model’s
uncertainty is higher than the experimental uncertainty, the number of samples collected
was not enough to converge to the experimental uncertainty.

(a) (b) (c)

Figure 6. Parity plot for the temperature (a); CH∗ signal (b); and OH∗ signal (c), for the six testing
cases. The uncertainty represents the model’s uncertainty in the prediction. The R2 for the OH∗ and
CH∗ signals has been calculated by excluding the points with a count lower than 100.

To check the quality of the model’s training, a 6-fold cross-validation was performed
on the complete dataset. The 36 samples were randomly divided into six groups (folds),
each containing six samples. A GPR model is built for each fold. This model is tested on
the data contained in the corresponding fold, while the training data are comprised of all
the samples, minus the testing data. The average value of the R2 for each fold is reported
in Table 4, along with the standard deviation.

The chemiluminescence signal, OH∗ in particular, displays the biggest variance in
the R2. This is because the chemiluminescence signal has a highly nonlinear behavior as
a function of the equivalence ratio and benzene doping, as shown in Figure A1. In addi-
tion, the nonlinear behavior is more pronounced on the edge of the operating conditions’
envelope, for C6H6 = 5%. This means that the predictions are accurate when the model
is interpolating, i.e., the testing conditions are inside the operating conditions’ envelope.
However, when the testing conditions are on the edge of the envelope, the model performs
worse because it lacks important information on the behaviour of the chemiluminescence
signal as a function of the benzene doping and equivalence ratio.

Table 4. Average and standard deviation of the R2 for the ensemble of folds in the cross-validation al-
gorithm.

T CH∗ OH∗ NO NO2 CO H2O CO2 O2

Average 0.988 0.870 0.770 0.966 0.974 0.889 0.945 0.955 0.981
Standard
deviation 0.006 0.086 0.168 0.028 0.029 0.094 0.063 0.056 0.012
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(a) (b) (c)

(d) (e) (f)

Figure 7. Parity plot for the emissions of NO (a); NO2 (b); CO (c); H2O (d); CO2 (e); and O2 (f) for
the six testing cases. The uncertainty represents the model’s uncertainty in the prediction.

5. Discussion

The objective of this work was to develop a GPR-based DT capable of predicting the
temperature, chemiluminescence and species concentration of a semi-industrial furnace
fed with an H2-rich fuel mixture.

To integrate datasets with a vastly different spatial resolution, the POD was applied
to the temperature and chemiluminescence signals. This was carried out to decouple the
spatial information from the parameter-dependent information.

The GPR was selected as a regression model for its properties, mainly its nonlinearity
and the ability to handle sparse datasets.

The predictions show a good level of accuracy, with a R2 > 0.9 for all the signals
except for the NO2 concentration. However, even in this case, the maximum relative error
is around 11%.

A 6-fold cross-validation was performed to judge the generalizability of the model.
The results show that the prediction of temperature and species concentration is accurate
for all combinations of testing conditions. For the prediction of the chemiluminescence
signal, the model performs very well in interpolation, while it produces less accurate results
in extrapolation. This means that care should be taken in the selection of samples for the
model’s training.

In conclusion, the results show that the DT can operate as a real-time surrogate of
the corresponding physical object. This opens the possibility of employing the DT for
redundant control, state and failure detection or data assimilation if coupled with low-
fidelity measurements.
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Appendix A
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Figure A1. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure A1. Maximum temperature (a); OH∗ normalized sum (b); CH∗ normalized sum (c); emissions
of NO (d); NO2 (e); CO (f); H2O (g); CO2 (h) and O2 (i), as a function of the input parameters. The
OH∗ and CH∗ values have been obtained by summing all the counts for each condition, and they
have been normalized by the maximum value. The blue dots indicate the samples used for training
while the red dots represent the samples used for testing.
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