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Abstract: Large-scale grids have gradually become the dominant trend in power systems, which has
increased the importance of solving the challenges associated with large-scale economic dispatch
(LED). An increase in the number of decision variables enlarges the search-space scale in LED. In
addition to increasing the difficulty of solving algorithms, huge amounts of computing resources
are consumed. To overcome this problem, we proposed a surrogate-assisted adaptive bat algorithm
(GARCBA). On the one hand, to reduce the execution time of LED problems, we proposed a general-
ized regression neural network surrogate model based on a self-adaptive “minimizing the predictor”
sampling strategy, which replaces the original fuel cost functions with a shorter computing time. On
the other hand, we also proposed an improved hybrid bat algorithm (RCBA) named GARCBA to
execute LED optimization problems. Specifically, we developed an evolutionary state evaluation
(ESE) method to increase the performance of the original RCBA. Moreover, we introduced the ESE
to analyze the population distribution, fitness, and effective radius of the random black hole in
the original RCBA. We achieved a substantial improvement in computational time, accuracy, and
convergence when using the GARCBA to solve LED problems, and we demonstrated this method’s
effectiveness with three sets of simulations.

Keywords: economic dispatch; power system; surrogate-assisted bat algorithm; general regression
neural network

1. Introduction

The economic dispatch (ED) problem is a hot spot in power system research and is
identified as a nonconvex and nonlinear optimization problem. The purpose of the ED
problem is to reasonably distribute load demand to generator units to obtain the minimum
cost while meeting the operation and security constraints. The constraints include equality
and inequality factors. Among them, it is worth noting that the valve-point effect causes the
fuel consumption curve to show pulsation. Additionally, prohibited operation zones (POZs)
make the fuel cost functions discontinuous. Other practical constraints, such as ramp rate
limits and transmission line losses, should be considered to make ED models more accurate.
There have been numerous approaches proposed to resolve the ED problem. On the
one hand, some researchers are keen to use traditional mathematical methods, including
semidefinite programming [1], dynamic programming [2], λ-iteration [3], and projection
methods [4]. On the other hand, as an important branch of computation intelligence, meta-
heuristic algorithms have gained adequate development in solving ED problems, including
the generic algorithm (GA) [5], particle swarm optimization (PSO) [6,7], the bat algorithm
(BA) [8,9], gray wolf optimizer (GWO) [10], ant colony optimization (ACO) [11], the firefly
algorithm (FA) [12], the cuckoo search algorithm (CSA) [13], and the differential evolution
algorithm (DE) [14]. In [15], a phasor PSO (PPSO) was applied to solve nonconvex ED
problems. Compared with PSO, PPSO had better performance in convergence rate and
computing efficiency. In [16], a modified quasi-opposition-based gray wolf optimization
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algorithm (mQOGWO) was proposed to solve complex constrained optimization problems,
including 23 mathematical benchmark functions and three test systems. The mQOGWO
algorithm achieved a promising method for solving constrained optimization problems.
In [17], the authors proposed a novel honey badger optimization algorithm (HBOA) for
ED problems combining heat and power. The simulation results obtained by HBOA were
better than other comparison algorithms. In [18], a greedy sine–cosine nonhierarchical gray
wolf optimizer (G-SCNHGWO) was employed to solve nonconvex ED problems efficiently.
The simulation results demonstrated the superior performance of G-SCNHGWO compared
with other state-of-the-art methods. In [19], the authors employed the search and rescue
optimization algorithm (SAR) to solve the combined emission and economic dispatch and
economic load dispatch. The results proved the superiority of the SAR in the optimal
solution for economic load dispatch and combined emission and economic dispatch. In
spite of these advances, as society progresses, power systems are becoming larger and
cross-regional. As the decision variable dimension increases sharply, the number of fitness
evaluations and amount of computation time required for the LED become enormous.

There is a possibility that existing methods will not converge in a timely fashion or
will not yield the global optimal result for the LED problem. Al-Betar et al. [20] proposed a
new modified β-hill-climbing local search algorithm for the ED problem, including 3-, 13-,
40-, and 80-unit iterations. When this method was introduced to solve the 40- and 80-unit
ED problems, there were at least 900 and 800 fitness evaluations, respectively. The number
of assessments is enormous. Chiang [21] proposed an improved genetic algorithm for 20-,
40-, 80-, and 160-unit ED problem simulations. These cases took 80.48, 157.39, 309.41, and
621.30 s, respectively. Ali S. [18] proposed a greedy sine–cosine nonhierarchical gray wolf
optimizer to solve ED problems. These four systems include 10, 15, 40, and 140 power
generation units, with various assessment times of 250, 220, 350, and 410, respectively.
Therefore, traditional mathematical methods and meta-heuristic algorithms that solve LED
problems in a straightforward way are considerably time consuming.

Recently, data-driven surrogate-assisted optimization methods have received much
attention and achieved many results in large-scale time-consuming optimization problems.
The main idea of data-driven surrogate-assisted optimization methods is to build a surro-
gate model to approximate and replace the exact objective function [22]. The most widely
used surrogate models include Kriging models [23,24], artificial neural networks [25,26],
radial basis functions [27], support vector machines [28], ensemble models [29], etc. A
Kriging-assisted convergence archive and diversity archive evolutionary algorithm was
proposed for solving multiobjective expensive problems [23], where an improved Krig-
ing model based on the influential point-insensitive was proposed to approximate an
expensive objective function. In [25], compared with the original dropout neural network,
which needs to build many network models, a computationally efficient dropout neural
network was used to evaluate the fitness value. In [27], radial basis function (RBF) models
were applied to replace expensive functions, considerably reducing computing time and
resource use.

In addition, as an RBF variant, a generalized regression neural network model (GRNN)
was also used for a data-driven approximation of the objective function. Park et al. [30]
proposed meta-modeling using GRNN and particle swarm optimization, where GRNN is
treated as a global model to approximate the fitness function of the benchmark function.
Wang et al. [31] proposed global and local surrogate-assisted differential evolution for
expensive constrained optimization problems. GRNN and RBF act as global and local model
surrogate-assisted differential evolution algorithms, respectively, where GRNN replaced the
objective function to evaluate the vector generated by the differential evolution algorithm.
Using GRNN for data-driven surrogate-assisted method has two advantages. First, GRNN
only requires a one-time training process. The computational cost and time of training are
less than that of RBF. Second, GRNN has only one parameter that needs to be adjusted.
This parameter is called the smoothing factor, making the GRNN model insensitive [32].
Although GRNN has been successfully applied to large-scale time-consuming optimization
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problems, effective sampling criteria are needed to improve the GRNN quality for the
fitting error between GRNN and the original objective function.

An effective sampling criterion plays an important role in improving the performance
of the surrogate model’s efficiency and fitting error. In [33], a trust-region framework (TRF)
for managing surrogate model optimization was first proposed. The framework depends
on the gradient information of the expensive function; however, gradient information is
difficult to obtain. An improved trust-region model management technology called self-
adaptive “minimizing the predictor” (SAMP) was proposed to identity local search space
around the optimal solution [34]. Compared with TRF, SAMP uses the different fitness
values between two successive iterations to adjust the direction of exploration. SAMP is
not only easy to implement but also provides the high-quality sampling points for data
needed to improve the quality of GRNN.

An excellent optimization algorithm is useful for the LED problem optimization
process. The bat algorithm is widely used in ED problems due to its few parameters
and fast convergence [35–38]. In [39], a modified directional bat algorithm (dBA) was
devoted to solving the ED problem with renewable resources. The dBA outperformed the
comparison algorithm in terms of convergence speed and computation time. In [40], the
authors proposed a novel Cauchy–Gaussian quantum-behaved bat algorithm (CGQBA) to
solve the ED problem in various test systems, including 3, 6, 20, 40, 110, and 160 generation
units. In [41], the authors proposed a multiobjective hybrid bat algorithm (MHBA) to
solve the combined economic/emission dispatch problem. The simulation results from
the IEEE 30-, 118-, and 300-bus systems confirmed the superiority of MHBA. In [9], a
modified hybrid PSO with BA parameters was presented to find the optimal solution of
the ED problem by incorporating renewable energy and thermal sources. Liang et al. [8]
proposed a hybrid bat algorithm (RCBA) for ED with random wind power. RCBA was
constructed by combining the random black hole model, a chaotic map, and bat algorithm,
where random walks for local searches were replaced by the random black hole model,
and chaotic maps were applied to substitute some parameters for loudness and pulse
emission rate. Compared with the original bat algorithm, RCBAs have the advantages of
enhancing the global search ability and effectively avoiding the premature convergence
problem. However, the final solution of the RCBA depends heavily on the effective radius
(rd) of the random black hole model, and the search space is positively correlated with
rd. Importantly, rd is set as a piecewise parameter by the author based on the search
space variation (from large to small) and experience, which has a considerable effect on
convergence and accuracy. Furthermore, Zhan et al. [42] proposed an adaptive PSO. A
real-time evolutionary state estimation method (ESE) based on population distribution and
particle fitness was performed to identify one of four defined evolutionary states in each
generation. Inertia weights, acceleration coefficients, and other algorithmic parameters
were automatically controlled at runtime to enhance search efficiency.

Although the surrogate model technique and LED problem have been actively studied,
there are few data-driven surrogate-assisted optimization algorithms to solve the LED
problem. To improve the quality of the surrogate model and obtain the better final solution
for the LED problem, a high-quality hybrid optimization algorithm is urgently needed.
Motivated by the above analysis, we proposed a data-driven surrogate-assisted adaptive
hybrid bat algorithm for the LED problem. Our proposed method consists of two parts:
(1) a novel GRNN surrogate model based on the SAMP sampling strategy; (2) an adaptive
hybrid bat algorithm.

The main contributions of our paper are summarized as follows:

(1) We proposed an improved GRNN based on the SAMP sampling strategy for replacing
the original objective function in optimization. First, we used GRNN to evaluate the
fitness, which is constructed from the population that meets the constraint conditions
and is randomly generated. The promising points xp randomly sampled from the
SAMP search space are 10 percent of the number of the population in each iteration.
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Then, xp are taken to the database, and GRNN is finally updated according the
database in every five generations;

(2) We proposed an adaptive bat algorithm to perform LED-problem optimization. First,
by revealing the essence of rd in RCBA, we developed the ESE method to evaluate the
relationship between the population distribution, fitness value, and rd of RCBA. ESE
can improve the reliability of RCBA without increasing the algorithm’s complexity.
Second, inspired by the principle of the evolutionary factor in ESE, we proposed an
average evolutionary factor method to adaptively update rd. Based on this, an adap-
tive bat algorithm was proposed, which eliminates the irrationality of the previous
piecewise setting.

The rest of this paper is organized as follows. Section 2 describes the economic dispatch
problem. Section 3 describes the related work. The proposed algorithm and surrogate are
introduced in Section 4. Section 5 presents the experimental studies on the IEEE 118- and
300-bus systems, as well as the IEEE 40-unit test system. Finally, Section 6 concludes this
paper and provides future research directions.

2. Problem Formulation

This section describes LED problems and aims to minimize the cost, which is subject
to constraints. The LED problem is to increase decision variables and search space on the
basis of the ED problem. Specifically, constraints are introduced to the objective function.
The object is to minimize the fuel cost functions of thermal units with or without valve
points, which are given

minF1=
Ng

∑
j=1

Fj(Pj)=
Ng

∑
j=1

(
αjP2

j +β jPj+γj

)
, (1)

where Fj(Pj) is the cost function of the jth generator (USD/h); Ng is the number of genera-
tors; Pj is the active output of the jth generator (MW); and αj, β j, γj are the cost coefficients
of the jth generator. In the practical ED problem, when the intake valve is opened, the
drawing effect will cause the fuel cost to rise sharply in a short time, finally causing the cost
function to have many non-differentiable points [43]. Therefore, if the valve-point effects
are considered, the fuel cost function is expressed as follows:

minF2=
Ng

∑
j=1

Fj(Pj)

=
Ng

∑
j=1

[
αjP2

j +β jPj+γj+
∣∣∣ej sin(dj(Pmin

j −Pj))
∣∣∣],

(2)

where ej and dj are the valve-point coefficients of the jth generator; Pmin
j is the minimum

active output of the jth generator (MW).
To describe the economic dispatch problem more practically, we considered reactive

power limits, voltage magnitude constraints, line flow constraints, prohibited operation
zones, ramp rate limits, and valve-point effects [41].

• Generation capacity constraints: the real active and reactive outputs of generators
should be limited between their minimum and maximum, which means that genera-
tors should satisfy the following inequality constraint:

Pmin
j ≤ Pj ≤ Pmax

j , Qmin
j ≤ Qj ≤ Qmax

j , (3)

where Pmin
j and Pmax

j are the minimum and maximum active power outputs of the

jth generator, respectively; Qmin
j and Qmax

j are the minimum and maximum reactive
power outputs of the jth generator, respectively.
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• Power balance constraint: the whole active power output should include the total load
demand Pd and total transmission line loss Pl .

Ng

∑
j=1

Pj = Pd + Pl , (4)

The Pl is calculated by [44]:

Pj − Pdj −Vj

Nb

∑
k=1

Vk(Gjk cos θjk + Bjk sin θjk) = 0, (5)

Qj −Qdj −Vj

Nb

∑
k=1

Vk(Gjk sin θjk − Bjk cos θjk) = 0, (6)

where Pj and Qj are the active and reactive powers of the jth bus, respectively; Pdj and
Qdj are the active and reactive power load needs of the jth bus, respectively; Gjk and
Bjk are the transfer conductance and susceptance of the jth bus to kth bus, respectively;
Vj and Vk are the voltage magnitudes of the jth bus and kth bus, respectively, (V);
Nb is the number of buses; and θjk are the voltage angles of the jth bus to kth bus,
respectively. The real Pl is calculated after obtaining Vj, Vk, and θjk by:

Pl =
Nline

∑
m=1

Gm[V2
j + V2

k − 2VjVk cos θjk], (7)

where Gm is the conductance of the mth line connecting buses j and k; Nline is the
number of transmission lines.

• Voltage magnitude constraints: the voltage magnitude should be limited from the
lower to upper bounds for secure operation.

Vmin
j ≤ Vj ≤ Vmax

j , j = 1, . . . , Nb. (8)

• Line flow constraints: the security constraint of the transmission line is limited by

Sj ≤ Smax
j , j = 1, . . . , Nline , (9)

where Sj and Smax
j are the line flows of the jth line and jth line, respectively.

• Ramp rate limits: the active output of the generators cannot be suddenly increased or
decreased. Thus, it is limited by:{

Pj − P0
j ≤ URj,

P0
j − Pj ≤ DRj,

(10)

where P0
j ,URj, and DRj are the previous active output power and the up- and down-

ramp limits of the jth generator, respectively;
• Prohibited operating zones: the thermal generator’s steam valve operation or bearing

vibration makes the cost function discontinuous. Therefore, prohibited operating
zones are considered as below:

Pmin
j ≤ Pj ≤ Pl

j,1,

Pu
j,k−1 ≤ Pj ≤ Pl

j,k, k = 2, . . . , z, j = 1, 2 . . . , Ng

Pu
j,z ≤ Pj ≤ Pmax

j ,

(11)
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where z is the number of prohibited operation zones of the jth generator; Pu
j,z and Pl

j,z
are the upper and lower active power outputs of the zth prohibited operation zones
for the jth thermal unit.

3. Related Technology

This section is devoted to introducing the original hybrid bat algorithm RCBA, evo-
lutionary state evaluation method, general regression neural network, and self-adaptive
“minimizing the predictor” strategy.

3.1. Original Hybrid Bat Algorithm RCBA

RCBA [8] is an improved hybrid bat algorithm, which was proposed to solve ED
with random wind power. The main idea of RCBA is to integrate the random black hole
model and chaotic maps with the bat algorithm, greatly increasing the global search ability,
enlarging the exploitation area, and accelerating convergence speed during the search. To
enhance convergence for solving ED problems, the authors adopted the random black hole
model to replace the random walk of the bat algorithm, which shows high performance for
its convergence and search abilities. Our use method of the random black hole model is
stated as follows:

fi = fmin + ( fmax − fmin)β, (12)

Vt+1
i = Vt

i + (Xt
i − Xt

g) fi, (13)

{
Xt+1

i (m) = Xt
g(m) + rd ∗ σ, l ≤ p,

Xt+1
i = Xt

i + Vt+1
i , l > p,

(14)

where fmax and fmin represent the maximum and minimum frequencies, respectively; β is
a random number distributed in the range (0,1); Vt

i is the bat velocity at the tth iteration;
Xt

g(m) is the current best position of each single dimension m at the tth iteration; Xt+1
i (m)

is the current position of each single dimension m at the t + 1th iteration; rd is the effective
radius of the random black hole model, which is set as a piecewise parameter; σ obeys
uniform distribution in [−1,1]; l is a random number that takes a value between 0 and 1;
and p is the threshold of the random black hole model—a constant.

Accordingly, loudness Ai and pulse emission rate ri are updated by Equations (15)
and (16), respectively.

At+1
i =

{
At

i /0.7, i f At
i < 0.7,

10(1− At
i)/3, i f At

i ≥ 0.7,
(15)

rt+1
i = rt

i+0.2−((0.5/(2π))×sin(2π×rt
i )) mod 1, (16)

The update steps of RCBA are as follows:

(1) Initialize bat population, velocity, frequency, loudness, and pulse emission rate;
(2) Obtain fitness values by Equation (1) or (2);
(3) Generate p, σ, and new solutions by frequency, speed, position, and Equations (12)–(14);
(4) Update Xt+1

i (m) according to Equation (14) if l ≤ p;
(5) Generate new fitness;
(6) Update new fitness and position if the solution improves, or update if not;
(7) Update the best solution, loudness, and pulse emission rate updated by

Equations (15) and (16);
(8) Repeat steps 3 to 7 until the stopping criterion is satisfied.

The effect radius rd of the random black hole model is a piecewise parameter, which
has an important effect on convergence and global search ability. If rd is considerably
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large, the final solution will be away from the global best solution. In contrast, when rd is
considerably small, the ability to enlarge the search area may be reduced.

3.2. Evolutionary State Evaluation Method

In the optimization process, it can be expected that the population distribution will
cluster around the global optimum from the initial uniform random distribution to the
later stage. First, we proposed the ESE method to calculate the average distance of each
particle to all other particles [42]. The population distribution state is reflected through the
average distance. The average distance of the global optimal particle to all other particles
tends to be the smallest, because all other particles tend to surround the global optimal. At
this point, the evolutionary state can be judged as a convergent state. In contrast, when
the average distance is the largest, the global optimum is far from all other particles in the
jumping-out state. Detailed steps are introduced as follows:

(1) Average distance is calculated by the Euclidean metric from the particle i to all the
other particles, where Np is the population size and D is the number of dimensions, re-
spectively.

dip =
1

N − 1

Np

∑
j=1,j 6=i

√√√√ D

∑
k=1

(xk
i − xk

j )
2; (17)

(2) Evolutionary factor is denoted as the variation in the average distance of the global
optimal particle during the optimization process, where d∗ is the average distance
of the global optimal particle. In addition, the maximum and minimum average
distances of all di are defined as dmax and dmin, respectively.

fese =
d∗ − dmin

dmax − dmin
∈ [0, 1]; (18)

(3) According to the concept of fuzzy classification, fese is classified into four sets, namely
S1, S2, S3, and S4, which represent the states of exploration, exploitation, convergence,
and jumping out, respectively.

3.3. General Regression Neural Network

The GRNN, which can approximate any regression surface in theory, was proposed by
Specht [45]. In this paper, we used the GRNN to approximate cost function (1) or (2) in the
LED problem. Compared with other neural networks, such as the back propagation neural
network, the GRNN requires only one training process. Therefore, the GRNN is suitable for
solving time-consuming LED problems. Assuming that x and y are two random variables,
their joint probability density is f (x, y), and the regression of y relative to x0 is given by

E(y | x0) = (x0) =

∫ 0
−∞ y f (x0, y)dy∫ 0
−∞ f (x0, y)dy

, (19)

where y(x0) is the predicted output of y given the input x0. A Parzen sub-parameter estima-
tion of the density function f (x0, y) can be obtained from the sample dataset (xi, yi)

n
i=1 [46]:

f (x0, y) =
1

n(2π)
p+1

2 σp+1

n

∑
i=1

e−d(x0,xi)e−d(x0,xi), (20)

d(x0, xi) = ∑
p
j=1

[(
x0j − xij

)
/σ
]2,

d(y, yi) = [y− yi]
2,

(21)
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where n is the number of sample points; p is the dimension of random variables x; σ
is called the smoothing factor, which is actually the standard deviation of the Gaussian
function. By combining Equations (19)–(21), y(x0) is calculated by:

E(y | x0) =
∑n

i=1 ye−d(y0,yi)

∑n
i=1 e−d(x0,xi)

, (22)

Obviously, when given input x0, the predicted result is E(y | x0). It should be noted
that the value of the smoothing factor has a large impact on network performance.

3.4. A Self-Adaptive “Minimizing the Predictor” Strategy

To make the Kriging model gradually approximate the real objective function through
continuous sampling, a self-adaptive “minimizing the predictor” (SAMP) strategy [34]
is presented by Dong. Specifically, by continuously sampling the local optimal solution
of the minimization problem, the surrogate model continuously approximates the true
objective function. Because the surrogate model has a better approximation effect near the
local optimum point x0, a search radius is required to determine the next sample point
x1. The initial search radius r0 may be set by a specific problem. The next sampling point
can be sampled by the surrogate model in the interval x0 ± r0. The trust-region factor r is
obtained by:

r =
f
(
xj−1

)
− f

(
xj
)

f
(
xj−1

)
− ŷ
(
xj
) , (23)

where f (xj−1) and f (xj) are the real objective function values at sample points xj−1 and xj,
respectively; ŷ(xj) is the function value computed by the surrogate model at the sampling
point xj. The next search radius σ1 is calculated by:

δj =


c1
∥∥xj − xj−1

∥∥ if r < r1
min

{
c2
∥∥xj − xj−1

∥∥, ∆
}

if r > r2∥∥xj − xj−1
∥∥ otherwise

(24)

where c1 and c2 represent the contraction and expansion degree coefficients of the new
search area (trust region), respectively. The parameters r1 and r2 determine the boundaries
of contraction and expansion, respectively. If the model performance is low, r will be less
than r1 and the trust region will shrink. Conversely, if the model performance is high, r
will be more than r1 and the trust region will expand.

4. Proposed Method (GARCBA)

In our work, we proposed an improved general regression neural network surrogate-
assisted adaptive bat algorithm (GARCBA) for LED problems. Figure 1 shows a flowchart
of our method. Unlike the existing algorithms for ED, the GARCBA consists of two
parts: a surrogate model and an algorithm. In the GARCBA, the GRNN is employed
as the surrogate model to approximate the objective function, which can greatly reduce
computational time. For a accurate GRNN, we adopted the SAMP sampling strategy for
promising points to join the database in every generation. The GRNN is updated every
five generations. To obtain better fitness for enhancing the GRNN’s quality and further
solving the LED problem, we proposed an adaptive bat algorithm. First, we developed
ESE to estimate the relationship of the population distribution, fitness value, and rd of the
RCBA. Second, we proposed an adaptively updated rd of the random black hole method to
remove the irrationality of the segmented setting of rd.
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Initiate：population，parameters，
database and GRNN

Reach maximum number of

assessment ?

Evaluate the population by (1) or (2)

Evaluate fitness by GRNN

Update the best fitness and its position

Update the GRNN by Algorithm 1

Start

End

Update new frequency，velocity and

position by (9)-(11). Local search using

equation (12)

Update the loudness and pulse

emission rate

NO

YES

Update effective radius of random black

hole by Algorithm 2

Figure 1. Flowchart of GARCBA.

(1) Initialization: The initial population is generated by pseudo-random number genera-
tors when meeting the constraints. The database is built through the initial population
and used to build a GRNN for replacing objective function (1) or (2). In addition, the
initial parameters include the maximum frequencies fmax, minimum frequencies fmin,
velocity v0, loudness A0, pulse emission rate r0, population size r0, and system load.

(2) Evaluate the population by exact function: If the valve-point effect is considered,
Equation (2) is used to evaluate the initial population; otherwise Equation (1) is used
to evaluate the initial population.
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(3) Update bat frequency, velocity, position, and local search by random black hole
model: The frequency, velocity, and position are updated by Equations (12)–(14). The
random black hole model is used for local search, which not only enhances the search
ability but also increases convergence. Note that rd is set as a piecewise parameter
that seriously effects the algorithm’s performance.

(4) Evaluate the fitness by the GRNN: The GRNN is used to replace the real objective
function for evaluating the fitness, which can greatly reduce the computational time.

(5) Obtain the current best fitness and its position: The best fitness value and the corre-
sponding bat position are predicted by the GRNN at each iteration, where the best
fitness value is used for the SAMP sampling strategy of the GRNN, and the best bat
position is used in the random black hole model (see Equation (14)).

(6) Update the loudness and pulse emission rate: Finally, the loudness and pulse emis-
sion rate are updated according to the chaotic map (see Equations (15) and (16)).

(7) Update GRNN: Within the SAMP sampling strategy, the promising points of 10 per-
cent of the population are randomly generated and evaluated by the real cost function.
Then, the promising points are taken in the database. Finally, the GRNN is retrained
using the database every five generations.

(8) Estimate the relationship between evolutionary factor and fitness by ESE and adap-
tively update the effective radius rd of the random black hole: The ESE is introduced
to clearly show the state of the bat position and fitness in every generation. According
to the ESE, the average evolutionary factor is proposed to adaptively update rd.

(9) Repeat steps 3 to 7 until the stopping criterion is satisfied.

4.1. An Improved GRNN Base on SAMP Sampling Strategy

As noted in Section 3.3, the GRNN training process is only needed once, which can
greatly reduce computational time. In addition, the GRNN parameter is only a smoothing
factor, which can reduce the GRNN complexity. However, the aforementioned GRNN is
trained by the initial data, which causes an increasing error between the surrogate model
and real objective function. To prevent the algorithm from convergence to a false optimum,
we considered that the SAMP strategy samples new promising points, which can increase
GRNN accuracy to approximate the real objective function. Algorithm 1 describes the steps
of updating the GRNN by SAMP.

Algorithm 1 Pseudo-code of updating GRNN by SAMP.

1: Input: f̂ (xt
i ), f̂ (xt

best), xt
best, f (xt

best)
2: Output: GRNN
3: if t > 1 then
4: if f (xt−1

best) - f (xt
best) >0 then

5: xc = xt
best

6: else
7: xc = xt−1

best
8: end if
9: Get the trust region factor r and trust region radius δj by Equations (23) and (24), respectively

10: δj = max(δj, λR)
11: Bj = [xc − δj, xc + δj]

12: B̂j = Bj ∩ A
13: for each position j in 10 percent of population do
14: Sample promising points xp
15: Calculate the fitness f (xp) by Equation (1) or Equation (2) within the trust region
16: end for
17: end if
18: Take xp and f (xp) into database
19: Update the GRNN in every five generations

In Algorithm 1, xt
i is the position of bat i at iteration t; f̂ (xt

i ) is the fitness at iteration
t evaluated by the GRNN; f̂ (xt

best) and f (xt
best) are the approximate and real best values,

respectively, at iteration t; xt
best is the current best position at iteration t; and xc is defined

as the center of SAMP. After multiple iterations, the sampling space’s radius σj may be
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too small, causing the new sample points to be concentrated, which is not helpful for
improving the GRNN’s accuracy. Therefore, we set a minimum sampling space’s radius λR
to prevent the risk of the sampling space being too small. In addition, the sampling space
Bj may also exceed the problem space (the upper and lower limits of the active output of
economic dispatch); therefore, we set B̂j as the sampling space of the SAMP strategy. In
this paper, c1, c2, r1, r2, δ, and λ are 0.55, 1.25, 0.3, 0.75, 0.05, and 0.05, respectively. The
number of new sampling points is 10 percent of the population size, which can effectively
increase database accuracy. Furthermore, we updated the GRNN surrogate model every
five iterations after each database update.

4.2. An Adaptive Bat Algorithm

As noted in Section 3.1, it is vital to obtain an appropriate rd. We know the population
distribution and search space range from widely distributed to concentrated convergence.
In the original RCBA, rd is set to a relatively large value to enlarge the individual search
horizon and improve the search efficiency at the beginning of the iteration. As the iteration
goes on, the value of rd gradually decreases when a good current global solution is obtained.
In RCBA, rd is set to a piecewise parameter, as shown in Table 1. Table 1 shows that the size
of the rd decreases with a fixed number of iterations, which may reduce the search area or
cause the next given solution to be far from the global optimal.

Table 1. Piecewise parameter of rd as iteration, from [8].

Steps [0, 50] [50, 100] [100, 200] [200, 300] [300, 400]
rd 1 × 10−1 1 × 10−3 1 × 10−4 1 × 10−6 1 × 10−9

Steps [400, 500] [500, 600] [600, 700] [700, 2 × 104]
rd 1 × 10−12 1 × 10−14 1 × 10−17 1 × 10−20

Based on our above analysis, we proposed an adaptive hybrid bat algorithm named
ARCBA and used ESE to evaluate the population distribution; furthermore, we proposed
the fitness and average evolutionary factor to adaptively update rd. Algorithm 2 shows the
pseudo-code of the adaptively updating random black hole radius strategy.

Figure 2 shows the evolutionary state and fitness in Case 1. Figure 2a,b show that
the value of the early evolutionary factor is generally large before gradually shrinking. In
addition, compared with Figure 2b–d, when the evolutionary factor is big enough, the
fitness value remains unchanged. The reasons for the above phenomena are as follows:
When fese is large enough, that is, close to 1, the current optimal individual is the farthest
from all other particles, and the rd needs to be large enough to improve the search efficiency
and speed up the convergence. When fese becomes very small, that is, close to 0, the current
optimal individual is very close to all other individuals, that is, it tends to converge. At this
time, to further improve the search efficiency and speed up, rd should be smaller.

The variable rhT is a collection of rd from large to small, which are shown in Table 2.
The exact size depends on the problem because the evolution factor can reflect the fitness
value of each iteration and the relationship between the evolutionary state and rd in real
time. Furthermore, the change in fitness value can be regarded as a change in evolutionary
factor and rd. Therefore, we proposed an average evolutionary factor to adaptively update
rd. The details are introduced as follows:

fmese =
f t
ese − f t−A

ese
A

(25)
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Figure 2. Evolutionary state and fitness in Case 1. (a) Evolutionary state in Case 1.1. (b) Evolutionary
state in Case 1.2. (c) Fitness in Case 1.1. (d) Fitness in Case 1.2.

Table 2. Parameters of rhT .

Items rhT1 rhT2 rhT3 rhT4 rhT5 rhT6 rhT7 rhT8 rhT9 rhT10

Case 1.1 15 8 6 4 1 1 × 10−3 1 × 10−5 1 × 10−7 1 × 10−9 1× 10−13

Case 1.2 15 8 6 4 1 1 × 10−3 1 × 10−5

Case 2 30 20 18 15 10 8 6 4 1



Energies 2023, 16, 1011 13 of 23

Algorithm 2 Adaptive bat algorithm.
1: Initialize related parameters
2: Get fitness values, set threshold p
3: while t < Ngen do
4: Update frequency,velocity and position
5: if rand > rt

i then
6: for each dimension in Xt+1

i do
7: Randomly generate l
8: if l ≤ p then
9: Update Xt+1

i (m)according to (14)
10: end if
11: end for
12: end if
13: Generate new fitness value fnew with Xt+1

i
14: if rand < At

i && fnew < fitness(i) then
15: Accept new solution
16: Rank the bats and find the current best position Xg

17: Update loudness At+1
i and pulse rate rt+1

i by(15),(16)
18: end if
19: Calculate average distance dip and evolutionary factors fese by (17),(18)
20: Set the number of participating in average fitting A, radius set rhT and mean evolutionary factor threshold

µ
21: I = 1 and prh = 1
22: if (prh <= length(rhT)) && (t > I ∗ A) then
23: I = I + 1
24: Calculate the average evolutionary factor fmese
25: if fmese < µ then
26: prh = prh + 1
27: if prh <= length(rhT) then
28: Update the next rd
29: end if
30: end if
31: end if
32: end while
33: Post process results

5. Simulation Results

The effectiveness of our proposed method for LED is demonstrated through two test
systems: the IEEE 118- and 300-bus systems. The units of active power, cost, and run time
are MW, USD/h, and s, respectively. Due to the lack of experimental comparison results,
we used the GA, PSO, and CSO algorithms in PlatEMO to compare with the GARCBA [47].
As meta-heuristic optimization algorithms are stochastic, each algorithm is independently
tested 25 times for each case. The GARCBA population size and the number of iterations
are 50. The minimum and maximum frequencies of the pulse emission rate are 0 and 0.01,
respectively. The parameters of rhT , the effective radius of a random black hole, are shown
in Table 2, and the threshold p is 0.9.

5.1. Case 1: Simulation of Standard IEEE 118-Bus System

In this case, the IEEE 118-bus system includes 19 thermal generators with a demand of
3668 MW, which is divided into two cases: without/with valve-point effects for the comparison.

5.1.1. Case 1.1: No Valve-Point Effects Are Included

In this case, the IEEE 118-bus system with additional constraints, such as line loss,
ramp rate limits, reactive power, and POZ, is used as the simulation experiment. The
algorithm’s parameters are introduced in the previous section. Table A1 shows the parame-
ters, including cost coefficients, active power limits, and ramp rate limits. POZ data are
taken from [48]. The bus data and power load are taken from [49]. MATPOWER software
is applied to calculate power flow and power losses [49]. To prove the effectiveness of
our proposed method, the best experimental results of the GARCBA and the other three
algorithms from 25 runs are shown in Table 3.
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Table 3. Best cost solutions for Case 1.1 from 25 runs.

Items GARCBA GA PSO CSO

P1 (MW) 854.77 680.43 638.23 619.31
P2 (MW) 10.00 86.29 90.00 88.42
P3 (MW) 80.00 300.00 300.00 294.77
P4 (MW) 212.89 400.00 322.34 383.81
P5 (MW) 1.00 9.62 9.93 9.67
P6 (MW) 3.00 23.00 23.00 22.78
P7 (MW) 74.53 235.94 240.00 224.40
P8 (MW) 5.00 48.01 50.00 47.84
P8 (MW) 20.00 200.00 200.00 152.34
P10 (MW) 22.08 199.98 176.26 180.89
P11 (MW) 400.00 398.87 339.88 227.66
P12 (MW) 324.97 99.69 325.48 185.34
P13 (MW) 458.58 90.82 406.76 212.99
P14 (MW) 552.33 263.09 244.77 444.31
P15 (MW) 1.00 2.80 1.13 2.01
P16 (MW) 651.13 424.18 525.18 461.15
P17 (MW) 155.96 269.73 182.59 87.77
P18 (MW) 5.00 22.49 48.80 18.17
P19 (MW) 4.00 9.67 8.97 17.46

Pl (MW) 168.26 96.64 465.38 41.78
Time (s) 34.38 38.21 47.41 86.13

Cost (USD) 10,179.52 10,485.59 10,440.37 10,446.03

In Table 3, the comparison algorithms (GA, PSO, and CSO) come from Wang et al.’s
PlatEMO. To compare with the GARCBA, the population, number of iterations, and related
parameters of the comparison algorithms are the same as those of the GARCBA. The best
fuel cost is USD 10,179.52, which is obtained by the the GARCBA and is better than the other
values given by GA, PSO, and CSO (USD 306.07, USD 260.85, and USD 266.51, respectively).
Additionally, the GARCBA’s running time for generating the 50 solutions is 34.38 s, which
is faster than the 38.21 s, 47.41 s, and 86.13 s of GA, PSO, and CSO, respectively. Table 3
shows that the GARCBA’s running time and best solution are better than those of the
comparison algorithms.

To further demonstrate the superiority of our proposed method, statistical results for
cost and running time from 25 runs are provided in Table 4. The DARCBA’s minimum,
median, maximum, and average costs are USD 10,179.52, USD 10,209.21, USD 10,297.29,
and USD 10,234.96, respectively. All these values are smaller than the values obtained by the
comparison algorithms. The DARCBA’s mean running time is 36.24 s; however, for the other
three algorithms, the minimum mean running time is 40.84 s, which is given by PSO. Due
to the effects of the GRNN based on the SAMP sampling strategy, our proposed method’s
time is shorter than those of the other original algorithms. Moreover, the difference between
the maximum and minimum costs of the GARCBA after 25 runs is only USD 177.77. This is
because the ESE method can effectively improve the algorithm’s reliability, and the method
of adaptively updating rd can improve the optimization performance.

Table 4. Statistical results for Case 1.1 from 25 runs.

Algorithm

Fuel Cost
(USD) Mean Time (s)

Minimum Median Maximum Average

GARCBA 10,179.52 10,209.21 10,297.29 10,234.96 36.24
GA 10,485.59 10,553.75 10,637.39 10,556.12 41.93
PSO 10,440.37 10,547.67 10,646.60 10,547.59 40.84
CSO 10,445.87 10,569.72 10,628.48 10,559.04 82.57

5.1.2. Case 1.2: All Constraints Are Included

Compared with Case 1.1, the valve-point effects are considered in the simulation, and
the coefficients are shown in Table A1.
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Based on this, all constraints described in Section 2 have been considered. The other
parameters of the algorithm are same as in Case 1.1.

Table 5 shows the best solution of cost from 25 runs. The best fuel cost is USD 10,388.99,
which is larger than that in Table 3 (USD 10,179.52) because of the influence of the valve-
point effects. Compared with the USD 10,440.68 obtained by the GA, which was the lowest
fuel cost among the other three algorithms, the GARCBA’s fuel cost decreased by USD 51.69.
In addition, the GARCBA’s run time is 35.37 s. For the other three algorithms, the shortest
run time is 37.99 s, which is slightly larger than that of the GARCBA.

Table 5. Best cost solutions for Case 1.2 from 25 runs.

Items GARCBA GA PSO CSO

P1 (MW) 835.84 661.81 709.40 844.05
P2 (MW) 10.97 90.00 90.00 51.81
P3 (MW) 123.97 300.00 300.00 164.38
P4 (MW) 275.65 400.00 400.00 251.63
P5 (MW) 1.00 10.00 10.00 7.56
P6 (MW) 3.00 23.00 23.00 14.94
P7 (MW) 159.70 240.00 240.00 174.35
P8 (MW) 5.00 50.00 50.00 27.46
P8 (MW) 108.84 200.00 200.00 167.80
P10 (MW) 23.58 200.00 198.33 137.47
P11 (MW) 304.82 400.00 392.97 221.78
P12 (MW) 229.12 397.96 320.45 341.58
P13 (MW) 331.83 171.04 330.38 366.55
P14 (MW) 550.53 312.60 207.95 424.08
P15 (MW) 1.00 3.65 4.08 3.51
P16 (MW) 660.99 492.14 263.21 263.52
P17 (MW) 184.97 48.90 52.53 184.45
P18 (MW) 58.80 7.72 25.46 19.41
P19 (MW) 8.83 18.24 35.41 13.20

Pl (MW) 160.5964 359.09 185.23 11.65
Time (s) 35.37 37.99 39.62 86.13

Cost (USD) 10,388.99 10,440.68 10,621.19 10,479.25

Table 6 gives the statistical results for the best fuel cost from 25 runs. The GARCBA’s
average fuel cost over 25 runs is USD 10,476.91, which is lower than the minimum average
fuel cost of the other three algorithms (USD 10,556.10). Note that for comparison, the
relevant parameters (population, number of iterations, and power system coefficients) are
the same. The minimum mean time produced by the GARCBA is 33.47 s.

Table 6. Statistical results for Case 1.2 from 25 runs.

Algorithm

Fuel Cost
(USD) Mean Time (s)

Minimum Median Maximum Average

GARCBA 10,388.99 10,461.89 10,633.05 10,476.91 33.47
GA 10,440.68 10,562.40 10,622.96 10,556.10 42.37
PSO 10,621.19 10,852.95 11,017.31 10,843.59 44.86
CSO 10,479.25 10,567.57 10,619.97 10,558.45 87.34

5.2. Case 2: Simulation of Standard IEEE 300-Bus System

To further test the GARCBA’s performance when solving LED problems, we consid-
ered the IEEE 300-bus system for the simulation. The IEEE 300-bus system’s units and
total load demand are 57 and 23,525.85MW, respectively. The fuel cost coefficients and
active power output constraints are shown in Table A2. Other power-system parameters
are from the IEEE 300-bus system by MATPOWER. The simulation experiments in this case
mainly emphasize the performance of the GARCBA in solving LED problems; therefore,
constraints such as transmission line loss, ramp rate limit, and POZs are no longer consid-
ered. In this case, the rd (Table 2) shows that the other algorithm parameters are the same
as in Case 1.
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The detailed best solutions of the 57 units obtained with the GARCBA, as well as the
other three algorithms, are shown in Table 7. The results of the other three algorithms
are the same as those from Case 1 using PlatEMO.The best fuel cost obtained by the
GARCBA is USD 55,724.11, which is less than the best fuel cost of the other three algorithms.
The GARCBA, GA, PSO, and CSO run times are 86.09s, 150.99s, 199.23s, and 306.92s,
respectively. From the run time of solving the IEEE 300-bus system, the time spent by the
GARCBA is 57.01% of GA, 43.21% of PSO, and 28.04% of CSO. Compared with Case 1, the
GARCBA considerably outperforms the results of the other three algorithms in terms of
best fuel cost and running time.

Table 7. Best cost solutions for Case 2 from 25 runs.

Items GARCBA GA PSO CSO Items GARCBA GA PSO CSO Items GARCBA GA PSO CSO

P1 354.58 393.51 359.43 190.39 P20 1026.02 1281.87 1300.00 1283.13 P39 1092.73 1214.48 246.08 1048.35
P2 293.93 299.97 300.00 300.00 P21 547.08 577.05 599.45 567.25 P40 202.05 60.78 139.09 286.29
P3 392.96 400.00 400.00 400.00 P22 1493.32 1943.81 1526.57 1692.19 P41 303.98 482.57 279.35 362.81
P4 193.14 200.00 200.00 200.00 P23 302.99 596.04 181.82 508.65 P42 409.93 500.00 83.22 304.18
P5 238.45 250.00 250.00 250.00 P24 275.11 172.61 275.71 339.19 P43 146.03 269.34 227.43 178.87
P6 1742.67 2030.00 2030.00 2030.00 P25 174.65 133.00 178.83 168.13 P44 264.86 113.62 176.62 287.07
P7 355.47 397.54 400.00 400.00 P26 469.87 554.86 238.67 406.77 P45 417.45 506.30 129.82 203.26
P8 282.70 400.00 400.00 400.00 P27 232.69 210.79 310.45 258.76 P46 94.71 64.01 13.70 45.54
P9 699.25 800.00 800.00 800.00 P28 369.19 230.77 235.96 174.28 P47 1317.24 2221.69 2400.00 1711.67
P10 168.80 200.00 199.15 200.00 P29 283.96 322.19 500.00 180.73 P48 72.96 18.96 139.54 102.89
P11 257.89 350.00 350.00 350.00 P30 342.26 269.86 324.31 122.30 P49 131.27 63.00 56.83 76.28
P12 133.71 250.00 250.00 250.00 P31 561.34 115.76 93.65 287.69 P50 240.62 404.92 271.21 178.89
P13 425.68 500.00 500.00 500.00 P32 195.61 199.18 57.93 332.85 P51 410.88 191.23 87.98 312.90
P14 210.81 317.64 350.00 350.00 P33 587.06 300.28 333.68 247.14 P52 197.84 224.26 121.19 210.31
P15 169.07 350.00 350.00 350.00 P34 509.70 81.23 252.35 397.42 P53 1073.70 1400.00 1385.45 171.85
P16 233.67 350.00 350.00 350.00 P35 153.20 212.95 282.33 135.61 P54 444.97 498.45 299.31 633.26
P17 104.35 200.00 200.00 200.00 P36 92.08 147.21 148.11 140.97 P55 756.39 692.88 900.89 611.65
P18 199.68 300.00 300.00 300.00 P37 464.22 516.29 144.46 380.14 P56 138.40 65.99 134.94 105.02
P19 1201.78 1300.00 1300.00 1268.31 P38 677.32 689.86 152.15 444.33 P57 58.05 68.15 90.23 29.95

Pl
(MW) 664.77 3,379.23 82.21 491.61

Time
(s) 86.09 150.99 199.23 306.92

Cost
(USD) 55,724.11 56,893.90 56,980.33 57,004.06

To prove the GARCBA’s stability when solving the IEEE 300-bus system’s economic
dispatch problem, a statistical result of 25 runs is shown in Table 8. In the GARCBA’s
25 runs, the difference between the maximum and minimum fuel costs is only USD 4985.71,
whereas the other three algorithms have differences of USD 7113.43 USD/h, USD 7037.6
USD/h, and USD 6663.88 USD/h, respectively. The GARCBA’s average fuel cost is also
much lower than the results of the other three algorithms. From the above analysis, we
determined that the GARCBA is less random and more stable when solving LED problems.
This is because the algorithm’s optimization state is effectively evaluated by the ESE
method, and adaptively updating the random black hole radius strategy improves the
optimization’s reliability, accuracy, and convergence. In addition, the GARCBA’s average
running time from 25 runs is 88.29s, which is much shorter than those of the other three
algorithms. This is mainly because a GRNN based on the SAMP sampling strategy can
effectively reduce evaluation times by the exact objective function and make the overall
running time shorter. Based on the above analysis, it is obvious that the GARCBA is more
suitable for solving LED problems.

Table 8. Statistical results for Case 2 from 25 runs.

Algorithm

Fuel Cost
(USD) Mean Time (s)

Minimum Median Maximum Average

GARCBA 55,724.11 58,106.37 60,709.82 57,996.27 88.29
GA 56,893.91 58,668.93 64,007.34 60,351.17 164.47
PSO 56,980.33 60,400.96 64,017.93 60,611.33 166.51
CSO 57,004.06 59,227.10 63,667.94 60,274.10 319.06
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5.3. Case 3: Simulation of IEEE 40-Unit Test System

This test system considers 40 generators with valve-point effects to further confirm
the superiority of the GARCBA over other state-of-the-art algorithms. The demand of this
system is 10,500 MW. The generator cost coefficients and generation limits are shown in
Table A3. Although all practical test systems consider transmission loss, this test system
neglects it. Accordingly, two cases have been considered: with and without valve-point
effects. The algorithm’s parameters are the same as in Case 1 except that the number of
iterations is 100.

5.3.1. Case 3.1: Standard of IEEE 40-Unit Test System

This case is used to test our proposed method’s performance on the IEEE 40-unit
test system standard. Figure 3 shows the graphs of the convergence curve for the BA
and GARCBA. The GARCBA outperforms the BA in terms of obtaining a lower cost for a
high-dimensional problem. Table 9 displays the best cost of solving the LED problem using
the proposed GARCBA compared with the BA and BA-Penalty [50] in the IEEE 40-unit test
system. Table 9 shows the GARCBA produces the better results in terms of minimum total
cost compared with other algorithms. The optimal cost is USD 121,563.2091/h. Table 10
shows a comparison of the GARCBA’s statistical results with other algorithms. The GAR-
CBA optimization process is implemented for 25 trials. Although the GARCBA is slightly
less stable than the MBA [51], it is clear that it performs better in terms of minimum total
cost of ownership. The GARCBA’s average execution time is 32.5984 s.

Table 9. Best cost solutions for Case 3.1.

Items GARCBA BA [50] BA-
Penalty [50] Items GARCBA BA [50] BA-Penalty

[50]

P1 67.3344 113.1233 111.9952 P21 522.0699 548.6068 523.2853
P2 86.1292 111.4569 110.9453 P22 546.3573 545.562 523.2868
P3 118.6434 120 97.39597 P23 496.7465 545.9307 523.2973
P4 172.6246 179.9948 179.7417 P24 501.5560 543.7959 514.5068
P5 57.7019 97 88.92837 P25 546.5400 549.7956 523.2821
P6 130.0937 139.9736 105.4038 P26 533.9505 543.9368 523.8991
P7 292.4075 300 259.6279 P27 121.3725 10 10.00444
P8 251.1615 296.7893 284.6572 P28 78.7507 10.04373 9.999218
P9 260.2802 292.5603 284.6307 P29 98.2577 10.00774 9.999577
P10 245.6100 130.0603 131.9808 P30 89.8568 96.83174 89.70938
P11 215.7838 94 168.7988 P31 183.2669 189.9952 110.7659
P12 368.1091 94.1694 318.3965 P32 76.9153 189.8675 191.6123
P13 250 484.0661 375.8561 P33 162.4044 190 191.5734
P14 200 125.0045 394.2805 P34 159.7818 199.9782 164.8092
P15 425.2913 125.0941 125.0027 P35 183.9541 199.9634 165.5802
P16 214.1350 304.6026 394.2744 P36 186.7423 200 164.9268
P17 434.3557 489.5124 489.2821 P37 101.6365 110 90.73679
P18 469.7557 489.3235 489.3007 P38 77.0279 110 111.304
P19 503.7925 547.7208 511.2816 P39 105.4998 110 111.1426
P20 523.5192 549.9241 511.2772 P40 433.9072 511.3088 511.3018

Cost (USD) 121,563.2091 123,757.39 122,936.74

Table 10. Statistical results for Case 3.1.

Algorithm
Fuel Cost (USD)

Mean Time (s)
Minimum Maximum Average

GARCBA 121,563.2091 122,089.762 122,432.1055 32.5984
BA [50] 123,757.39 128,510.43 125,979.26 NA

BA-Penalty [50] 122,936.74 129,218.58 126,093.09 NA
MBA [51] 121,578.4856 121,601.0042 121,583.3047 NA
ESO [52] 122,122.1600 123,143.0700 122,558.4565 NA
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Figure 3. The convergence characteristics of BA and GARCBA in Case 3.1.

5.3.2. Case 3.2: Valve-Point Effect and POZs Are Considered

To make the test system more realistic, we considered the valve-point effect in this
case. The parameters of the valve-point effect are shown in Table A3. The GARCBA’s
parameters are the same as in Case 3.1. Table 11 shows the detailed best solution of
Case 3.2 with the GARCBA, NGWO [10], and PSO-LRS [53]. Table 11 shows the best
cost obtained by the proposed GARCBA is 121,768.1229 USD/h. To further explain the
superior performance of the GARCBA in solving the LED problem of a 40-unit test system,
we show a comparison between the statistical results obtained by the GARCBA and the
other algorithms in Table 12. The GARCBA outperforms other algorithms in terms of
minimum, maximum, and average values over 25 runs. Additionally, the best running time
is 28.3488 s, which is also obtained from the GARCBA.

Table 11. Best cost solutions for Case 3.2.

Items GARCBA NGWO [10] PSO-LRS [53] Items GARCBA NGWO [10] PSO-LRS [53]

P1 95.3933 111.3177 111.9858 P21 522.0699 526.1137 523.4072
P2 91.3479 112.7551 110.5273 P22 546.3573 532.1443 523.4599
P3 106.9435 118.6377 98.5560 P23 496.7465 536.8421 523.4756
P4 164.2468 183.3649 182.9622 P24 501.5560 524.4669 523.7032
P5 84.5461 91.8097 87.7254 P25 546.5400 525.2461 523.7854
P6 121.5171 104.3697 139.9933 P26 533.9505 529.3289 523.2757
P7 233.2553 297.6533 259.6628 P27 121.3725 9.9500 10.0000
P8 297.5397 289.4349 297.7912 P28 78.7507 9.9500 10.6251
P9 271.7046 298.4044 284.8459 P29 98.2577 9.9500 10.0727
P10 266.2047 129.3500 130.0000 P30 89.8568 88.4106 51.3321
P11 215.7838 241.9702 94.6741 P31 183.2669 188.9088 189.8048
P12 368.1091 166.9113 94.3734 P32 76.9153 188.8126 189.7386
P13 250 214.8490 214.7369 P33 162.4044 186.9624 189.9122
P14 200 215.6690 394.1370 P34 159.7818 195.0897 199.3258
P15 425.2913 305.6922 483.1816 P35 183.9541 171.5047 199.3065
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Table 11. Cont.

Items GARCBA NGWO [10] PSO-LRS [53] Items GARCBA NGWO [10] PSO-LRS [53]

P16 214.1350 394.6479 304.5381 P36 186.7423 176.1085 192.8977
P17 434.3557 494.7618 489.2139 P37 101.6365 89.5297 109.8628
P18 469.7557 493.1559 489.6154 P38 77.0279 89.3589 111.304
P19 503.7925 512.7416 511.1782 P39 105.4998 109.3222 92.8751
P20 523.5192 520.8929 511.7336 P40 433.9072 512.5412 511.6883

Cost (USD) 121,768.1229 121,881.81 122,035.7946

Table 12. Statistical results for Case 3.2.

Algorithm
Fuel Cost (USD)

Mean Time (s)
Minimum Maximum Average

GARCBA 121,768.1229 121,801.0585 121,864.9455 28.3488
NGWO [10] 121,881.81 NA 122,787.77 NA
PSO-LRS[53] 122,035.7946 NA 122,558.4565 NA

IGA [54] 121,915.93 NA 122,811.41 NA
PSO [55] 123,930.45 123,143.0700 124,154.49 933.39

CJAYA [53] 121,799.88 NA 122,581.85 NA
CPSO [56] 121,865.23 NA 122,100.87 114.65

DEC-SQP [57] 121,741.9793 122,981.5913 122,295.1278 386.1809

6. Conclusions

In this paper, to solve the LED problem in a short time, we proposed and applied
a surrogate-assisted adaptive bat algorithm to the IEEE 118- and 300-bus systems, as
well as an IEEE 40-unit test system. On the one hand, we used a GRNN to approximate
the cost function of LED problems to reduce the computational cost of obtaining fitness
values. Furthermore, we integrated a self-adaptive “minimizing the predictor” sampling
strategy into the original GRNN to improve the accuracy online. The abundant execution
times of LED problems are reduced by using the GRNN surrogate model. On the other
hand, to obtain a better, more stable solution for the LED problem, we proposed the
GARCBA to execute LED optimization problems. Furthermore, compared with the original
RCBA, ESE ensures the reliability of the GARCBA. Moreover, we proposed an average
evolutionary factor for the adaptive updating of random black hole radius in the GARCBA.
Our simulation experiments demonstrate the superiority of the GARCBA in solving LED
problems. In our paper, we studied the static LED problem; however, a future study of
dynamic LED involving renewable energy would provide another direction.
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Appendix A

Table A1. Cost coefficients and unit characteristics of Case 1.

Items a b c e f Pmax Pmin
Ramp
Rate

P1 0.0012 1.2420 0 120 0.073 900 100 305/60
P2 0.0054 5.4050 0 50 0.032 90 10 18/60
P3 0.0031 3.1250 0 120 0.073 300 30 1/1
P4 0.0024 2.4150 0 120 0.073 400 40 80/60
P5 0.0093 9.3460 0 25 0.026 10 1 2/60
P6 0.0084 8.4030 0 25 0.026 23 3 5/60
P7 0.0033 3.2890 0 120 00.073 240 30 48/60
P8 0.0068 6.7570 0 30 0.051 50 5 10/60
P8 0.0039 3.9220 0 120 0.073 200 20 40/60
P10 0.0038 3.8460 0 120 0.073 200 20 40/60
P11 0.0020 2.0370 0 120 0.073 400 90 130/60
P12 0.0020 2.0320 0 120 0.073 400 90 130/60
P13 0.0018 1.8180 0 120 0.073 500 50 200/60
P14 0.0017 1.7330 0 120 0.073 600 50 120/60
P15 0.0096 9.6150 0 25 0.026 5 1 1/60
P16 0.0014 1.4140 0 120 0.073 700 50 150/60
P17 0.0028 2.8410 0 120 0.073 300 30 60/60
P18 0.0071 7.1430 0 30 0.051 50 5 10/60
P19 0.0074 7.3530 0 30 0.048 40 4 8/60

Table A2. Cost coefficients and unit characteristics of Case 2.

Items a b c Pmax Pmin Items a b c Pmax Pmin Items a b c Pmax Pmin

P1 0.0018 1.818 0 500 50 P20 0.001 1.12 0 1300 130 P39 0.001 1.12 0 1350 135
P2 0.0031 3.125 0 300 30 P21 0.0017 1.733 0 600 60 P40 0.0024 2.415 0 400 40
P3 0.0024 2.415 0 400 40 P22 0.0009 1.11 0 2100 210 P41 0.0018 1.818 0 500 50
P4 0.0039 3.922 0 200 20 P23 0.0017 1.733 0 600 60 P42 0.0018 1.818 0 500 50
P5 0.0039 3.922 0 250 25 P24 0.0024 2.415 0 400 40 P43 0.0031 3.125 0 300 30
P6 0.0009 1.11 0 2030 203 P25 0.0039 3.922 0 200 20 P44 0.0017 1.733 0 600 60
P7 0.0024 2.415 0 400 40 P26 0.0017 1.733 0 600 60 P45 0.0017 1.733 0 600 60
P8 0.0024 2.415 0 400 40 P27 0.0031 3.125 0 350 35 P46 0.0054 5.405 0 137 13.7
P9 0.0012 1.242 0 800 80 P28 0.0024 2.415 0 403 40.3 P47 0.0008 1.1 0 2400 240
P10 0.0039 3.922 0 200 20 P29 0.0018 1.818 0 500 50 P48 0.0054 5.405 0 145 14.5
P11 0.0031 3.125 0 350 35 P30 0.0024 2.415 0 400 40 P49 0.0031 3.125 0 300 30
P12 0.0039 3.922 0 250 25 P31 0.0014 1.414 0 700 70 P50 0.0018 1.818 0 500 50
P13 0.0018 1.818 0 500 50 P32 0.0031 3.125 0 350 35 P51 0.0018 1.818 0 500 50
P14 0.0031 3.125 0 350 35 P33 0.0014 1.414 0 700 70 P52 0.0039 3.922 0 250 25
P15 0.0031 3.125 0 350 35 P34 0.0014 1.414 0 700 70 P53 0.001 1.12 0 1400 140
P16 0.0031 3.125 0 350 35 P35 0.0031 3.125 0 300 30 P54 0.0012 1.31 0 800 80
P17 0.0039 3.922 0 200 20 P36 0.0039 3.922 0 200 20 P55 0.0012 1.242 0 1000 100
P18 0.0031 3.125 0 300 30 P37 0.0017 1.733 0 600 60 P56 0.0054 5.405 0 150 15
P19 0.001 1.12 0 1300 130 P38 0.0012 1.31 0 800 80 P57 0.0054 5.405 0 108 10.8

Table A3. Cost coefficients and unit characteristics of Case 3.

Items a b c e f Pmax Pmin Items a b c e f Pmax Pmin

P1 0.00690 6.73 94.705 100 0.084 114 36 P21 0.00298 6.63 785.96 300 0.035 550 254
P2 0.00690 6.73 94.705 100 0.084 114 36 P22 0.00298 6.63 785.96 300 0.035 550 254
P3 0.02028 7.07 309.540 100 0.084 120 60 P23 0.00284 6.66 794.53 300 0.035 550 254
P4 0.00942 8.18 369.030 150 0.063 190 80 P24 0.00284 6.66 794.53 300 0.035 550 254
P5 0.01140 5.35 148.890 120 0.077 97 47 P25 0.00277 7.10 801.32 300 0.035 550 254
P6 0.01142 8.05 222.330 100 0.084 140 68 P26 0.00277 7.10 801.32 300 0.035 550 254
P7 0.00357 8.03 287.710 200 0.042 300 110 P27 0.52124 3.33 1055.10 120 0.077 150 10
P8 0.00492 6.99 391.980 200 0.042 300 135 P28 0.52124 3.33 1055.10 120 0.077 150 10
P9 0.00573 6.60 455.760 200 0.042 300 135 P29 0.52124 3.33 1055.10 120 0.077 150 10
P10 0.00605 12.9 722.820 200 0.042 300 130 P30 0.01140 5.35 148.89 120 0.077 97 47
P11 0.00515 12.9 635.200 200 0.042 375 94 P31 0.00160 6.43 222.92 150 0.063 190 60
P12 0.00569 12.8 654.690 200 0.042 375 94 P32 0.00160 6.43 222.92 150 0.063 190 60
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Table A3. Cont.

Items a b c e f Pmax Pmin Items a b c e f Pmax Pmin

P13 0.00421 12.5 913.400 300 0.035 500 125 P33 0.00160 6.43 222.92 150 0.063 190 60
P14 0.00752 8.84 1760.400 300 0.035 500 125 P34 0.00010 8.95 107.87 200 0.042 200 90
P15 0.00752 8.84 1760.400 300 0.035 500 125 P35 0.00010 8.62 116.58 200 0.042 200 90
P16 0.00752 8.84 1760.400 300 0.035 500 125 P36 0.00010 8.62 116.58 200 0.042 200 90
P17 0.00313 7.97 647.850 300 0.035 500 220 P37 0.01610 5.88 307.45 80 0.098 110 25
P18 0.00313 7.95 649.690 300 0.035 500 220 P38 0.01610 5.88 307.45 80 0.098 110 25
P19 0.00313 7.97 647.830 300 0.035 550 242 P39 0.01610 5.88 307.45 80 0.098 110 25
P20 0.00313 7.97 647.810 300 0.035 550 242 P40 0.00313 7.97 647.83 300 0.035 150 242
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