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Abstract: This paper aims to develop a novel method for the dynamic equivalence of a renewable
power plant, ultimately contributing to power system modeling and enhancing the integration
of renewable energy sources. In order to address the challenge posed by clusters of renewable
generation units during the equivalence process, the paper introduces the degree of similarity to
assess similarity features under data. After leveraging the degree of similarity in conjunction with
data-driven techniques, the proposed method efficiently entails dividing numerous units in a large-
scale plant into distinct clusters. Additionally, the paper adopts practical algorithms to determine
the parameters for each aggregated cluster and streamline the intricate collector network within the
renewable power plant. The equivalent model of a renewable power plant is thereby conclusively
derived. Comprehensive case studies are conducted within a practical offshore wind plant setting.
These case studies are accompanied by simulations, highlighting the advantages and effectiveness
of the proposed method, offering an accurate representation of the renewable power plant under
diverse operating conditions.

Keywords: renewable power plants; dynamic equivalent; data-driven; degree of similarity

1. Introduction

The last decades have witnessed the rapid development of grid-connected renewable
energy power, which has emerged as one of the most promising and widely adopted
worldwide [1]. The integration of renewable energy sources, such as hydro, wind, and solar,
has offered a range of advancements for sustainable energy generation and environmental
benefits [2]. However, the increasing penetration of renewable energy power introduces
new complexities that impact the stability and control of power systems [3–5]. Addressing
these challenges necessitates the development of high-fidelity models.

Large renewable power plants typically comprise numerous generation units, often
numbering in the dozens or even hundreds. Unlike conventional synchronous genera-
tors, these units have smaller individual capacities but a greater overall volume. While
traditional modeling methods might involve creating a high-accuracy model for each unit,
applying the same approach to renewable power plants presents challenges. Because
wind or solar generation units rely heavily on electronic interfaces, operating on short
timescales [6]. This not only places a significant computational burden on simulation re-
sources but also extends the simulation time. Primarily, it is tremendously time-consuming
for electrical-magnetic simulations when there are hundreds of units.

As the trend to large-scale grids continues, applying the dynamics equivalent method
to strike a delicate balance between accuracy and efficiency becomes increasingly crucial.
Dynamic equivalence offers a powerful technique to significantly reduce the complexity
of the original system while ensuring that the retained components maintain relevant
and similar dynamic characteristics. This method has found extensive utility in simula-
tions for large-scale AC/DC power systems. Ref. [7] have effectively harnessed dynamic
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equivalence to substantially decrease the scale of grids, resulting in significant time and
resource savings. It is important to note that the primary focus of dynamic equivalence
has traditionally been on synchronous generators and AC networks. Ref. [8] introduces
the coherency-based dynamic equivalence for synchronous generators. This approach has
gained widespread acceptance owing to its sound physical underpinnings. The rotor angles
of individual synchronous generators are indicative of critical dynamics. When subjected
to contingencies, variations in the rotor angle curves of synchronous generators highlight
individual movements. These comparable tendencies or responses observed in these rotor
angle variations can be interpreted as coherent criteria [9].

Nevertheless, a notable gap arises when directly applying the traditional dynamic
equivalent method, like the coherency-based one, to renewable power plants. This dis-
parity is primarily attributed to stochastic, intermittent, and variable characteristics of
renewable energy generation [10,11]. These inherent characteristics collectively give rise to
challenges when seeking to effectively aggregate and model renewable power plants within
the coherency-based framework of dynamic equivalence. The distinctive features of renew-
able generation units, such as converters, wind turbines, and solar panels, set them apart
from traditional generators. Unlike synchronous generators, renewable units lack critical
attributes like rotor angles that are central to coherency-based dynamic equivalences. In-
stead, electronic interfaces heavily influence their behavior, emphasizing converter control
strategies and focusing more on electrical state dynamics than mechanical ones.

Dynamic equivalences of renewable power plants can be categorized into two distinct
approaches: the single-unit and multi-unit methods [12]. The single-unit method entails
the utilization of a solitary equivalent unit to represent the entire power plant, thereby
streamlining the dynamic representation process. The single-unit approach can be seen as a
special case of the multi-unit approach. This approach employs a unified model to capture
the aggregate behavior within the power plant. In cases where the scale of renewable power
plants remains relatively modest, characterized by limited area, environments, and near-
identical working conditions, the differences between individual units may be negligible.
Consequently, the adoption of a single-unit approach becomes a viable option. While this
method offers computational efficiency, it relies on the assumption that all units within
this power plant should exhibit almost identical dynamics. However, this assumption
can lead to substantial equivalent errors when the operating conditions of individual
units significantly differ, such as due to varying environmental factors or diverse working
conditions characterized within a large-scale power plant [13].

In contrast, the multi-unit method has been introduced to overcome these limita-
tions [14–16]. Its concept shares similarities with the coherency-based equivalence method.
In the multi-unit method, units are grouped based on similar operating conditions, and
each group is then aggregated separately. This approach preserves characteristics while
achieving scale reduction and computational efficiency. By acknowledging the unique
dynamics of each group, the multi-unit method offers a more accurate representation of the
power plant behavior under diverse operating scenarios, making it valuable for modeling a
large-scale renewable power plant with complex and varying dynamics. Extensive research
is underway within this field. For example, Ref. [14] reviews dynamic equivalent modeling
of large photovoltaic power plants and compares various multi-unit equivalent methods.
Ref. [15] proposed a novel clustering method for wind farms in urban grids, which satisfies
both steady-state and dynamic consistency. Ref. [16] replaces a separate local low-voltage
network with an equivalent generator in parallel with the load and fixed shunt while
ensuring the original strength of the AC system and mitigating voltage deviations.

Current research has directed their attention toward investigating clustering indices
or algorithms for renewable plants [17]. Notably, reducing the collector network and
optimizing aggregated parameters, particularly within a large-scale plant, constitute a
similarly crucial aspect. Yet, this facet requires consideration within the framework of
dynamic equivalence for a renewable power plant.



Energies 2023, 16, 6934 3 of 20

The research discussed above predominantly centers on characterizing object attributes
and adhering to physical laws, ultimately culminating in models based on Differential-
Algebraic Equations (DAE) [18,19]. Remarkably, the landscape of power systems has
been dramatically reshaped through the amalgamation of machine learning [18], data
science [20], advanced data-driven techniques [21], and artificial intelligence (AI) [22],
among other innovations.

An intriguing advancement in this field involves the application of novel methods for
clusters of renewable generation units. Some algorithms like the K-means algorithm [23],
density peak clustering algorithm [24], and fuzzy clustering algorithm [25,26] have been
recently employed in [23–26]. These algorithms have unveiled fresh perspectives on the
processing and clustering of generation units, offering new insights and potential avenues
for refining the multi-unit dynamic equivalence approach for renewable power plants.
However, it is essential to acknowledge that these innovative endeavors are not without
their limitations. On the one hand, the identification of pivotal attributes or features within
a renewable power plant assumes paramount significance for these methods. On the other
hand, methods such as K-means and fuzzy-C-means require a predefined definition of
clustering centers. These techniques are sensitive to the chosen initial values and prone to
converging towards local optima. Consequently, these methods often necessitate multiple
runs to identify the optimal solution, requiring voluminous datasets for renewable power
plants. Comparisons for dynamic equivalence techniques are listed in Table 1.

Table 1. Comparisons for dynamic equivalence techniques.

Modeling Method Focus of Interest Highlights Reference

Physical modeling

Inverters Hamilton’s-Action coherent Ref. [8]

DFIG and PMSG Dynamic timing warping distances Ref. [15]

DFIG LVRT and DBSCAN Ref. [17]

PV

Multi-stage equivalent modeling Ref. [13]

Multiple aggregated Ref. [14]

Contains PV and MPPT methods Ref. [22]

Network
Retain the trunk network Ref. [16]

Dynamic component modeling Ref. [18]

Measurement-based modeling Ref. [20]

Data-driven

Inverter
Koopman model, Prony analysis Ref. [9]

Time-and-Space grouping Ref. [23]

Wind Farm
K-means, multilevel modeling Ref. [12]

Stochastic security constrained Ref. [24]

DFIG Fuzzy clustering Ref. [25]

Generator Fuzzy equivalence relation cluster Ref. [26]

Network LSTM RNN Ref. [19]

Load Adaptive dynamic load modeling Ref. [21]

Inspired by the above research, this paper actively explores the dynamic equivalent
method for a large-scale renewable power plant. The core idea underlying this approach
involves extracting feature quantities from the data of renewable generation units. Central
to this method is incorporating the degree of similarity and data-driven techniques. The ap-
plication characterizes the distinct feature quantities associated with renewable generation
units. This involves clustering these units into different groups based on a calculated degree
of similarity. Complementing this, the data-driven aspect of the approach capitalizes on the
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wealth of operational data collected from the varied conditions experienced by renewable
generation units across a spectrum of scenarios.

The key contributions and advantages of this paper are outlined in the following:

(1) This paper introduces a data-driven degree of similarity method for constructing
the equivalent model of large-scale renewable power plants. It provides a versatile
framework applicable to various renewable power plants and operational modes,
showcasing adaptability and broad applicability.

(2) By assessing the degree of similarity between renewable generation units, hierarchical
clustering is proposed that efficiently groups numerous units into distinct clusters
for equivalence. This method can lead to substantial time and resource savings in
simulations due to the reduction of the computational complexity of modeling, thereby
significantly streamlining the modeling process for large-scale renewable plants.

(3) Both parameters for each aggregated cluster and the collector network, ensuring
the faithful preservation of the original dynamic characteristics, are meticulously
addressed. These concerted efforts culminate in an equivalent representation of
a renewable power plant. The effectiveness of this proposed method is validated
through rigorous numerical simulations.

The rest of this paper is organized as follows. Section 2 describes the problems of
dynamic equivalent for renewable power plants. Section 3 details the proposed data-driven
degree of similarity method to tackle clusters of units. Section 4 introduces the aggregation
of model parameters. Section 5 presents numerical simulation results on the practical wind
farms for verification. Conclusions are finally drawn in Section 6.

2. Problem Setup

This line of this research was catalyzed in the early 1970s. Researchers such as Pod-
more, Kokotovic, and Joe H. Chow [27], have made significant contributions, propelling
rapid advancements in this field. Many equivalent techniques for equivalent reduction
applications have been proposed, and advanced techniques are still being developed.
The dynamic equivalent methodology can usually be categorized into coherency and
aggregation, linear or nonlinear input–output, phasor measurement-based methods, etc.
Meanwhile, the aim of striking a balance between accuracy and computational efficiency
never changes.

It is interesting to note that early research primarily focused on physics-based model-
ing, emphasizing in-depth exploration of the physical attributes of objects. For instance,
Podmore’s work centered around the concept of coherency based on generator rotor angles.
At the same time, Kokotovic uncovered a relationship linking weak connections between
coherent areas and the slow inter-area modes.

The core idea of the above work is still attractive, while changes, challenges, and
opportunities following the renewable power plants warrant further exploration and in-
vestment.

2.1. Changes and Challenges

The undertaking of dynamic equivalence modeling within a renewable power plant
necessitates a perceptive grasp of the distinct attributes of various components and numer-
ous operational scenarios. This task assumes the nature of a philosophical art: extracting
critical and succinct features from the individual states of renewable generation units,
subsequently shaping a unified and steadfast aggregated state that mirrors the entirety of
this plant.

(1) Changes in dynamics

Renewable power plants, such as wind and solar, exhibit inherent intermittency and
variability due to factors like changing weather conditions. Unlike synchronous generators,
whose output is governed by mechanical rotation, renewable generation units rely on
power electronic converters. The control strategies of these converters dictate how they
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switch on and off to regulate the electrical states and adjust the power output. As a
result, considerable power fluctuations or voltage deviations can be observed following
disturbances or changes in operational points.

However, traditional modeling techniques often rely on static or quasi-static assump-
tions, which assume predictable states and may not adequately capture the rapid and
dynamic changes inherent in renewable energy generation. We believe that the variability
from renewable energy poses a challenge for equivalent modeling. To overcome this, there
is a critical need to identify physical states or attributes that contribute to a comprehensive
understanding of the dynamics of renewable energy generation. Such identification would
pave the way for developing more robust models that can better represent renewable
power plants.

(2) Challenges in identifying critical attributes

As discussed earlier, the coherency-based method, for instance, relies on the behaviors
of generator rotor angles. It can apply to renewable power plants operating in the grid-
forming mode, which behave as virtual synchronous generators. Nevertheless, a notable
challenge arises when applying this method to renewable power plants operating in
grid-following mode. In such cases, the absence of well-defined rotor angles limits the
method’s applicability.

This absence of well-defined rotor angles presents a unique obstacle that requires
alternative approaches. Researchers have endeavored to construct critical states for re-
newable power plants utilizing grid-following mode. In our previous work [28], we have
successfully derived an equivalent power angle (EPA) based on stator-flux equations to
represent the dynamic characteristics of a Doubly Fed Induction Generator (DFIG), akin
to the rotor angle used for synchronous generators. This EPA allows us to effectively
capture and analyze the dynamic behavior of the DFIG, making it suitable for integration
into coherency-based methods for DFIGs. However, it is essential to acknowledge that
this derivation cannot be directly applied to Permanent Magnet Synchronous Generators
(PMSG) or PV systems, as they utilize full-scale converters with distinct structures and op-
erating characteristics. From a grid perspective, the dc-link, machine/grid side converters
isolate the dynamics from PMSG or PV array. This also results in non-inertia response and
damping characteristics, unlike synchronous generators.

Given these differences, it becomes imperative to develop alternative approaches that
can offer a versatile framework without being tailored to certain renewable power plants
or operational modes.

2.2. A Promising Solution

Physics-driven modeling and data-driven modeling are two primary approaches in the
realm of modeling, each bearing its own set of strengths and limitations. The above research
primarily emphasizes physics-based modeling grounded in fundamental physical laws and
equations. This approach precisely portrays system mechanics, elucidating system behavior
and unveiling intrinsic mechanisms and correlations within the system. However, physics-
driven modeling entails challenges, including the necessity for accurate system parameters
and initial conditions, which can be challenging to acquire and may introduce uncertainties
in real-world applications. Moreover, these models might occasionally overlook intricate
nonlinear relationships and random influences, posing a dilemma between model accuracy
and adaptability in complex scenarios.

Concurrently, data-driven modeling has recently gained substantial traction in aca-
demics and industries. This approach proves invaluable applications, such as load forecast-
ing, renewable energy generation prediction, etc. It relies on statistics or machine learning,
utilizing abundant field data to construct models without requiring detailed engineering
documentation. By harnessing the vast amounts of data generated from various sources, we
can develop comprehensive models that capture the intricate dynamics and interactions of
the complex network. High-resolution datasets, augmented computational capabilities, and
reduced computing costs bolster research in this field. Data-driven modeling particularly
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shines when dealing with high-dimensional data, nonlinearity, and real-time demands.
Nevertheless, these models are often referred to as “black-box” models, as they might lack
direct explanations tied to the intrinsic mechanisms governing the system.

Maintaining a balanced perspective is crucial. Data alone cannot entirely replace the
necessity of physical modeling. When harmoniously merged with a well-informed and
comprehensive understanding of the physical phenomenon and its limitations, the fusion
of data and physics-based approaches can yield effective and robust solutions. The synergy
between these methodologies, indicative of an emerging trend within the modeling domain,
holds the promise of yielding more substantial outcomes in both theoretical exploration
and practical application.

2.3. Core Idea

Based on the structural characteristics and operational conditions of renewable energy
generator units, it becomes evident that the active power, reactive power, and voltage
of these units are physical quantities reflecting their states. However, representing the
dominant dynamics of these renewable generator units only with a single variable from
these quantities is not straightforward. Additionally, under changing operating conditions
or disturbances, these physical quantities tend to exhibit complex variations. Using mere
numerical values, magnitudes, or trends as indicators might not adequately describe the
dynamic characteristics of these units.

Recognizing this complexity, we check multiple physical quantities and obtain a
set with specific intentions. Then we unveil the underlying features concealed within
numerical data. The knowledge gained from similarity theory, which is applied in many
fields of natural and engineering science, can help quantify features among generation
units. Consequently, the degree of similarity is proposed to provide insight into similar
dynamics. We can efficiently perform hierarchical clustering with degrees of similarity for
numerous generation units under data-driven.

In this paper, we propose this amalgamation which involves incorporating physical
quantities into data-driven modeling. We begin by selecting a set of pertinent physical
quantities that encapsulate the unit’s state. Subsequently, we employ the Prony analysis to
extract data features corresponding to these diverse physical quantities [29]. An innovative
application of the degree of similarity is proposed to quantitatively measure the resem-
blance in the dynamic characteristics of renewable energy generator units. Consequently,
units exhibiting comparable similarity scores are grouped, which resolves the arduous task
of clustering units during the dynamic equivalence.

Furthermore, we introduce a pragmatic algorithm to derive parameters for these
aggregated groups. Additionally, we elaborate on reducing the collector network to con-
struct the equivalent collector network. The dynamic equivalence of a renewable plant is
finally obtained.

3. Clustering Based on the Data-Driven Degree of Similarity

In the realm of multi-unit dynamic equivalence modeling for renewable power plants,
the process of generation unit clustering emerges as a pivotal step. Without being tailored to
certain renewable power plants or operational modes, we do not choose a certain physical
quantity to perform clustering rather make a meticulous scan of the physical quantities
inherent to the power plant and construct a set of relevant indicators. It is important to note
that a single indicator is insufficient to encapsulate the dominant dynamics of these units
entirely. On the one hand, we strive for these chosen indicators to encompass the intricate
dynamics of renewable generation units across diverse conditions; on the other hand, we
try to unveil the underlying features concealed within them through data analysis.

Once the underlying features are established, we aim to descript the similarity charac-
teristics or behaviors based on underlying features and utilize them to classify units into
distinct clusters. The clustering process takes into account the complexity and amount
of renewable generation units. Popular clustering analysis methods, such as hierarchical
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clustering, can be used. We design the algorithm under data-driven, which can resolve the
arduous task of clustering units.

3.1. Data Preprocessing and Feature Extraction

The key aspect lies in carefully selecting an appropriate set of physical quantities and
extracting meaningful features from the collected data. This requires domain expertise,
data analysis, and feature extraction techniques to unearth significant insights from the
massive dataset concerning dynamic characteristics. The following physical quantities are
considered in this paper:

(1) Active Power (P)

The active power produced by renewable energy units is subject to various input
factors, including wind speed, sunlight, and more. At the same time, the differences in the
D-axis current control structure and parameters among converters also exert an impact on
active power. Hence, the active power can be considered as the medium through which
these influencing factors manifest, reflecting a category of the dynamic performance of the
generation units.

(2) Reactive Power (Q)

Generally, renewable generation units maintain a power factor of 1.0 during the steady-
state process. During fault scenarios, generation units will change reactive power according
to a series of controls, reflecting their behavior. Therefore, the reactive power is selected as
a carrier reflecting changes in dynamic performances.

(3) Voltage (V)

Presently, renewable generation units are connected to the power grid. Their convert-
ers and controls are intricately linked to the voltage at the point of common coupling (PCC).
At the same time, the ability of fault ride through (FRT) depends on voltage magnitude.
Thus, the voltage should be considered as a concerned indicator.

These indicators {P, Q, V} presented in the form of time series data, serve as our dataset
of interest. Our focus is not solely on the actual values of these indicators but rather on
effectively extracting meaningful features from data. Potential approaches could involve
using advanced data analysis techniques, such as neural networks [18], principal compo-
nent analysis [30], wavelet transforms [31], etc., to help identify patterns and regularities
hidden within the data.

Here we adapt the Prony analysis [29], which is a linear combination that fits the
sampled signal as an exponential function of amplitude, phase, frequency, and damping,
as shown in Equation (1).

f (t) =
K

∑
i=1

Aie(αit) sin(2π fit + ϕi), i = 1, 2, ..., K (1)

where Ai, αi, fi, ϕi represents the amplitude, damping, frequency, and phase of the i-th
mode, respectively, and K represents the total number of orders.

Utilizing the Prony analysis on these indicators enables the extraction of modes
associated with a specified order, effectively capturing fundamental dynamics. These
components often encompass numerous surplus segments characterized by amplitudes
nearing zero. Consequently, we can prune superfluous orders by establishing an energy
threshold e.

This pruning process unfolds in the following manner: the energies of all modes
are arranged in a descending sequence, and through iterative summation, the process
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continues until reaching the L-th order, where the cumulative energy equals or exceeds the

product of the total energy
K
∑

i=1
Ei and the designated threshold e, as shown in Equation (2).

L

∑
i=1

Ei ≥
K

∑
i=1

Ei × e (2)

where Ei represents the energy of the i-th mode.
After the pruning process is finalized, these time series data of indicators can be

expressed as follows.

X(t) = {x(t0), x(t0 + τ), ..., x(t0 + (N − 1)τ)} ≈
L

∑
i=1

Aie(αit) sin(2π fit + ϕi), i = 1, 2, ..., L (3)

where X(t) represents time series data, τ represents the data step size, and N represents the number
of data points.

Frequency and damping are the fundamentals that exert the most significant influence. We
prioritize them as underlying features. Additionally, Ei represents the energy of the i-th mode.

Thus, we can obtain:

X(t) ∝ {( f1, α1, E1) ∪ ...∪ ( fL, αL, EL)} (4)

3.2. Degree of Similarity
The degree of similarity can describe how similar two target objects are by analyzing their

similar elements [28]. Suppose object A has m elements, and object B has n elements. There are k pairs
of similar elements (PSE) for both of them. The weight factor of the j-th PSE is λj, and the similarity
is sj. Then the degree of similarity S between A and B can be written by the following equation:

S = f (m, n, k, sj, λj), j = 1, 2, ..., k (5)

Equation (5) provides an overview of the similarity calculation procedure between two objects.
Pertaining to the features that have been extracted, we can utilize Equation (5) to scrutinize the
similarity for each mode encompassed by these features.

It is imperative to organize essential steps and parameters meticulously. Without loss of
generality, we will commence by sequentially addressing PSE and similarity s, elucidating the
comprehensive procedure of the proposed degree of similarity.

We use frequency, damping, and energy in Equation (4) to calculate the Euclidean distance
between the i-th mode of object A and the j-th mode of object B, as shown in Equation (6):

dij =
√
( fAi − fBj)

2 + (αAi − αBj)
2 + (EAi − EBj)

2 (6)

where fAi, αAi and EAi are the frequency, damping, and energy of the i-th mode of object A respec-
tively; fBj, αBj and EBj are the frequency, damping, and energy of the j-th mode of object B.

Based on Equation (6), it is evident that a smaller value of dij signifies a closer resemblance
between the i-th mode in object A and the j-th mode in object B. Thus, we use min(dij) to obtain the
PSE between object A and object B.

Next, we can calculate the similarity s of underlying features, respectively. Take the feature,
frequency, as an example. The similarity of frequency in the i-th PSE can be calculated by Equation (7)

s f i = 1− | fAi − fBi|
fAi

(7)

where fAi and fBi are the frequency of the i-th similar mode of A and B.
Similarly, the similarity of damping in the i-th PSE can be calculated by Equation (8):{

sαi = 1− |αAi−αBi |
αAi

, αAi × αBi > 0
sαi = 0, αAi × αBi < 0

(8)

where αAi and αBi is the damping of the i-th similar mode of A and B.
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We consider the similar weight for the two features. Thus, the similarity in the i-th similar
modes can be calculated as follows:

si = 0.5s f i + 0.5sαi (9)

Repeating the same procedure for each mode, we can obtain the degree of similarity by Equation
(10).

S =
k

∑
i=1

(si × λi) =
l

∑
i=1

(si ×
Ei

l
∑

i=1
Ei

) (10)

The preceding explanation clarifies the process of calculating the degree of similarity. Consider-
ing the indicators {P, Q, V} at hand, we replicate this identical calculation process for each individual
indicator within this set. Eventually, we leverage Equation (11) to compute the degree of similarity
among renewable generation units.

S = S(P) + S(Q) + S(V) (11)

3.3. Hierarchical Clustering
Hierarchical clustering is a powerful technique in data analysis that organizes data points

into a hierarchical structure of clusters. The agglomerative algorithm, a common approach within
hierarchical clustering, works by iteratively merging individual data points or clusters into larger
clusters until a convergence criterion is met. This process naturally results in a tree-like structure,
which visually represents the relationships and similarities between data points.

Here, we adopt the following steps in hierarchical clustering based on the degree of similarity:
Step 1: Start by treating each data point as a separate cluster.
Step 2: Calculate the pairwise distance between all pairs of data points. This distance can be

measured using Euclidean distance, Manhattan distance, or others, depending on the nature of the
data. We choose the degree of similarity S to define the distance between two clusters.

Step 3: Identify the two closest clusters based on the calculated distances and merge them into
a single cluster. This step reduces the total number of clusters by one.

Step 4: Recalculate the distances between the newly formed and remaining clusters.
This step involves computing and updating the distance between the merged cluster and each

of the other ones.
Step 5: Repeat steps 3 and 4 iteratively, progressively forming larger and larger clusters.

Continue merging the closest clusters and updating the distances until a convergence criterion is met.
In order to make it easier to understand, the main procedure of the proposed method is shown

in Figure 1.
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In real-world scenarios, the generation units within the same renewable power plant typically
share a consistent model, or due to the plant’s development in 2 or 3 construction stages, the units
commissioned in each stage maintain uniformity. As a result, this leads to the emergence of, at most, 2
or 3 distinct categories of generation units encompassing the entirety of the plant. Different categories
of units may exhibit certain differences concerning their structure and parameters. Therefore, we
strongly recommend conducting an independent clustering analysis for each corresponding type
of units.

This proposed method ensures the careful consideration of all generation units throughout the
clustering process, thereby enhancing the capture and comprehension of similarities. By conducting
separate clustering for the units and grouping them, we can notably curtail the scope of study within
the power plant.

4. Model Parameters
After a renewable power plant has been divided into several clusters, the next step is to

aggregate each cluster by a re-scaled equivalent unit with adequate model structure and parameters.
In the above section, we have discussed the issue of conducting an independent clustering for

each corresponding type of units. In this situation, the detailed model structure of an aggregated
unit is the same as that of an individual one. However, its constituent elements, spanning from wind
turbines or PV arrays, dc-link capacitors, converter controllers, choppers, and filters, necessitate
re-scaling or optimization for accurate performance. Furthermore, the collector network within the
renewable power plant also necessitates equivalency considerations.

4.1. Parameters of the Aggregated Model
Considering that units in the same cluster are parallel to each other at the aggregated bus,

parameters of the equivalent one are easily obtained from this topology. We take a PMSG power
plant as an example. The wind turbines and generators are the same type and easily re-scaled by
the total capacity of the clusters. The converter in PMSG fully includes the outer loop, current inner
loop, phase-locked loop, and other nonlinear control links, which contain a large number of control
parameters. In order to obtain more accurate equivalent model parameters, this paper uses the
particle swarm optimization (PSO) algorithm [32] to optimize control parameters.

Consistent with the indicators chosen in the above section, we also employ them in the opti-
mization process here. The goal of parameter optimization is to ensure that the characteristics of the
equivalent model are as consistent as possible with the detailed model. It can be expressed as follows:

F(x) = min{max{1
k

√√√√ k

∑
i=1

(∆U(i))2,
1
k

√√√√ k

∑
i=1

(∆P(i))2 1
k

√√√√ k

∑
i=1

(∆Q(i))2}} (12)

where F(x) is the objective function, ∆U, ∆P, ∆Q are the difference between the voltage, active power,
and reactive power of the equivalent model and the detailed model, respectively.

The procedure of parameters optimization for the aggregated model is shown in Figure 2.
The parameters of the equivalent model need to be initialized before the optimization. The

power weighting factor is adopted to set the initial values of the equivalent model, as shown in
Equation (13):

Keq =
n
∑

i=1
ρiKi

ρi =
Pi

n
∑

i=1
Pi

(13)

where Ki represents the controller parameters of the i-th generation unit, Pi represents its active power.
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Figure 2. The procedure of parameters optimization.

When the output characteristics of the equivalent model align with the original conditions,
the resultant solution corresponds to the parameters of the equivalent model. Due to the length
limitations and the specific research focus, an in-depth elaboration on the specific implementation
steps of PSO will not be undertaken here. For a comprehensive understanding of the details and
applications of PSO, we direct the reader to consult the reference provided in [33,34].

4.2. Reduction of the Collector Network
Figure 3 shows a part of a detailed collector network in a renewable power plant. We can easily

derive its steady-state equivalent using the energy conservation principle and clustering constraints.
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According to the energy conservation principle, if a cluster has n generation units, the total active
power and reactive power of this cluster can be summed up by each unit, as seen in Equation (14).

ST =
n

∑
i=1

Pi + j
n

∑
i=1

Qi (14)

where ST is the total output of the given cluster, Pi, Qi are the active power and reactive power output
of the i-th generation unit.

Due to the clustering process, power units in a cluster owe similar dynamics, such as closely
matched voltages. We use a power-weighting factor to calculate the voltage of this cluster, that is:

.
Vagg =

n
∑

i=1

.
ViPi

n
∑

i=1
Pi

(15)
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where
.

Vagg is the aggregated voltage for the given cluster, Vi is the voltage of the i-th generation unit.

The current of the given cluster,
.
Iagg, can be expressed as:

.
Iagg =

ST
∗

.
Vagg∗

(16)

During the reduction of collector network, the power flow does not change. Thus, we can derive
the equivalent impedance for each cluster as:

Zeq =

.
Vagg −

.
Vpcc

.
Iagg

(17)

where
.

Vpcc is the voltage of the point of common coupling.

5. Study Cases
In Case 1, an offshore PMSG wind farm is used as an example. The total capacity of the whole

wind farm reaches 500 MW. To ensure compliance with data anonymization requirements, we have
chosen to selectively focus on one operational stage, comprising 16 generation units, each boasting
a capacity of 8.3 MW, as a representative subset for the analysis. The topology of this subset is
shown in Figure 4a. The terminal voltage of the unit is initially set at 690 V, which is boosted by the
transformer to the 35 kV collector network. Upon interconnection, the generated power undergoes a
further transformation, raising it to the 220 kV grid level. This strategic integration ensures seamless
connectivity with the power grid.
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The parameters of the renewable generation units are shown in Table 2.

Table 2. Parameters of generation units.

Parameters Value (in p.u. if Not Specified) Parameters Value (in p.u. if Not Specified)

Transformer ZT = 0.129 + 1.4753 jj DC Capacitance C = 0.015 F
Transmission line ZL = 0.008 + 0.0104 j Filter inductance L1 = 0.000335 H

DC voltage control Kpdc = 1, Kidc = 50 Current control Kpi = 0.5, Kii = 20

Reactive power control KpQ = 1, KiQ = 50 PLL Kppll = 50,
Kppll = 100

Base AC voltage 0.69 kV Base power P = 8.3 MVA
Base frequency f = 50 Hz

5.1. Validation of Clusters in Case 1
According to the above section, we can execute numerous contingencies and collect the corre-

sponding data. For example, a three-phase fault is subjected to the point of interconnection of the
wind farm at 3.0 s. This fault lasts for 0.1 s and then disappears. The time series data of active power,
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reactive power, and voltage of each unit are collected, which constitute the bedrock of the dataset
compilation. Parts of them are shown in the following Figures 5 and 6.
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At the subset of this power plant, anticipation may arise that the dynamics of generation units
would ostensibly align or nearly coincide. However, upon closer examination, we can find that the
wind farm system exhibits a complex and dynamic nature. Despite the uniform structure of power
generation units, variations in operating conditions and grid connections lead to differences in the
micro-level states of these units. In particular, the response of each generating unit to disturbances
varies due to these conditional differences.

Figure 5 illustrates the dynamic traces of active power, reactive power, and voltage pertaining to
W1, W3, and W16. Evidently, the voltage profiles of these three units display a remarkable alignment,
yet apparent variations emerge in active and reactive power behavior. Notably, in contrast to W1
and W3, W16 conspicuously deviates in terms of both active and reactive power. Similarly, the W11
presents divergences in active and reactive power dynamics when compared to the W9 and W13, as
shown in Figure 6.

Under these circumstances, attempting to quantify or represent the comprehensive dynamic
characteristics of the system using a single physical quantity or response attribute becomes challeng-
ing. The set of indicators selected in this study is designed to address this complexity comprehensively
by capturing the system dynamics from multiple dimensions.

These indicators provide valuable patterns for subsequent feature extraction. Following the
proposed method, we apply Prony analysis to extract the features of time series data and then
calculate the degree of similarity between any two generation units. For comparisons with time-
domain results, as shown in Figures 5 and 6, the results of degree of similarity between units are
shown in Table 3.

Table 3. Comparations for degree of similarity.

Generation Unit 1 Generation Unit 2 Degree of Similarity (p.u.)

W1 W16 0.7429
W1 W3 0.9657
W9 W13 0.8812

W11 W13 0.7907

Degree of similarity describes the resemblance between two units. As its value approaches the
upper limit of 1 p.u., it signifies an augmented likeness between the two objects, whereas nearing the
lower limit of 0 indicates a substantial disparity between the two units. Table 3 shows that W1 and
W3, as well as W9 and W13, manifest elevated values, thereby suggesting grouping within respective
clusters. This result aligns with the preceding simulations.

For the sake of visual clarity, a heatmap illustrating numerical values based on the degree of
similarity is provided herein, as shown in Figure 7. By comparing the degree of similarity among
units, we can grasp the overarching division of all units into four distinct clusters, A1–A4. Yet, it
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becomes apparent that a connection exists between A2 and A4. We need to conduct an investigation
into this connection. z
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Employing the hierarchical clustering algorithm, rooted in the degree of similarity, delves
deeper into delineating clusters among the units, as shown in Figure 8.

Energies 2023, 16, x FOR PEER REVIEW 16 of 22 
 

 

For the sake of visual clarity, a heatmap illustrating numerical values based on the 
degree of similarity is provided herein, as shown in Figure 7. By comparing the degree of 
similarity among units, we can grasp the overarching division of all units into four distinct 
clusters, A1–A4. Yet, it becomes apparent that a connection exists between A2 and A4. We 
need to conduct an investigation into this connection. 

 
Figure 7. Results of similarity. 

Employing the hierarchical clustering algorithm, rooted in the degree of similarity, 
delves deeper into delineating clusters among the units, as shown in Figure 8. 

 
Figure 8. Results of the hierarchical clustering. 

The clustering results are listed in Table 4. We believe that the data-driven degree of 
similarity method efficiently performs the arduous task of clustering units during the dy-
namic equivalence. 

Table 4. Clustering indetificaion. 

Equivalent Unit Unit Numbers 
EQ1 W1, W2, W3 
EQ2 W4–W9, W13–W16 
EQ3 W10, W11, W12 

Figure 8. Results of the hierarchical clustering.

The clustering results are listed in Table 4. We believe that the data-driven degree of similarity
method efficiently performs the arduous task of clustering units during the dynamic equivalence.

Table 4. Clustering indetificaion.

Equivalent Unit Unit Numbers

EQ1 W1, W2, W3
EQ2 W4–W9, W13–W16
EQ3 W10, W11, W12

5.2. Validation of the Equivalent Model in Case 1
After clustering, the renewable power plant can be presented to 3 equivalent generation units,

as shown in Figure 4b. The proposed parameter optimization and reduction of the collector network
are performed, respectively. During optimization, it is necessary to satisfy the error between the
active power, reactive power, and voltage results of the equivalent model and the original detailed
model. We establish the following parameter configurations: a population size of 10, iterations of 50,
an inertia weight of 0.5, and a learning coefficient of 0.1. Ultimately, the parameter of the equivalent
units can be obtained, as shown in Table A1 of Appendix A.

In order to further verify the effectiveness of the proposed method, four models are set up and
compared under the same disturbance:

(1) Model 1: the detailed model of the wind farm, including detailed parameters of wind turbines,
converters, transformers, the collector network, and so on;
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(2) Model 2: the equivalent model of the wind farm obtained by the proposed method;
(3) Model 3: the equivalent model obtained by the single-unit method in Ref. [12];
(4) Model 4: the equivalent model obtained by the multi-unit method based on constraints of

network structures in Ref. [12].

The same fault disturbance is set for each of the four models. When t = 3 s, the wind farm PCC
three-phase fault occurs, and the fault disappears after 0.1 s.

Figure 9 compares voltage, active power, and reactive power profiles between the original
detailed system and its equivalent ones. As depicted in Figure 9, Model 2, based on the method
presented in this paper, closely approximates Model 1, which serves as a representation of the original
system. In contrast, Models 3 and 4, founded on alternative methodologies, exhibit noticeable
deviations from the original system, particularly during the transient stage.
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This result means that the proposed method can maintain the dynamic characteristics inherent
to the original system. Meanwhile, Model 2 only includes 3 equivalent units. The scale of this power
plant can be reduced while retaining high fidelity.

5.3. Efficiency Analysis of Equivalent Model in Case 1
In order to verify the superiority of the wind farm equivalent model in simulation efficiency,

the simulation time of different wind farm models is calculated, as shown in Table 5. The simulations
are carried out on a workstation with the following specifications: AMD 5800X, 8 CPU @ 3.8 GHz, 16
GB of RAM.
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Table 5. Execution time.

Setting Detailed Model Equivalent Model

Duration of Run (s) 5 5
Solution Time Step (µs) 20 20

Simulation Time (s) 1082 48

At the same time, the equivalent system can save time in simulations for dynamic analysis.
The data presented in Table 5 demonstrates that if the original system employs a detailed model for
each unit, with a simulation time step of 20 µs and a total simulation duration of 5 s, the required
computational time amounts to 1082 s. In contrast, the equivalent model, derived through the
proposed method under identical parameter settings, necessitates only 48 s. Hence, it is evident that
the simulation efficiency is significantly augmented.

5.4. Dynamic Equivalence of Multiple Wind Farms in Case 2
In this case, we take a grid-connected system containing multiple renewable power plants as

an example, as shown in Figure 10. This grid requires efficient simulation under electromagnetic
transients. In order to verify the adaptability of the proposed method in multiple wind farms, the
dynamic equivalences of the two wind farms, namely WF1 and WF2 in Figure 10, are performed
following the above steps.
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The two wind farms contain 34 generation units, with WF1 containing 16 units and WF2
comprising 18 units. Detailed parameters for each wind power generation unit are provided in
Table 2. Similar to Case 1, the method presented in this paper is used to cluster different units and
obtain aggregated parameters. Finally, 6 equivalent units are obtained, as shown in Table 6.

Table 6. Clustering Results of WF1, WF2.

Wind Farm Equivalent Unit Unit Numbers

WF1
EQ1 W1, W2, W3
EQ2 W4–W9, W13–W16
EQ3 W10, W11, W12

WF2
EQ4 W1–W3, W11–W13
EQ5 W10, W14–W18
EQ6 W4–W8, W9

In order to verify the validity of the equivalent model, we also apply a three-phase fault to bus
A at 2.5 s. This fault lasts for 0.1 s and then disappears. We compare the transient characteristics of
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the original model (Model 1) and the equivalent model (Model 2). Figure 11 illustrates the transient
profiles of voltage, active power, and reactive power at bus A in response to the fault disturbance.
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As can be seen from the figure above, the disparities between the two models are minimal
during the disturbance. This observation highlights that the dynamic characteristics of the system
are effectively preserved. Additionally, the reduction in modeling complexity leads to a noteworthy
enhancement in simulation efficiency, underscoring the practical advantages of our approach.

6. Conclusions
In this paper, a novel dynamic equivalent method based on a data-driven degree of similarity is

proposed for a large-scale renewable power plant. The core idea of this method involves leveraging
Prony analysis to extract data features from physical quantities of renewable generation units and
then employing the degree of similarity to assess the similarity in these features. Unlike conventional
dynamic equivalent modeling performing physical components-based analytical methods, the pro-
posed method capitalizes on the wealth of data collected from the varied conditions experienced by
renewable generation units across a spectrum of scenarios. The data-driven aspect of this method pro-
vides a versatile framework applicable to various renewable power plants, which efficiently realizes
dividing numerous units with various dynamics into distinct clusters and aggregating parameters
for each cluster. Throughout the modeling procedure, the dynamic equivalent model of a renewable
power plant is achieved to remarkably reduce complexities and scales.

Numerical simulation results on the realistic offshore PMSG wind farms demonstrate that the
proposed approach can maintain dynamic status and accelerate the simulation speed. Compared
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with other representative methods, it exhibits higher accuracy and stronger adaptability to various
scenarios, being more applicable in practice.

In relevant future work, the research efforts can be focused on how to improve its performances
in more harsh practical contexts and enhance its optimality and applicability, such as convergence
speed and accuracy of the method. Additionally, how to improve the overall effect in the presence of
inadequate or biased data is planned as another future research direction.
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Appendix A

Table A1. Parameters of equivalent models.

Parameters Value Name EQ1 EQ2 EQ3

DC voltage
control

Kpdc 5.65 1.02 0.861
Kidc 50.62 51.12 51.75

Reactive power
control

KpQ 2.24 5.21 1.03
KiQ 48.31 50.95 49.68

Current control
Kpi 0.52 0.50 0.57
Kii 23.21 19.52 22.63

PLL
Kppll 51.02 49.62 52.15
Kipll 97.62 98.74 102.62
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