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Abstract: Advancements in energy technologies created a new application for gas turbine gener-
ators, which are used to balance load. This usage also brought new challenges for maintenance
because of harsh operating conditions that make turbines more susceptible to random failures.
At the same time, reliability requirements for energy equipment are high. Reliability-centered
maintenance based on forecasting the remaining useful life (RUL) of energy equipment, offers
improvements to maintenance scheduling. It requires accurate forecasting methods to be effective.
Defining stages in energy equipment operation allows for the improvement of quality of data used
for training. At least two stages can be defined: normal operation and degradation process. A new
method named Head move—Head move is proposed to robustly identify the degradation process
by detecting its starting point. The method is based on two partially overlapping sliding windows
moving from the start of operation to the end of life of the energy equipment and Kruskal-Wallis
test to compare data within these windows. Using this data separation, a convolutional neural
network-based forecasting model is applied for RUL prediction. The results demonstrate that the
proposed degradation process identification (DPI) method doubles the accuracy when compared
to the same forecasting model but without degradation process identification.

Keywords: energy equipment; gas turbines; reliability-centered maintenance; remaining useful life;
degradation process identification; deep neural networks; Kruskal-Wallis test

1. Introduction

Gas turbines are used for various applications from energy generation to propulsion,
gas compression, etc. With the shift towards clean energy production, a new use for gas
turbines as a supporting back-up load balancing tool has emerged [1]. Gas turbines have
advantages of small footprint, high power to weight ratio, mobility and quick startups as
well as mobility and fast deployment [2,3].

This use also brought new challenges which include a variety of operating con-
ditions, frequent and irregular operation cycles [2,4]. These make gas turbines more
susceptible to failures, which are mostly random [5]. Likewise, latest technologies which
allow making turbines more efficient make them more complex as well, which compli-
cates diagnostics making it more costly as well [6]. With that, the described case requires
high availability and readiness [7].

The failures cause downtime by making gas turbine unavailable for energy production
and require costly repairs and even replacement of a unit altogether [6]. Failures in total
may account for up to a third of the operating cost [8]. These factors require new improved
flexible and robust strategies for the maintenance of energy generating equipment.

There are multiple strategies to conduct maintenance. All of them can be divided into
two groups: reactive and proactive strategies [9]. The reactive or run-to-failure strategy
is to perform maintenance in the event of a failure. This is used mostly for inexpensive,
expendable or non-serviceable equipment. In general, only proactive strategies are used
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for the maintenance of complex energy equipment. These include periodic and preventive
strategies, which are used either exclusively or in conjunction with each other [10].

Periodic strategy is the most prevalent form of maintenance nowadays. Periodic
maintenance is a regularly scheduled operation based on operating time, generally specified
in manufacturer recommendations. While this strategy is easy to implement and follow,
it does not prevent random failures, which constitute more than three quarters of all
failures [6] and might lead to an increased probability of failure right after maintenance. It
also might not be adequate for harsh and extreme operating conditions, where equipment
wear is greater than in average conditions.

Preventive maintenance is based on the inspection of condition of energy equipment
using non-destructive monitoring methods. This strategy uses predetermined acceptable
ranges for values of parameters [11]. Repairs may be scheduled if the inspection of parame-
ters or condition of energy equipment shows out-of-range deviation in readings or other
flaws in operation, such as excessive noise or vibration.

Industry 4.0 brought new digital technologies, as IoT (internet of things), cloud com-
puting and big data to enable improved failure detection and optimized asset management
through the use of computerized analytics and machine learning [12]. Advancements in
IoT (internet of things) allowed better availability of sensors, improvements to data transfer
and storage [13].

More advanced and promising maintenance strategy that originates from concept
of Industry 4.0 is a proactive reliability-centered maintenance, which is based on fore-
casting of health index and remaining useful life of the energy equipment [10]. This
is a data-driven strategy that relies on data collected from the sensors to make fore-
casts about future condition of energy equipment and possible failures. Having such
forecast may allow the decision-maker to adjust maintenance schedule or to perform
additional inspections.

The main parameter for this strategy is the remaining useful life (RUL) [14]. It is
defined as operating time between current or set moment in time tnow and the time of the
end of life of energy equipment tEOL as Formula (1) shows.

RUL = tEOL − tnow (1)

Figure 1 demonstrates RUL, health index and the relation between them. The end of
life might be either the next failure of energy equipment or a state when further operation
is impossible without a major loss of functionality or is going to lead to a failure.
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Figure 1. Remaining useful life illustration (adapted from [14]) .
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The hypothesis of this paper is that if the accuracy of defining stages of energy
equipment operation and splitting data according to them is improved, forecasting RUL
is going to become more accurate. The contribution of the paper is a new proposed
method for degradation process identification (DPI) as a part of reliability-centered
maintenance methodology. The idea if the method is based on sliding windows and
Kruskal-Wallis test to compare data within these windows. A Head Move—Head
Move strategy of sliding windows allows to define starting point of energy equipment
degradation. A method uses two partially overlapping sliding windows moving from
start of operation to the end of life of energy equipment. Based on this data separation,
we applied a convolutional neural network-based forecasting model for RUL prediction.

2. A Method of Degradation Process Identification as a Part of Reliability-Centered
Maintenance Methodology
2.1. Reliability-Centered Maintenance Methodology

Methodology of a typical reliability-centered maintenance that implements RUL-based
predictive maintenance for energy equipment consists of the following steps [15,16]: data
acquisition (DAcq), data pre-processing (DPP), data analysis (DAn), decision support (DS),
maintenance implementation(MI) and operation (Op). Figure 2 illustrates the aforemen-
tioned methodology. Highlighted in red is a focus of this article.

Data analysis (DAn)

Model training and validation
Realiability estimation
RUL forecast generation

Degradation process
identification

Health index estimation

Data pre-processing (DPP) 

Integration
Cleaning 
Transformation
Aggregation of operation cycles

Maintenance implementation (MI)

Decision support (DS)

Visualisation of forecast
Maintenance scheduling
Maximization of reliability

Data acquisition (DAcq) 

Collection
Tranmission
Storage

Operation (Op)

Raw data

Stored data

Cleaned data

RUL forecast 
Degradation process identification data

Planned actions

Figure 2. Flowchart of the entire predictive maintenance methodology (adapted from [15,17]).

DAcq is the first step of process, where data are collected from equipment through
a network of sensors to a centralized storage. At the DPP step, the data are integrated,
cleaned, transformed. Data for operation cycles is aggregated to a single value for each
parameter of energy equipment [18]. During DAn, the step data analysis and machine
learning are used to generate a RUL forecast.

At stage of DS maintenance schedule is adjusted according to the forecast, as dis-
played at Figure 3. The maintenance is scheduled for tMI at a tnow moment in time when
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the failure is forecasted to occur at tEOL. This leads to the MI step, at which the sched-
ule from the previous step is implemented in a real world at tMI for improved energy
equipment operation.

Managerial actions that are planned at the DS step are significantly affected by the
accuracy of RUL forecast, produced at DAn step—the higher the accuracy of the forecast,
the more efficient actions can be planned and carried out at MI step [14]. Managerial
actions might be such as the equipment’s mode optimizing, risk-based inspection, repair,
and many others.

Proposed DPI method is a part of DAn step, which is expressed in mitigation of
inaccuracies of RUL forecasting through splitting data into two stages—the normal mode of
operation and degradation process, which is conducted before model training. For testing
purposes, the whole method includes the DPP step as well, consisting of data splitting,
transformation, normalization, and other parts of DAn step, including CNN-based model,
its training and validation, and the generation of the forecast.

tnow tEOL
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Figure 3. Maintenance scheduling at DS step (adapted from [17]).

2.2. An Overview of State-of-the-Art Research of RUL Forecasting

The accuracy of RUL forecast is a crucial aspect of the efficient application of the
proactive strategy [14]. The more accurate the forecast is, the more precision is available
for maintenance scheduling, which means that it would not be scheduled too early or too
late. This, in turn, leads to a more optimal number of stops for maintenance and lower
downtime in general.

There are many RUL prediction methods and strategies based on a wide range of
forecasting algorithms and models. In the review [19], L. Zhang et al. looked at RUL
forecasting methods, based on SVM-based algorithms and their advantages for multi-
variate time series analysis. C. Lu et al. investigated [20] stacked denoising autoencoder
(SDA)—a deep learning method, which was shown to be suitable for certain health state
identifications for signals containing ambient noise and working condition fluctuations
for effective fault diagnostics. H. Z. Huang et al. reviewed [21] Support vector machine
(SVM)-based methods and pointed out the ability to continually improve SVM and obtain
a novel idea for RUL prediction using SVM in future works, particularly with tracking
of the degradation process. G. A. Susto et al. presented [9] a multiple classifier ma-
chine learning methodology for predictive maintenance. Methodology included training
multiple classification modules with different prediction horizons to provide different
performance tradeoffs in terms of frequency of unexpected failures and unexploited
lifetime, and then employing this information in an operating cost-based maintenance
decision system to minimize the expected costs. P. G. Nieto et al. presented [22] a hybrid
PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines.
The proposed hybrid model combined the support vector machines with the particle
swarm optimization (PSO) technique. M. Yan et al. presented [23], a method of RUL
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prediction of bearings, which can evaluate the degradation stage of bearings through
dimensionless measurements and exploit the optimal RUL prediction through hybrid
degradation tracing model in the degradation stage, which is based on an SVM classifi-
cator. T. Praveenkumar et al. investigated [24], the usage of SVM-based models and time
domain statistical features, such as mean, median, etc., to forecast failures in gearboxes.
K. Dhalmahapatra et al. developed [25] a decision support system for failure forecasting,
using a multi-step knowledge discovery process involving multiple correspondence
analysis (MCA), t-SNE algorithm and K-means clustering. S. S. Ng et al. proposed [26] a
naive Bayes model for RUL prediction of batteries under different operating conditions
and showed its competitiveness in accuracy with SVM based models and importance
of different operating conditions and their impact on degradation of equipment. S.
Patil et al. proposed a new approach for RUL prediction [27], which includes the use
of ensemble regression techniques such as Random Forest and Gradient Boosting for
prediction of RUL with time-domain features, which are extracted from the given data.

Artificial neural networks are common in recent years. There are several main direc-
tions, focusing on different architectures, such as LSTM and CNN.

J. Deutsch et al. [28] presented a deep belief network-based approach for RUL
prediction of rotating components for big data applications. P. Khumprom et al. [29]
developed a new model, based on recurrent neural networks with amplified dropout to
increase number of training runs. R. Zhao et al. [30] investigated application of Long
Short-Term Memory networks (LSTMs) for machine health monitoring in the first study
about a empirical evaluation of LSTMs-based machine health monitoring systems and
introduced a real life tool wear test. A. Sagheer and M. Kotb proposed [31] a pre-trained
LSTM-based stacked autoencoder (LSTM-SAE) approach in an unsupervised learning
fashion to replace the random weight initialization strategy adopted in deep LSTM
recurrent networks to improve the performance in modelling multivariate time series
(MTS) data, particularly when attempting to process highly non-linear and long-interval
MTS datasets. Y. Zhang et al. [32] proposed an adaptive recurrent neural network
(RNN) to predict the remaining life of Li batteries, and a technique for optimizing the
weights of the network structure through a cyclic Levenberg–Marquardt method. F.
Zhou et al. [33] proposed an early diagnosis method based on Deep neural networks
(DNN). The high-dimensional fault features extracted by deep learning are reduced
into one-dimensional, and then the life prediction model is constructed by using the
nonlinear fitting method. L. Mao et al. [34] developed a hybrid LSTM-STW and GS-LM
method to decompose the data into high-frequency and low-frequency components,
create separate RUL predictions using the LSTM-based model and integrate them to
obtain final prediction. B. Long et al. [35] proposed LSTM-based forecasting method with
an improved data construction method for a lower number of data samples available,
which is able to increase the accuracy of forecast for lithium-ion batteries.

G. S. Babu et al. [36] made the first application of deep convolutional neural networks
(CNN) to RUL forecasting. K. B. Lee et al. [37] introduced the FDC-CNN model, based
on CNN architecture, in which a receptive field tailored to multivariate sensor signals
slides along the time axis, to extract fault features, which enables the association of the
output of the first convolutional layer with the structural meaning of the raw data, making
it possible to locate the variable and time information that represents process faults. L.
Ren et al. [38] proposed new feature extraction method to obtain the eigenvector that is
suitable for deep CNN. In the prediction phase, a smoothing method is proposed to deal
with the discontinuity problem found in the prediction results. J. Zhao et al. [39] reviewed
forecasting methods for RUL and outlined the suitability of CNN for monitoring massive
data and its ability to realize automatic feature extraction and recognition without manual
participation and intervention. C. Sai et al. proposed [14,40] a new hybrid approach
for RUL forecasting introducing a model, based on combination of CNN and LSTM and
showed accuracy improvements of a combined approach compared to only using the CNN
or LSTM-based models.
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Several articles [14,20,22] cover the forecasting of turbofan engines [18], which is the
main focus of this article. Out of them, methods based on convolutional neural networks
(CNN) are looking to be the most promising, being widely accepted and very precise, and
reaching an accuracy of 18.90 (RMSE) [14].

However, as much as we upgrade architecture of forecasting methods, at some point
they going to reach a limit of performance. After that, optimizations and improvements for
forecasting procedure that can be performed beyond the scope of forecasting model itself
are going to play an important role in increasing accuracy.

Research [23,41] shows the viability of splitting data into separate parts or modes of
operation in accordance to the health index of energy equipment for improving accuracy of
forecast. Basically, at least two modes of operation can be distinguished: normal operation
and degradation [41] and a separate forecasting models can be built for each of the parts.
For these parts, the task of splitting is essentially a task of finding a point in time series at
which the degradation starts.

2.3. An Idea of the DPI Method

During the operation of energy equipment, after some point in time, the degradation
process begins. An example of operation data is provided at Figure 4. Figure 5 shows an
illustration of the degradation process.
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Figure 4. Example of data of operation of energy equipment [18] with values of three arbitrary
sensors over time.

To determine the point at which the degradation process begins tdegr (starting point
of degradation) we propose a new DPI method based on sliding windows. We apply
two windows w1, w2 of size w to a univariate time series and compare data values in
these windows.

There are two types of windows possible in our framework: head and tail. Head is a
window that has its initial position at the beginning of the operation. Tail is a window that
originates at the end of useful life.

We consider two possible operations for manipulating the position of windows: move
and f ix. Move is an operation which changes the position of window against time series. It
has two parameters: distance and direction. Distance is measured in number of consecutive
measurements on which position is changing. In the proposed method, the distance is set
to 1 for every case.

Which direction the window in is moving is dependent on its type. Direction can be
either forward, which means from beginning of operation to end of life, and backwards,
which is the opposite. Head is moved in a forward direction, tail—in backward direction.
Fix is an operation that puts the window at a certain preset position and does not move it
over time.
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Figure 5. Degradation process visualization (adapted from [41]).

To compare data within windows we use the Kruskal-Wallis test [42]. We assume that
windows are different if the null-hypothesis is failed for two given windows, otherwise
they are similar. Windows which belong to the normal operation stage are expected to be
similar to each other and windows which belong to degradation stage are different. This is
because during normal operation the sensor data stay relatively unchanged, and during
the degradation stage we observe significant changes in the data.

Positive check and negative check are the terms used for the description of the com-
parison results. A positive check is a result of the comparison of two windows with the
Kruskal-Wallis test, which returns the σ value of more than 0.05, which means that windows
can be considered similar. A negative check is a result of comparison of two windows with
Kruskal-Wallis test, which returns the σ value of less than 0.05, which means that windows
cannot be considered similar.

In this framework, we distinguish five possible strategies of moving windows. They
are provided in Table 1. Other possible strategies are either duplicates of the provided ones
or not suitable for time series analysis (e.g., two fixed windows).

Table 1. Window moving strategies.

Strategy First Window
Type

First Window
Operation

Second
Window Type

Second Window
Operation

HMTF Head Move Tail Fix
HMTM Head Move Tail Move
HFTM Head Fix Tail Move
HFHM Head Fix Head Move
HMHM Head Move Head Move

HMTF strategy allows for comparing every part of the historical data to the final
range just before the end of life by moving window w1 towards tEOL where w2 is located.
This is beneficial because we can safely assume that the process near the end of life is
in the degradation stage. However, this strategy has a disadvantage of being able to be
used only on historical data and not on real-time data, because it requires the tEOL value
to work. Moreover, it has a requirement for comparison operation, where the check for
two windows in the degradation stage needs to be positive. With our selected method of
comparison, it is not possible due to the fact that windows in the degradation stage are
different. Figure 6 illustrates the idea of the HMTF strategy.

The blue line at the Figures 6–10 is an example of the RUL forecast obtained using the
framework [43] for the data [18].
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The HMTM strategy consists of the two windows w1 and w2 moving towards each
other. At the start, two windows are assumed to be different, because they should belong to
different processes. The beginning of the degradation stage is determined when the check
for data in the windows is positive. This strategy also has a disadvantage of requiring
a value of tEOL to function; hence, it can be only used on historical data. Demonstration
of HMTM is provided at Figure 7 and shows how the proposed method works for the
HMTM strategy.

The HFTM strategy is based on the following: a window w1 is fixed at beginning of
operation and a window w2 is moving from the end of life towards the first one. We assume
that data at the beginning of the operation belongs to a normal operation stage. At the
start, a comparison of data belonging to windows should return a negative check result.
The beginning of degradation is at the point where the check result becomes positive. This
strategy also has a disadvantage of requiring the position of the end of life point tEOL to
function; hence, it can be only used on historical data. The demonstration of HFTM strategy
is provided at Figure 8.

RUL

Time

w2w1

Tail 
Fix

Head 
Move

Figure 6. Explanation of HMTF strategy. We observe that one sliding window of observation from
head is moving while the sliding window from tail is fixed.

RUL

Time

w2w1

Tail 
Move

Head 
Move

Figure 7. Explanation of HMTM strategy. We see both sliding windows of observation from head
and tail are moving towards each other.

HFHM strategy consists of the w1 window fixed at the beginning of the operation and
other window w2 moving from the first one towards end of life. At the start, the windows
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should be similar. The beginning of degradation is at the point where they become different.
This strategy is similar to HFTM and is an improvement on it, because it does not require it
to know the value of tEOL. An illustration of of HFHM is provided at Figure 9.

RUL

Time

w2w1

Tail 
Move

Head 
Fix

Figure 8. Explanation of HFTM strategy. We see one sliding window of observation from tail is
moving while the sliding window from head is fixed.

RUL

Time

w2w1

Head 
Move

Head 
Fix

Figure 9. Explanation of HFHM strategy. We see one sliding window of observation from head is
moving while the other window at the head of observation is fixed.

HMHM strategy consists of two windows w1, w2 moving from the beginning of the
operation towards the end of life. The distance and amount of overlap of two windows is
described by parameter lag, which is a difference between the starting points of windows,
as shown in Formula (2).

lag = tw2 − tw1 , (2)

where tw1 , tw2 are the positions of the left edges of windows w1 and w2, accordingly.
If lag < w then two windows are overlapping.
The beginning of degradation is at the point where w1, w2 cannot be considered similar,

i.e., Kruskal-Wallis value of σ < 0.05. Demonstration of HMHM is provided at Figure 10.
This strategy is more robust than the HFHM, because it accounts for possible drift in

values during normal operation, which otherwise might have been considered as a sign of
degradation. To achieve this, the strategy utilizes a lag of a second order l2 parameter to
adjust the sensitivity of detection. The meaning of this parameter is a number of consequent
negative checks. The higher the value of the parameter, the less sensitive this strategy is for
data fluctuations, and vice-versa—the lower the value of the parameter, the more sensitive
is the strategy.
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RUL

Time

w2w1

Head 
Move

Head 
Move

lag

tw1 tw2

Figure 10. Explanation of HMHM strategy. We see both sliding windows of observation from head
are moving with a defined lag.

2.4. A Scheme of the DPI Method

The general description of the DPI method is depicted at the Figure 11. Algorithm 1
shows operation of the method for HMHM strategy to produce the degradation start point
tdegr on data x using two moving windows w1 and w2 with the size w. HMHM strategy
also requires lag l input parameter, which is the distance between two windows w1 and
w2. Another parameter is l2, which is a lag of a second order, i.e., the number of iterations
for which Kruskal-Wallis condition has to be met in order to consider it a true start of the
degradation process and reduce noise.

Algorithm 1 Determining degradation start point using HMHM strategy.

Input: x, w > 0, t0 = 0, tEOL > 0, l > 0, l2 ≥ 0
Output: tdegr

tw1 ← 0 . Initial position of the first window
tw2 ← 0 . Initial position of the second window
PointFound← f alse . Flag that indicates whether degradation start point was found
lcurr
2 ← 0 . Current number of consequent negative checks

while PointFound 6= true do
if tw2 + w + l ≤ tEOL then . Reached end of data without finding point

tdegr ← 0
PointFound← true

else
d1 ← x[tw1 ; tw1 + w] . Data in the first window
d2 ← x[tw2 ; tw2 + w] . Data in the second window
σ← CalculateKruskalWallis(d1, d2) . Calculate σ using Kruskal-Wallis test
if σ ≤ 0.05 then

lcurr
2 ← lcurr

2 + 1
else

lcurr
2 ← 0

end if
if lcurr

2 = l2 then
tdegr ← tw1
PointFound← true

else
tw1 ← tw1 + 1 . Move windows a step forward and repeat
tw2 ← tw2 + 1

end if
end if

end while
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Set initial position of windows

Windows are similarWindows are different

Check result value

Output degradation start point Move windows

Calculate Kruskal-Wallis value for two windows

Figure 11. Proposed method for determination of degradation start point.

2.5. Update RUL Forecasting Using Proposed Method

To mitigate inaccuracies of RUL forecasting in models that use the whole data from the
beginning of the operation to the end of life, we split data into two stages—normal mode
of operation and the degradation process. To do this, we used a DPI method described in
Section 2.3. Figure 12 displays the top level diagram of the whole implementation of the
method for RUL forecasting.

At step 1 of the method, the raw historical data is loaded from .csv file. The data
consists of the following attributes: engine number, cycle number, parameters and values
from various sensors.

At step 2, the data are prepared for further use in training forecasting models. First,
the remaining useful life (RUL) is calculated for each line. Then, all parameters with zero
variation are removed from the data. Then, all input parameters and sensor values are
normalized. Finally, inputs and outputs for learning are prepared. The RUL value of
measurement is taken as an output. The two-dimensional array of sensor parameters of
length w, that represents w consequent measurements before the corresponding RUL value,
is formed as input.

At step 3, the data are split into two parts: p1 of size 20 percent and p2 of 80 percent of
total data.

At step 4, data for the degradation process are split. Figure 13 provides a flowchart
with a further breakdown of this step. At step 4.1, part of the data p1 of size 20 percent is
read. At step 4.2, this p1 data are used for training the first CNN-based forecasting model.
At step 4.3, the trained model is used to forecast the RUL for p2 data.

Then, at step 4.4, points at which the degradation begins are determined. Figure 11
provides a flowchart of the determination of degradation start point. At step 4.4.1, the
initial positions for moving windows are set according to the selected strategy. At step
4.4.2, the statistical test is performed on data that these windows cover. At step 4.4.3, the
test result check is performed. At step 4.4.4, if the windows are different, the degradation
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start point is set at the location of one of the windows. At step 4.4.5, if the windows are the
same, their positions are moved and the execution moves to step 4.4.2.

At step 4.5, data are split into normal process and degradation, where the degradation
data are located after the degradation start point. At step 4.6, these data are outputted for
further use in the following steps.

1. Read historical data

2. Convert historical data into suitable for
model training format 

3. Split data in two parts with the ratio 20/80

4. Prepare degradation data 

5. Train CNN-based forecasting model on
degradation data

6. Build RUL forecast

7. Output forecast results  
and its parameters

Figure 12. Proposed RUL forecasting method with DPI.

At step 5, data from step 4 are used for training the CNN-based forecasting model. At
step 6, the forecast for RUL is built using model from step 5. At step 7, the forecast result
is outputted.
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4.1 Read 20% of data alotted for training
detection models

4.2 Train CNN model on 20% of data

4.3 Calculate RUL for remaining 80% of
historical data

4.4 Determine degradation start
points

4.5 Separate degradation data

4.6 Output degradation data

Figure 13. Proposed method for preparation of degradation data.

2.6. CNN Architecture

We use the convolutional neural network (CNN) as a benchmark method as well as
in conjunction with proposed methods’ strategies. CNN is a Deep Learning algorithm,
which can take in an input two-dimensional array, assign importance (learnable weights
and biases) to various aspects/objects in the image and be able to differentiate one from
the other [44]. Figure 14 provides a visual scheme of the CNN used in the experiment.

The specific model that we use in this research was developed by Cuong Sai [14].
Figure 15 provides a scheme of the architecture of that neural network.

Architecture of CNN includes one convolution layer, one pooling layer, flattened and
two fully connected (dense) layers. Convolution layer receives input as a two-dimensional
array and converts it to 64 filters with kernel size of 3 × 3 and valid padding and stride
size of 1. Pooling is performed using max operation and pool size of 2 × 2. Pooling
output is then flattened. After that there are two fully connected layers, one of which
reduces dimension to 64 using ReLU activation and the other provides reduction to a single
continuous output value using sum operation.
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Fully-Connected

(None, 1)

(None, 64)

Max-Pooling

(None, 50, 1) (None, 24, 64)

Convolution
3*3 kernel 

valid padding

Flatten

Fully-Connected
Activation: ReLU 

(None, 48, 64) (None, 1536)

Figure 14. Visualized proposed CNN architecture (adapted from [14,44]).

conv1d_6_input: InputLayer
input:
output:

(None, 50, 16)
(None,50, 16)

conv1d_6: Conv1D
input:
output:

(None, 50, 16)
(None, 48, 64)

max_pooling1d_2:
MaxPooling1D

input:
output:

(None, 48, 64)
(None, 24, 64)

flatten_1: Flatten
input:
output:

(None, 24, 64)
(None, 1536)

dense_4: Dense
input:
output:

(None, 1536)
(None, 64)

dense_5: Dense
input:
output:

(None, 64)
(None, 1)

Figure 15. Proposed CNN architecture for RUL forecasting (adapted from [14]).

3. Results
3.1. Datasets

For testing and verification of the proposed DPI method, the simulated data from
NASA repository for turbofan engine degradation was used [18]. Data consist of following
columns: number of an engine, number of a cycle, 3 input parameters and 21 readings
from sensors. In total, there are historical data for 100 engines, each of which has different
number of cycles with a total number of 20,631 rows. Figure 16 displays an example of data
from the dataset consisting of 10 randomly selected engines.
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Figure 16. Visualisation of a sample of data from [18].

Table 2 contains parameters of every column in the dataset.

Table 2. Statistical description of test data [18].

Column Type Min Mean Median Max

Unit Numeric 1.000 51.507 52.000 100.000
Time Numeric 1.000 108.808 104.000 362.000

c1 Numeric −0.009 0.000 0.000 0.009
c2 Numeric −0.001 0.000 0.000 0.001
c3 Numeric 100.000 100.000 100.000 100.000
s1 Numeric 518.670 518.670 518.670 518.670
s2 Numeric 641.210 642.681 642.640 644.530
s3 Numeric 1571.040 1590.523 1590.100 1616.910
s4 Numeric 1382.250 1408.934 1408.040 1441.490
s5 Numeric 14.620 14.620 14.620 14.620
s6 Numeric 21.600 21.610 21.610 21.610
s7 Numeric 549.850 553.368 553.440 556.060
s8 Numeric 2387.900 2388.097 2388.090 2388.560
s9 Numeric 9021.730 9065.243 9060.660 9244.590
s10 Numeric 1.300 1.300 1.300 1.300
s11 Numeric 46.850 47.541 47.510 48.530
s12 Numeric 518.680 521.413 521.480 523.380
s13 Numeric 2387.880 2388.096 2388.090 2388.560
s14 Numeric 8099.940 8143.753 8140.540 8293.720
s15 Numeric 8.325 8.442 8.439 8.585
s16 Numeric 0.030 0.030 0.030 0.030
s17 Numeric 388.000 393.211 393.000 400.000
s18 Numeric 2388.000 2388.000 2388.000 2388.000
s19 Numeric 100.000 100.000 100.000 100.000
s20 Numeric 38.140 38.816 38.830 39.430
s21 Numeric 22.894 23.290 23.298 23.618
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3.2. Results Description

To improve the accuracy of results, we use the cross-validation technique. Data are
split between training and validation sets in proportion of 75%/25%. Further, the training
set is split using cross-validation in proportion of 80%/20%, as required by the DPI method.

Results were obtained with open-source Python framework created by authors, which
contains an implementation of the proposed method [43].

Example of degradation start points detection is shown at Figure 17.
R

U
L

Time

Degradation start point  
detected using HFHM strategy

Degradation start point  
detected using HMHM strategy

Figure 17. Determination of degradation start point examples. The orange line is an example of RUL
forecast obtained using framework [43] for data [18]. The blue line is the expected RUL value.

As can be observed from the given image, the HMHM strategy detects the degradation
start point further in the process of operation than HFHM. This can be attributed to
the variation in data, e.g., caused by external conditions. The HFHM strategy cannot
process this variation, because the original sample is always the same. HMHM strategy
can overcome these variations because their longevity is shorter than the "looking back"
window of the strategy.

All strategies were tested on the same forecasting model in comparison to the base-
line method, which does not include any degradation process detection. The results are
provided in Table 3. Strategies that require knowledge of the end of life point are included
for reference.

Table 3. Window moving strategies results.

Strategy MAE Value

CNN (No strategy) 18.35
CNN + HMTF 4.07
CNN + HMTM 13.57
CNN + HFTM 15.28
CNN + HFHM 16.12

CNN + HMHM 9.38

Each strategy achieves its result by marking different amount of data as degradation
process. The percentage of data considered as a degradation process by each of the strategies
is provided at Table 4.
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Table 4. Window moving strategies results.

Strategy Degradation Data Percentage

HMTF 5.42
HMTM 51.63
HFTM 87.59
HFHM 90.06
HMHM 43.56

4. Discussion

In the experiment proposed, the DPI method in combination with the forecasting
model was compared to the same forecasting model without any additional data prepa-
ration conducted as a baseline. The CNN model was selected because of its accuracy and
prevalence in recent research. All related to CNN model parameters were kept the same
across all tests. Baseline CNN model on the given data with given parameters showed
an accuracy of 18.35 points MAE.

The Kruskal-Wallis test helps to determine the start of negative changes in the process
we call degradation. The criterion is very basic and effective at the same time, showing
the applicability of statistical tests to the data during the degradation start point detec-
tion. However, future work may be carried out to devise more comprehensive test for
improved accuracy.

Some strategies require additional logic for the degradation start point detection,
e.g., HMHM and its lag of a second order l2, but their primary objective is to make the DPI
method less susceptible to random changes in data.

The strategy of moving sliding windows across data is the main variable point in the
proposed DPI method. Depending on a strategy, the obtained results vary significantly,
which can be attributed to the nature of a specific strategy.

HMTF strategy combined with a baseline CNN forecasting method shows an accu-
racy of 4.07 MAE, which is, basically, the most accurate result of the proposed method.
However it is not applicable to real world scenarios because of: (1) it is required to know
when failure is going to happen for this strategy to function; hence, its only a synthetic test
of possible capabilities of the proposed method, (2) due to how late in the life of energy
equipment it sets a degradation start point, indicated by how little data it considers to be a
degradation (only about 5 percent), it would have poor performance in earlier stages of the
equipment’s life and, thus, late reaction times.

The HMTM strategy shows a result of 13.57 MAE, which is an average result among
tested strategies. If we look at the data distribution, we can observe that this strategy finds
about 50 percent of data to belong to degradation process. Basically, it means that it puts the
degradation start point in the middle of the life of energy equipment most of the times. This
can be explained by the nature of the movement of windows in this strategy. They move
towards each other with fixed equal speed and meet roughly in the middle. To mitigate
this, further improvement to the comparison of data in the windows technique can be
conducted. Moreover, it is possible to add a more comprehensive algorithm to adjust the
size of a step for each window individually. This strategy is also unusable in the real world
scenario because it requires one to know when failure is going to occur.

HFTM shows an accuracy of 15.28 MAE, which is one of the smallest increases in
comparison to the benchmark method out of all the strategies. This is because it detects
the beginning of the degradation point very early, as can be observed from the fact that
part of the data considered that the degradation is over 85 percent. This is contrary to the
proposal of splitting the data set into a normal operation and degradation process, as it
only takes out small percentage of data. This also is not a very accurate representation of a
real world process, as significant degradation would not occur in energy equipment for a
majority of its lifespan. Moreover, it means that data that represent a normal operation are
going to get mixed with one of the degradation process and decrease the accuracy of the
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forecasting model. This can be attributed to the first window being fixed, thus giving only
a small range of the possible variation of values during the normal operation. The further
tuning of sensitivity and the increasing range of the allowed values can be beneficial for the
accuracy of this strategy, as it could allow to put the degradation start point further in the
lifetime of the energy equipment. This strategy is also not usable in real world scenarios
due to the requirement of knowing the end of life.

The HFHM strategy is very similar to a HFTM with 16.12 MAE, but conducted in
reverse. it shows that practically the same accuracy and similar percent of data is considered
degradation. This strategy, however, can be used in a real world scenario, because it does
not require knowledge of the end of life point to function.

Finally, the HMHM strategy that shows the result of 9.38 MAE, which is better than
the average but still not as good as HMTF. This strategy considers about 43 percent of
data on average to be degradation, which means that it can provide a better reaction time,
making the forecast of the remaining useful life when over a third of a lifespan of energy
equipment is still left. This strategy is more robust than HFHM because it can account
for smaller changes in values from sensors and overall is the most balanced option out of
all the considered strategies. A minimum amount of change in the health index, which is
required for it to trigger, is higher than in some other strategies, which is going to prevent
data from the early stages of operation to mix in with degradation data, while not being too
high and having a late reaction time. Moreover, this strategy can be used in a real world
scenario because it does not require the coordinate of the end of life to function.

There is an observable correlation between the accuracy of the forecast and position of
the degradation start point in the lifespan of the energy equipment. The further the point is,
the more accurate the forecast is. This observation supports the trend that the degradation
of energy equipment speeds up towards the end of life.

With the use of the proposed degradation start point detection method, it is possible
to double the accuracy of the forecasting method in real world scenarios (HMHM strategy)
and up to four times increase in the accuracy when performing synthetic tests (HMTF
strategy).

Increasing the accuracy of RUL forecast provides higher quality data for the decision
support step and allows for increased precision in managerial decisions for maintenance
planning. This, in turn, would improve the reaction to possible failures by reducing the
chance of failure occurring and reduce operating costs.

We may point to the following limitations of the proposed method:

(1) The method is used on aggregated data for each operation cycle, i.e., each equipment
parameter has only one value for each given operation cycle. In real life, we have a set
of values for every equipment parameter that describes the operation cycle. The length
of the set is defined by the duration of the cycle and granularity of data acquisition.
Therefore, we need preprocessed aggregated data to use with the proposed method,
which necessitates the additional dependency on data aggregation algorithms.

(2) Tail-based strategies (HMTF, HMTM and HFTM) could not be used in a real life
scenario because they require knowledge of the end of life time of equipment to
operate; hence, they can only be used as a benchmark on historical data. That is why
all our significant results are obtained based on Head-move strategies.

(3) We use aggregated value of RUL forecast based on all parameters to perform DPI,
which is a possible limiting factor for achieving the maximum accuracy of the degra-
dation process identification. Thus, a shift to the estimation of the beginning of
the degradation process based on individual parameters of equipment and their
correlation may give better accuracy and more control over DPI.

5. Conclusions and Future Work

The RUL estimation problem for reliability-centered maintenance energy equipment is
considered in this paper. The main contribution of the paper is the unsupervised method for
the degradation process identification based on two sliding windows and Kruskal-Wallis
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test to compare the statistics of data within these windows. Five different strategies of the
DPI method were discussed, and the Head Move—Head Move strategy is chosen as more
applicable for RUL prediction implementation. Combination of the proposed method for
degradation process identification and the state-of-the-art deep neural network approached
for RUL estimation allows to decrease forecasting error up to 2 times.

There are three directions of future work for the proposed method:

(1) Implementation of operation cycle data aggregation methods that would improve the
accuracy of the degradation process identification. This is important, as the method
uses aggregated operation cycle data as input and it might not be readily available in
certain use-cases.

(2) Shift to degradation process identification based on an individual detection for each
of the parameters of energy equipment instead of using an aggregated value for
all parameters. This may give more control over degradation identification process
and improve the accuracy of detection, since each parameter might have a different
dynamic of degradation.

(3) To support the maintenance of energy equipment at all stages of life cycle in terms
of performance and costs, it is necessary to develop approaches for the generation of
maintenance actions in time. New and more accurate methods to generate managerial
decisions can be created that make use not only of more accurate RUL forecasts,
but data about the detected degradation process as well.
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