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Abstract: The transition to sustainable electricity generation depends heavily on renewable en-
ergy sources, particularly wind power. Making precise forecasts, which calls for clever predictive
controllers, is a crucial aspect of maximizing the efficiency of wind turbines. This study presents
DeepVELOX, a new methodology. With this method, sophisticated machine learning methods are
smoothly incorporated into wind power systems. The Increased Velocity (IN-VELOX) wind turbine
framework combines the Gradient Boosting Regressor (GBR) with the Grey Wolf Optimization (GWO)
algorithm. Predictive capabilities are entering a new age thanks to this integration. This research
presents DeepVELOX, its structure, and results. In particular, this study presents the considerable
performance of DeepVELOX. With a MAPE of 0.0002 and an RMSPE of 0.0974, it gets outstanding
Key Performance Indicator (KPI) results. The criteria of Accuracy, F1-Score, R2-Score, Precision, and
Recall, with a value of 1, further emphasize its performance. The result of this process is an MSE of
0.0352. The significant reduction in forecast disparities is made possible by this system’s remarkable
accuracy. Along with improving accuracy, the integration of machine learning algorithms, including
GBR, the GWO algorithm, and wind turbine operations, offer a dynamic framework for maximizing
power and energy capture.

Keywords: artificial intelligence; gradient boosting regressor; INVELOX wind turbine; renewable
production; power forecasting; simulation/data-driven prediction

1. Introduction

In recent times, strides made in the domain of wind turbine output prediction have
propelled the field to new heights, harnessing the prowess of data-driven algorithms to
yield more precise forecasts [1]. Within this era of progress, the Increased Velocity (IN-
VELOX) wind power system has emerged as a groundbreaking concept. Distinguished by
its distinctive design, INVELOX employs a funnel-like structure to direct the wind, enhanc-
ing velocity and optimizing energy capture. Notably, the advantages of INVELOX extend
to its ability to function optimally even in conditions of lower wind speeds, rendering it a
promising solution for diverse deployment scenarios.

Venturing towards the optimization of the INVELOX wind delivery system geometry
and the assessment of horizontal axis wind turbine integration, this study employs multi-
objective surrogate-based optimization and CFD simulations [1]. Additionally, reference [2]
employs Artificial Neural Networks (ANNs) to model the performance of ducted wind tur-
bines under various operational conditions, resulting in improved power curve estimation.
For advanced INVELOX turbines, the deep-learning model of Multi-Feature-Based Wavelet
Long Short-Term Memory (MFBW-LSTM) achieves accurate wind velocity prediction by
integrating enhanced long short-term memory and optimizations [3].

Meanwhile, [4] presents a novel 3D model that leverages solar-assisted air velocity
conversion to enhance wind energy generation, conducting a numerical analysis using
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ANSYS Fluent 19 software through the lens of computational fluid dynamics. Reference [5]
conquers design limitations by enhancing an INVELOX wind turbine model with an
innovative intake mechanism, subsequently improving wind speed performance and
efficiency. In [6], the Taguchi approach is employed to optimize shrouded wind turbines
utilizing the INVELOX system, effectively boosting wind speed performance in low-wind
regions. The MIWHS-IoT project [7] unveils the potential of enhancing wind energy
harvesting by coupling the INVELOX system with IoT monitoring and a boost converter.

The comprehensive evaluation of INVELOX turbines within a multilateral energy
system, as proposed by [8], analyzes demand response and cost reduction potential. In the
quest to elevate the efficiency of vertical-axis wind turbines, a study delves into the impact
of slotted airfoil design, revealing improved lift and power coefficients [9]. On a broader
note, [10] employs the analytical hierarchy process to identify optimal choices for floating
offshore wind platforms based on site attributes, highlighting spar- and semi-submersible
systems as preferred choices. Exploring the realm of energy harvesting through wind-
driven piezoelectric cantilever beams, [11] showcases potential applications in self-powered
devices and wireless networks.

Addressing challenges within wind power, the second-largest renewable source,
reference [12] emphasizes the need to tackle issues such as wildlife impact and ecosys-
tem effects to ensure sustainable growth. Within this context, reference [13] presents a
comprehensive review of AI and ML applications in wind turbine control systems, span-
ning power optimization, prediction, fault detection, and monitoring. Further emphasizing
AI applications, reference [14] proposes the employment of explainable AI methods in
constructing data-driven power curve models, considering multiple input variables for
anomaly detection and wind turbine performance evaluation. Progressing towards enhanc-
ing industrial equipment monitoring and diagnosis, reference [15] employs AI-driven tools
in wind turbine systems to curtail downtime and predict failures.

As a noteworthy endeavor, reference [16] harnesses AI techniques encompassing Ma-
chine Learning (ML) and Deep Learning (DL) to predict wind turbine power output, thus
aiding energy planning, maintenance, and site selection. In the context of wind turbine
blade aerodynamics prediction, reference [17] evaluates four different Artificial Pollination
(AP) methods, with the Multi-Gene Genetic Programming (MGGP) approach attaining the
highest accuracy, thereby contributing to AI and aerodynamics research cost-effectively.
Moreover, reference [18] proposes a normal Probability Density Function (PDF) model for
wind speed representation, demonstrating its superiority over the Weibull PDF through
AI techniques applied to parameter estimation and prediction accuracy assessment. Ad-
dressing wind power forecasting complexities, a multi-source data fusion methodology
is introduced to surpass classic AI models and enhance accuracy amidst intricate mete-
orological conditions [19]. In the realm of short-term wind power prediction accuracy, a
comparison between Gated Recurrent Unit (GRU) and Autoregressive Integrated Moving
Average (ARIMA) models [20] finds GRU to be more effective. Merging artificial intelli-
gence with super-twisting sliding mode control [21] enhances wind energy system stability
and power transfer.

Furthering the realm of wind turbine monitoring and power prediction, reference [22]
employs deep learning and k-nearest neighbor (kNN) regression, thus enhancing accuracy
in renewable energy planning. An innovative Multidimensional Spatio-Temporal Graph
Neural Network (MST-GNN) [23] augments wind speed prediction accuracy, surpassing
baselines by up to 8.96% in open-source datasets. Meanwhile, reference [24] harnesses an
artificial neural network-based approach to predict wind power and load demand, demon-
strating its potential in optimizing energy management. In exploring ultra-short-term
wind power forecasting, a feature selection and Temporal Convolutional Network (TCN)
optimization approach [25] presents improved accuracy via the Extreme Gradient Boosting
(XGBoost) and TCN-based method. The evolution of a neural forecasting model (NGOA-
DeepAr) [26] incorporates an enhanced grasshopper optimization algorithm applied to
wind powers for automatic Deep Neural Network (DNN) hyper-parameter optimization, re-



Energies 2023, 16, 6889 3 of 22

sulting in superior performance over benchmarks. By introducing a novel Cross-Correlation
Recurrent Framework (CCRF) model, this research combines Bidirectional Long Short-Term
Memory (Bi-LSTM) and gaussian kernels for wind power forecasting, thus outperform-
ing benchmark models through the consideration of both temporal autocorrelation and
Numerical Weather Prediction (NWP) correlation [27].

Employing a dual-stage attention mechanism, the wind power forecasting system
(WPFSAD) [28] heightens accuracy and stability, as verified through simulation exper-
iments. Embracing the fusion of federated learning and Deep Reinforcement Learn-
ing (DRL), “FedDRL” [29] presents a scheme for accurate and privacy-preserving ultra-
short-term wind power forecasting for modern renewable energy systems. Methodically,
reference [30] propounds a wind power forecasting model, amalgamating a mixture corren-
tropy LSTM neural network, particle swarm optimization, and improved variational mode
decomposition, thereby elevating accuracy. Significantly enhancing 5-min wind power
prediction accuracy, the innovative CEMOLS framework [31] leverages Complex Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN), Mountain-Based Optimization
(MBO), and Long Short-Term Memory (LSTM), resulting in up to 47.10% outperformance
in Root Mean Square Error (RMSE) and 32.33% in Mean Absolute Percentage Error (MAPE)
against rival methods. Elaborating on the versatility of AI, reference [32] combines Artifi-
cial Neural Network (ANN) models with optimization algorithms to forecast long-term
electrical energy consumption and evaluate scenarios integrating solar and wind sources
for sustainable development. Further propelling short-term wind power forecasting ac-
curacy, a CatBoost machine learning-based model [33] achieves superior performance
with an RMSE of 13.84 during cross-validation. Furthermore, reference [34] introduces an
innovative ensemble model for wind speed forecasting, amalgamating noise processing,
statistical techniques, deep learning, and optimization. This endeavor yields enhanced
accuracy compared to traditional models, encapsulating the breadth of AI’s influence in
wind energy systems.

Furthermore, reference [35] discusses the significance of AI in smart grids. Reference [36]
presents quantum technologies in the context of smart grids, with a focus on predictive charac-
teristics. Reference [37] uses precise AI-driven estimators on a dataset. Reference [38] provides
dependable AI-powered output projections. Moreover, [39] investigates the frequency con-
trol of microgrids using a modified COA, as well as the architecture, and demonstrates its
significance using MATLAB/Simulink simulations. The vital stability and reliability of power
systems are influenced by technical and environmental factors. The impact of solar and
lunar eclipses on Denmark’s power system is examined, highlighting their significance in the
context of high integration of renewable energy, which is presented in [40].

Reference [41] introduces a method for enhancing wind energy generation in urban
areas with unused rooftop space. Additionally, it focuses on wind boosters for vertical-axis
wind turbines, optimizing them using computational techniques. In a test in Mexico City,
the optimized wind booster increased torque by 35.23%. Improved electricity generation
forecasts for small wind turbines are presented in [42], utilizing methodologies such as
LSTM and MLP. Reference [43] introduces a hybrid PSO-GWO algorithm for solving
optimal power flow problems with stochastic solar photovoltaics and wind turbines. A
method for controlling a standalone wind diesel power generation system is presented [44].
The method uses decentralized model predictive controllers to regulate frequency and
power. Reference [45] explores the feasibility of integrating offshore wind turbines and
wave energy converters on a single platform for coastal power generation. It uses machine
learning and deep learning models to predict key parameters and identifies the deep
learning model has an accuracy rate of 96%.

In the pursuit of more dependable and efficient renewable energy sources, the evo-
lution of advanced predictive models for wind turbine output prediction has garnered
significant attention. In line with this mission, this paper introduces an ingenious approach
known as DeepVELOX. Seamlessly intertwining state-of-the-art machine learning tech-
niques within the realm of wind power, DeepVELOX is developed from the imperative
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need to amplify the accuracy and reliability of wind turbine output predictions, thus
ensuring the optimal harnessing of energy.

The novelty inherent in the system’s design is underscored by its utilization of an ad-
vanced forecasting control system, wherein intelligent model predictive ensemble control is
seamlessly incorporated. The synergistic integration of GWO algorithm and the GBR model
drives this sophisticated control mechanism, resulting in previously unattainable levels
of precision and operational efficiency within the context of the INVELOX wind power
system. Notably, a key characteristic of this technology is its ability to present maximized
overall performance of the INVELOX structure while also allowing it to accurately estimate
output power in response to variable wind speeds. This perspective goes far into the future,
establishing the system as a development in the field of wind energy generation. Such
invention represents an advance forward in the ongoing quest to fully realize the potential
of wind energy, hence substantiating the transformative impact of the research within the
context of the renewable energy literature.

The structure of this paper is devised to encompass the following sections: Section 1
commences with a contextualizing introduction and an insightful exploration of the existing
literature, acting as a prelude to the unveiling of DeepVELOX’s capabilities. Section 2 takes
center stage with a comprehensive overview of DeepVELOX’s architecture and operational
framework. Here, particular emphasis is placed on the synergy of the GBR and the GWO
algorithm. This segment also peels back the layers to illuminate the advantages arising from
this strategic amalgamation, magnifying its potential to revolutionize the accuracy of wind
energy predictions. Transitioning into Section 3, the focus shifts towards the methodologies
underpinning the simulations executed and the subsequent presentation of the achieved
results. This section unveils DeepVELOX’s prowess in the domain of predictive perfor-
mance, casting a spotlight on its impressive capabilities. As the paper strides into Section 4,
an extensive comparison between DeepVELOX and alternative models is unveiled, estab-
lishing its undisputed superiority. In its culminating moments, Section 5 breathes life into
discussions surrounding potential pathways of future advancement. The paper concludes
with an emphasis on the transformative potential embodied by DeepVELOX in redefining
the horizons of wind energy technology.

2. Structure and Operating Framework

DeepVELOX stands as a structured fusion of the GWO algorithm and the GBR, creating
a formidable framework for predictive modeling. The overall process is conceptualized in
Figure 1.
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According to Figure 1, the model’s intricate process begins with a mathematical
analysis of the INVELOX wind turbine system, forming the basis for subsequent steps.
Initial simulations are generated, serving as the foundation for GWO’s crucial role. The
GWO algorithm analyzes the system, identifying optimal behavioral points that harmonize
with the desired objectives.
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Following the insightful guidance from GWO, the generated dataset undergoes rigor-
ous analysis by the GBR component. This intricate analysis by GBR empowers the model
to uncover intricate patterns and relationships within the data, laying the groundwork for
precise forecasting. The culmination of these processes leads to forecasting outcomes with
near-zero error rates, underlining the remarkable precision and reliability of DeepVELOX’s
predictions. This innovative amalgamation of mathematical analysis, optimization through
GWO, and precise forecasting with GBR defines DeepVELOX’s approach, yielding a pow-
erful tool that has the potential to significantly revolutionize decision making, enhance
system performance, and drive operational excellence across diverse domains.

2.1. INVELOX Wind Turbine

INVELOX, abbreviated from Increased Velocity Wind Power System, represents an
inventive wind energy technology devised for capturing wind power through an innovative
methodology. In contrast to conventional horizontal-axis wind turbines, which employ
large blades to directly harness kinetic energy from the wind, the INVELOX system adopts
a distinct approach to optimize energy extraction. The core of the INVELOX wind turbine
comprises a funnel-shaped construction, guiding wind into a progressively narrower
entry point at its zenith. As the wind infiltrates the system, its speed escalates due to the
funnel’s constriction, resulting in a localized zone of intensified high-speed wind. This
intensified wind flow is subsequently channeled downward through a more confined
passage, where an array of wind turbines is positioned at the base of the funnel. These
turbines, which can be conventional horizontal-axis systems or alternative generator types,
seize the kinetic energy of the high-velocity wind and transform it into electrical power. A
significant advantage of the INVELOX concept lies in its proficiency to efficiently capture
wind energy, even at lower wind velocities when compared to standard wind turbines.
The funnel-shaped configuration serves to focus and amplify the wind’s energy, enabling
the turbines to perform effectively in regions characterized by less potent average wind
speeds. Moreover, the design of the INVELOX system holds various potential merits. It
can mitigate its impact on local wildlife and visual aesthetics since the turbines are housed
within the structure rather than atop towering masts. This attribute renders it adaptable to
diverse settings, encompassing both urban and rural environments. Figure 2 displays the
regular characteristics of a wind turbine, as well as INVELOX wind turbine configuration.

As depicted in Figure 2, the INVELOX wind power system comprises several dis-
tinct components, each assuming a crucial role in ensuring its operational efficiency and
effectiveness. As well in Figure 2a, the red line presents the power output regarding the
wind speed enters to INVELOX wind turbine. Additionally, the dotted lines mirror the
cut-in/out wind speed, and the related powered/speed area

Framework Structure: The foundational underpinning of the INVELOX system is
provided by the framework structure. This structure takes on a funnel-like configuration,
guiding and accelerating the wind toward the wind turbine. Its design is optimized to
direct wind flow efficiently, thus augmenting energy capture and conversion effectiveness.

Wind Converter: At the heart of the INVELOX system resides the wind converter,
positioned at the funnel structure’s base. This converter is responsible for transmuting the
kinetic energy of the swift wind into mechanical energy, which is subsequently translated
into electrical energy. Depending on specific design requirements, various types of wind
converters can be seamlessly integrated into the INVELOX system.

Electric Generator: Intricately linked with the wind converter, the electric generator
plays a pivotal role in transforming the mechanical energy generated by the rotating blades
into electrical energy. This electrical output can be harnessed locally, channeled into the
power grid, or stored for future utilization.

Structural Reinforcement: Ensuring the system’s steadfastness and resilience, the
framework structure provides indispensable reinforcement. It is ingeniously engineered to
endure external forces, including wind loads and adverse weather conditions, all while
preserving the funnel shape’s integrity.
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Figure 2. (a) Characteristics of a WT, and (b) INVELOX structure.

Supporting Mast: Serving the purpose of upholding the upper section of the funnel
structure, the supporting mast of the INVELOX system, though not as towering as tradi-
tional wind turbine masts, holds a pivotal function in maintaining the correct elevation and
alignment for proficient wind capture.

Foundation: The groundwork for the INVELOX system is established by the foun-
dation. Meticulous site selection and foundation design are imperative to ensure stability
and structural soundness. Furthermore, ground attributes influence wind capture effi-
ciency since the wind’s properties close to the surface impact the comprehensive system
performance.

Wind Resource: Central to the INVELOX concept lies the harnessing of wind energy.
The distinctive design of the funnel structure manipulates wind velocity, concentrating it
before its interaction with the wind converter. This method elevates wind speed, empower-
ing the system to adeptly harness energy even from modest wind velocities. Consequently,
the range of potential deployment locations is expanded.

Each of these constituents makes a substantial contribution to the overall operation
and efficiency of the INVELOX wind power system, presenting an inventive remedy for
capturing wind energy that effectively addresses the limitations inherent in conventional
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wind turbine designs. Additionally, the INVELOX system is subjected to modeling and
simulation, as

PWT−INVELOX(t) =

 0 ∀ : Vcut−in−INVELOX ≥ Vt and VCut−Out−INVELOX ≤ Vt

0.5.ρINVELOX .AINVELOX .ηW−INVELOX .KP.(Vt.SR)
3 ∀t : Vcut−in−INVELOX ≤ Vt ≤ Vcut−out−INVELOX

 (1)

where ρINVELOX .AINVELOX .ηW−INVELOX are the air density, generator blade area, and IWT
efficiency, respectively. Ration of squares of cross sections, and pressure coefficient, wind
speed, and velocity amplification ration are symbolized as KP, Vt, and SR, respectively.
Vcut−in−INVELOX , and Vcut−out−INVELOX present cut-in/out wind speed.

2.2. Grey Wolf Optimization (GWO)

GWO stands for Grey Wolf Optimization, a nature-inspired algorithm that emulates
the social structure and hunting patterns of grey wolves in their natural habitat. This
algorithm adopts a population-based approach to optimize complex problems. Just as in the
wild, GWO organizes the population of potential solutions into different categories: alpha,
beta, delta, and omega individuals. These categories mirror the hierarchical arrangement
within a wolf pack. Each individual within this setup represents a conceivable solution for
the specific optimization problem [46]. The visualization of the GWO concept is showcased
in Figure 3.
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Based on Figure 3, the way this algorithm works is among a bunch of rounds, sort
of copying how wolves hunt to make the solution better bit by bit. These gray wolves
stick to their ranks, with alpha being the top dog and omega being the not-so-great one. In
each of these rounds, they adjust where alpha, beta, and delta are hanging out. They do
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this thinking about where they were before and where other wolves are. All this moving
around aims to get closer to better solutions for the problem they are dealing with. The
neat thing about GWO is that it mixes things up between exploring new possibilities and
sticking to what has been working. Slowly, step by step, they get closer to what is probably
the best solution, while also checking out both the vision and the smaller details. Their
behavior is mathematically modulated as the following [47]:

→
D =

∣∣∣∣→C ·→Xp(t)−
→
X(t)

∣∣∣∣ (2)

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (3)

In which
→
Xp,

→
X, and t are the position vectors of prey the grey wolf, as well as the

current iteration of the system, respectively. Also,
→
A,
→
C are coefficient vectors determined as:

→
A = 2

→
α · (r1 − 1) (4)

→
C = 2

→
r 2 (5)

where,
→
α , r1, and

→
r 2 are the linearly decreasing variable, and the random vectors in the

range of [0,1], respectively.
The alpha, beta, and delta wolf are attributed with the capacity to identify poten-

tial prey locations, given that they represent the top three solutions attained thus far.
Consequently, their solution positions are employed to adjust the positions of the re-
maining (omega) wolf within the pack. The formulation for updating these positions
is as presented below:

→
Dα =

∣∣∣∣→C1 ·
→
Xα(t)−

→
X(t)

∣∣∣∣ (6)

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ(t)−

→
X(t)

∣∣∣∣ (7)

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ(t)−

→
X(t)

∣∣∣∣ (8)

→
X1 =

→
Xα −

→
A1 ·

→
Dα (9)

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ (10)

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ (11)

→
X(t + 1) =

→
X1 ⊕

→
X2 ⊕

→
X3

3
(12)

2.3. Gradient Boosting Regressor

The GBR stands out as a robust machine-learning algorithm within the ensemble
learning paradigm. Positioned within this category, it excels in building a potent predictive
model through the amalgamation of outputs from multiple weaker learners, typically in the
form of decision trees. The algorithm’s methodology involves an iterative process wherein
it progressively enhances prediction accuracy by sequentially introducing new trees. In
each iteration, GBR undertakes an intricate procedure. It discerns the deficiencies of the
preceding model and dedicates its focus to forecasting the residual errors. Subsequently, it
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devises a novel decision tree to capture and rectify these errors. This learning procedure
is marked by the adjustment of instance weights within the training data, prioritizing the
correction of misclassified or inadequately predicted samples. This adaptability allows
the algorithm to assimilate insights from its missteps and tailor its predictions accordingly.
GBR’s core principle revolves around the notion that each subsequent tree appended to the
ensemble rectifies the errors inherent in its precursors, resulting in a gradual diminution
of the overall predictive error. The summation of predictions generated by all the con-
stituent trees culminates in the ultimate prediction. An appreciable attribute of GBR is its
capacity to deliver exceptional predictive accuracy while exhibiting reduced susceptibility
to overfitting, a contrast to individual decision trees. Fundamentally, GBR leverages the
concept of boosting, systematically enhancing its predictive prowess through iterative
refinement. This renders it an influential algorithm in the realm of regression tasks, as
visually elucidated in Figure 4.
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Figure 4. The process of GBR estimator.

Based on this figure, GBR involves iterative steps that include mathematical formula-
tions for constructing and updating the model, in which the different color circles present
that the model chooses example data, to perform estimation based on it. The DT model
considered to be the following:

F0(x) = argmin
M

∑
i=1

L(Pi, γ) (13)

L = (Pi − γ)2 (14)

In which F0, L, and Pi are the constant value prediction, loss function, and INVELOX
power output data, respectively. In terms of argmin, the minimization progress should be
performed by

∂
∂γ

(
M
∑

i=1
L(Pi, γ)

)
= ∂

∂γ

(
M
∑

i=1
(Pi − γ)2

)
= −2

M
∑

i=1
Pi + 2nγ

(15)

−2
M

∑
i=1

Pi + 2nγ = 0 → γ =
1
n

M

∑
i=1

Pi (16)

For the next step, the residual of the system should be performed in each iteration,
as follows:

F0(x) = P =
1
n

M

∑
i=1

Pi (17)
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rim = −
[

∂L(Pi, F(xi))

∂F(xi)

]
F(x)=FM−1(x)

(18)

rim = 2(Pi − FM−1) (19)

That FM−1 is the last iteration prediction. Now, the loss function minimization should
be done by the terminal nodes.

γim = argmin ∑
xi∈Rim

L(Pi, FM−1(xi) + γ) (20)

γim = argmin ∑
xi∈Rim

(Pi − FM−1(xi)− γ)
2 (21)

∂γim
∂γ

= 0 → ∂

∂γ

[
∑

xi∈Rim

(Pi − FM−1(xi)− γ)
2
]
= 0 (22)

γ =
1
nj

∑
xi∈Rim

rim (23)

For the last step, the updated prediction is derived.

FM(x) = Fm−1(x) + v
IM

∑
i=1

γim1(x ∈ Rim) (24)

The overall PSEUDOCODE of DeepVELOX is presented in Algorithm 1.

Algorithm 1: PSEUDOCODE of DeepVELOX

Initialization of the grey wolf population Xi, i = 1, 2, . . . , n
Initialize of parameters: a, A, and C
Calculate the fitness of each search agent
Xα = the best search agent
Xβ = the second search agent
Xδ = the third search agent
While (t < Maximum iteration number)

for each search agent
Update the current search agent position

end
Update a, A, and C
Calculate the fitness of all search agents
Update Xα, Xβ, and Xδ

t = t + 1
end
return Xα

Initialize the model with a constant value:
F0(x) = argγmin

n
∑

i=1
L(yi, γ)

for m = 1 to M:
Compute residuals rim = −

[
∂L(yi,F(xi))

∂F(Xi)

]
F(x)=Fm−1(x)

for i = 1, . . ., n

Train regression tree with features x against r and create the terminal node
reasons Rjm for j = 1, . . ., Jm
compute γjm = argγmin ∑

xi∈Rjm

L(yi, Fm−1(xi) + γ) for j = 1, . . ., Jm

Update the model:

Fm(x) = Fm−1(x) + v
Jm

∑
j=1

γjm1
(

x ∈ Rjm

)
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3. Simulation and Results

In this work, an INVELOX wind turbine simulation has been rigorously simulated and
utilized in a dataset comprising 60,003 collected data points, through simulation. Within the
collected dataset, precise correspondences between wind speeds and the resultant output
power generated by the INVELOX turbine have been established. The crux of this investigation
lies in the innovative Implementation of DeepVELOX, a fusion of the GWO algorithm and
a GBR. This amalgamation facilitates the meticulous refinement of the turbine’s parameters
through the GWO procedure, subsequently harnessed by the GBR model to project output
power levels. These estimations are underpinned by a meticulous assessment of statistical
attributes, specifically the mean and variance, which discerningly portray the distribution
of key metrics within the dataset: wind speed (mean = 13.017 [m/s], variance = 48.033) and
actual output power (mean = 1974.081 [W], variance = 28820.19). This empirical endeavor
underscores an intricate interplay of advanced machine learning methodologies in optimizing
the performance of wind turbine technology, thus augmenting the renewable energy landscape.
The simulation scattered results are available in Figures 5 and 6.
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As indicated in Figure 5, the velocity of the wind emerges as a pivotal determinant
profoundly influencing the operational dynamics and efficiency of INVELOX wind turbines.
Moreover, the characteristics of the output change considerably when the changes occur
in SR. This concept is drawn in two scenarios of 0 < SR < 1, and 1 ≤ SR < 4. The reason
that four is considered the maximum is the fact that amplifying wind speed four times
more inside the turbine is challenging and unrealistic. The kinetic energy derived from the
motion of the wind exhibits a direct proportionality with the cube of its velocity, thereby
accentuating the critical and indispensable role that wind speed occupies in the context
of power generation. With an elevation in wind speed, there follows a corresponding
increase in the volume of air coursing through the system, leading to an augmentation in
the capacity to capture energy and, in turn, fostering heightened power output. However,
the fluctuating nature of wind speed introduces a set of complexities. Extremely low wind
speeds might not endow the system with sufficient kinetic energy to facilitate efficient
power generation. Conversely, excessively high wind speeds possess the potential to
instigate mechanical stress and, by extension, pose a risk of causing damage to the structural
integrity of the turbine. Remarkably, INVELOX turbines, distinguished by their innovative
engineering, manifest the competence to adeptly navigate a broader spectrum of wind
speeds. This distinctive capability empowers these turbines to concurrently optimize power
output and sustain operational soundness. A pivotal strategy employed in the pursuit
of energy conversion optimization is the integration of advanced control systems within
INVELOX turbines. These systems exert control over the rotor’s speed and the blade’s
pitch in response to the variable patterns of wind speed. This dynamic control mechanism
empowers the turbine to harmoniously accommodate diverse wind conditions, ensuring
the consistent and efficient generation of power across the gamut of wind velocities. In
this intricate interplay, the magnitude of wind speed emerges as a paramount determinant,
dictating the potential yield of energy and upholding the comprehensive operational
stability of INVELOX wind turbines. Moreover, it encompasses factors such as wind
capture, efficiency, turbulence reduction, energy conversion efficiency, operational stability
across varying wind conditions, maintenance requirements, durability, and environmental
impact. INVELOX’s success hinges on its ability to effectively funnel and accelerate wind
into a wind turbine, minimizing turbulence and maximizing energy conversion while
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maintaining operational stability and minimizing environmental concerns. A thorough
assessment of its aerodynamic performance provides valuable insights into its potential as
an innovative and efficient wind energy solution.

As depicted in Figure 6, the prediction of output power emerges as a matter of
paramount significance within the context of INVELOX wind turbines. This undertaking
substantively enhances their operational efficiency and overarching effectiveness. The
precision in forecasting the impending power output, predicated upon both the current and
projected wind conditions, bears the potential to yield substantial dividends. Operators can
judiciously allocate resources, facilitate seamless grid integration, and diligently manage
energy distribution. This proactive orientation permits a more harmonious synchronization
of power generation with the prevailing demand, thereby guaranteeing optimal energy
utilization and mitigating wastage. Furthermore, the virtue of accurate forecasting extends
to the preservation of grid stability. The prospect of power supply fluctuations can be
averted through preemptive measures, thereby upholding the grid’s equilibrium. Central
to the prowess of power-output prediction is the role played by the DeepVELOX model.
This model occupies a pivotal place in harnessing anticipatory insights. Through the
fusion of the GWO algorithm, strategically employed for parameter optimization, and
the GBR, employed for the projection of power output, DeepVELOX capitalizes on data-
informed perspectives. The result is an adept capability to predict the power output of
the INVELOX wind turbine with remarkable precision. This predictive faculty empowers
operators and energy strategists to make well-informed determinations. Consequently, the
positive ramifications extend to areas such as grid consistency, resource allocation, and,
fundamentally, the advancement of sustainable and proficient energy generation.

To evaluate the performance of DeepVELOX, following KPIs were determined, in
1 ≤ SR < 4, since it is optimal for the wind speed to be converted higher, not multiplied
between [0,1).

MAPE (Mean Absolute Percentage Error) serves as a tool to gauge the average per-
centage discrepancy between predicted and actual values. This pivotal metric bestows a
window into the scale of errors, expressed as a proportion of the actual values themselves.
Such a representation facilitates the comprehension of errors and permits seamless com-
parisons across diverse datasets, ultimately fostering a clear and intuitive assessment of
predictive performance.

MAPE (%) =
1
n

n

∑
i=1

∣∣∣∣vi,actual −vi,predicted

vi,actual

∣∣∣∣ (25)

where n is the number of data, and vObserved with vPredicted are the observed, and predicted
values of grid community, respectively.

RMSPE (Root Mean Square Percentage Error) is analogous to the traditional RMSE
with a distinctive variation, the RMSPE stands as a metric of evaluation. Unlike its coun-
terpart, RMSPE is quantified as a percentage relative to the actual values. This vital index
unveils the average percentage deviation between projected and actual values, concurrently
integrating the influence of squared deviations. In essence, RMSPE amalgamates precision
with the incorporation of squared differences, offering a holistic perspective on predictive
accuracy expressed in percentage terms.

RMSPE (%) =

√√√√√ n
∑

i=1
(vi,actual −vi,predicted)

2

n×vi,actual
(26)

R-squared (R2) is a statistical measure that quantifies the fraction of variability within
the dependent variable that can be elucidated by the independent variables encompassed
within a regression model. Manifesting within a range from 0 to 1, R-squared attains greater
magnitudes as the model’s alignment with the data augments. This index serves to gauge
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the appropriateness of the model’s fit to the data, rendering it a fundamental measure of
goodness of fit.

R2 = 1−

n
∑

i=1

(
vi,predicted −vi,actual

)2

n
∑

i=1
(vi,actual −vi)

2
(27)

RMSE (Root Mean Square Error) stands as a frequently employed yardstick for quan-
tifying the typical extent of discrepancies between projected and observed values within
regression scenarios. This metric is derived by extracting the square root of the mean
value of the squared disparities between predicted and actual values. RMSE operates as an
evaluative tool to gauge the efficacy of a regression model in conforming to the data, with
reduced values signifying enhanced performance. Moreover, RMSE retains units consistent
with those of the target variable, amplifying its interpretability. RMSE is formulated by the
following:

RMSE =

√
1
n∑ (vObserved −vPredicted)

2 (28)

MAE (Mean Absolute Error) emerges as an additional evaluative metric wielded to
assess the effectiveness of regression models. This measure quantifies the average absolute
disparity between projected and observed values. Diverging from RMSE, MAE adopts
a more lenient stance towards substantial errors as it exclusively factors in the absolute
deviations without magnifying their impact through squaring. MAE is also expressed in
the same units as the target variable, as follows:

MAE =
1
n∑|(vObserved −vPredicted)| (29)

Accuracy serves to assess the effectiveness of classification models. This metric quanti-
fies the proportion of accurate predictions with the entire prediction set. The calculation
involves dividing the count of correct predictions by the total number of predictions and
then multiplying by 100 to yield a percentage. Accuracy emerges as an appropriate choice
when the dataset’s classes are evenly distributed, signifying a balance where instances are
roughly equivalent across different classes. Accuracy is modeled as follows:

Accuracy =
vTP + vTN

vTP + vTN + vFP + vFN
(30)

where vTP and vTN are the correctly predicted positive and negative instances, respectively.
The incorrectly predicted positive and negative instances are symbolized by vFP and vFN .

Precision, a pivotal metric within binary classification, serves to gauge the ratio of
accurately predicted positive instances (true positives) to the entire set of predicted positive
instances. This measurement hones the accuracy of positive predictions exclusively. The
computation involves dividing the count of true positives by the sum of true positives
and false positives, providing insight into the model’s capability to make precise positive
predictions within a binary classification context, symbolized below:

Precision =
vTP

vTP + vFP
(31)

Recall often referred to as sensitivity or the true positive rate, constitutes a significant
metric within binary classification. Its purpose is to quantify the fraction of true positive
predictions relative to the complete set of actual positive instances. The essence of recall
centers on a model’s proficiency in identifying all existing positive instances. Computa-
tionally, it involves dividing the number of true positives by the sum of true positives
and false negatives, encapsulating the model’s capacity to correctly identify positive in-
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stances about the entirety of actual positive cases. In formulaic terms, recall is calculated as
presented below:

Recall =
vTP

vTP + vFN
(32)

F1 Score amalgamates both precision and recall into a unified measure. This value
is computed as the harmonic mean of precision and recall, affording a well-rounded
assessment of a model’s efficacy. The F1 score occupies a scale between 0 and 1, where an
F1 score of 1 signifies optimal performance. This metric finds frequent application within
binary classification endeavors, particularly in situations where the distribution of classes
is imbalanced, and a singular metric is sought to appraise the model’s performance:

F1 = 2
Precision× Recall
Precision + Recall

(33)

DeepVELOX has consistently demonstrated an exceptional level of performance across
a wide spectrum of KPIs, yielding notably extraordinary outcomes. The model’s predictive
accuracy is evidenced by an almost negligible MAPE of 0, underscoring its exceptional
precision in forecasting. Furthermore, the RMSPE of 0.10 accentuates the model’s profi-
ciency in minimizing disparities between predicted and actual outcomes. The RMSE at
0.19, coupled with the MSE at 0.04, signifies the model’s adeptness in reducing the margin
of prediction error. Impressively, the MAE stands remarkably low at 0.03, reinforcing the
sustained accuracy of its predictions. Of particular note, within the classification context,
the model exemplifies a flawless accuracy score of 1.00, which resonates consistently across
Precision, Recall, and F1-Score measurements. This comprehensive assemblage of KPIs
harmoniously illustrates DeepVELOX’s precision, dependability, and consequential sig-
nificance within the realm of wind turbine power output prediction and optimization, as
thoughtfully elucidated in Figure 7.
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4. Comparison

In the extensive assessment of predictive models utilizing a given dataset, Deep-
VELOX, harnessing the capabilities of the gradient boosting regressor, distinctly stands
out as an exemplary performer. Boasting an almost impeccable MAPE of 0.0002 and an
impressively minute RMSPE of 0.0974, DeepVELOX conspicuously demonstrates its ex-
traordinary accuracy and precision in forecasting. This proficiency is further substantiated
by its flawless scores across an array of metrics, encompassing accuracy, F1-Score, R2-Score,
precision, and recall. This consistent excellence firmly establishes its efficacy in generating
dependable predictions. Notably, the model attains an exceptionally low MSE of 0.0352,
indicative of its adeptness in curtailing disparities within predictions. In comparative terms,
other models, including LSTM, RNN, Decision Tree, LightGBM, XGBoost, and KNN, each
showcases their unique strengths. While LSTM exhibits marginally higher errors, with a
MAPE of 0.0390 and an elevated RMSPE of 18.1168, it nonetheless maintains a faultless
accuracy and F1-Score. Following suit, RNN records a MAPE of 0.1455 and an RMSPE of
66.8292, yet remains consistent in achieving perfect scores across various metrics. Decision
Tree notably excels in accuracy, reflecting a MAPE of 0.0000 and a notably low RMSPE of
0.0093. Likewise, LightGBM, XGBoost, and KNN offer competitive results, with MAPE
values spanning from 0.0001 to 0.0023 and RMSPE values ranging from 0.0116 to 1.2019.
Collectively, this diverse array of models accentuates the critical significance of meticulous
model selection. Within this landscape, DeepVELOX, powered by the gradient boosting
regressor, emerges as a frontrunner, poised for precise and dependable predictive tasks.
The summarized outcomes are further available for reference in Table 1 and Figure 8.

As elucidated in this figure, DeepVELOX unveils a striking prowess in predictive
performance, characterized by its exceptional competence and aptitude. These attributes are
particularly underscored by its proficiency in engendering predictions that are both precise
and dependable. The model’s adeptness in mitigating errors and precisely foretelling
outcomes stands as a resounding testament to its inherent robustness. Evident through its
impeccable scores across diverse pivotal key performance indicators, DeepVELOX radiates
its effectiveness in consistently furnishing pinpointed predictions.

Table 1. Comparison of DeepVELOX with other methods.

Metric/Model DeepVELOX LSTM RNN Decision Tree LightGBM XGBoost KNN

MAPE 0.0002 0.039 0.1455 0 0.0023 0.0001 0

RMSPE 0.0974 18.1168 66.8292 0.0093 1.2019 0.0316 0.0116

Accuracy 1 1 1 1 1 1 1

F1-Score 1 1 1 1 1 1 1

R2-Score 1 1 1 1 1 1 1

Precision 1 1 1 1 1 1 1

Recall 1 1 1 1 1 1 1

MSE 0.0352 478.6547 4023.144 0.0004 6.2355 0.0052 0.0005
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5. Future Works

By the side of challenges, the output power forecasting of INVELOX with GWO–
GBR faces several ones. These include challenges related to data availability, or sim-
ulated/generated data quality, the intricacies of INVELOX’s wind flow patterns, and
the resultant complexity in modeling. The forecasting horizon is often limited, making
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long-term energy planning less feasible. Additionally, non-stationary wind patterns and
sensitivity to model parameters can affect accuracy. The computational intensity of the
GWO–GBR model, along with uncertainties in generalization to different locations and
limited resources for validation, further contribute to these limitations. INVELOX’s power
generation variability, which extends beyond wind speed, poses an additional challenge.
Addressing these limitations may require enhanced simulation/data collection, taking into
account more factors than wind speed, model refinement, and the development of hybrid
forecasting methods to optimize INVELOX’s power output predictions. As the landscape
of wind energy undergoes continuous transformation, the realm of future research and
development within the framework of DeepVELOX presents several intriguing avenues.

Advanced AI Techniques Integration: While the amalgamation of GBR and GWO in
DeepVELOX achieves impressive predictive performance, the prospect of integrating other
advanced AI techniques beckons. Exploring the realms of neural network architectures,
reinforcement learning, or hybrid models holds the potential to elevate accuracy even
further. Such explorations might usher in enhanced predictive capabilities.

Real-Time Adaptation: Pioneering into the realm of real-time scenarios stands as
an exciting trajectory for DeepVELOX. Enabling the framework to dynamically adapt to
swiftly shifting wind conditions could be a fruitful endeavor. The creation of mechanisms
for such adaptations would ensure a perpetually optimal performance, particularly in the
face of highly volatile wind environments.

Diversification into Multi-Domains: Deepening DeepVELOX’s predictive ambit be-
yond wind turbine output to encompass broader renewable energy domains, such as solar
energy, holds promise. This extension could culminate in a holistic solution for integrated
energy systems. Such a cross-domain approach might yield more streamlined energy
management strategies.

Robustness and Reliability Enhancement: The pursuit of augmenting DeepVELOX’s
robustness and reliability in instances characterized by data scarcity or capricious weather
patterns is imperative. The infusion of uncertainty quantification techniques and adaptive
learning mechanisms would contribute to the sustenance of reliable predictions, even in
challenging circumstances.

Validation in the Field and Scalability: The empirical validation of the DeepVELOX
framework through comprehensive field trials across diverse geographic and climatic zones
would attest to its real-world utility. Scaling up its application to larger wind farms could
offer insights into its scalability and potential for widespread adoption.

Energy Storage Optimization: A promising avenue lies in investigating how Deep-
VELOX predictions can seamlessly intertwine with energy storage systems to optimize
energy dispatch and storage management. This exploration could culminate in the efficient
utilization of generated energy and bolstered grid stability.

Cost-Benefit Analysis: A fundamental undertaking involves an extensive analysis
of the cost-effectiveness tied to integrating DeepVELOX within existing wind energy
infrastructure. Rigorous evaluation of the potential economic gains, return on investment,
and overall cost reduction would serve as guiding factors in decision-making processes
surrounding implementation.

6. Conclusions

In the pursuit of refining the generation of wind energy, this paper introduces the inno-
vative DeepVELOX framework, orchestrating a harmonious fusion of advanced machine-
learning techniques within the domain of wind power. The synergy achieved by combining
the GBR with the GWO algorithm ushers in a substantial stride in the arena of wind turbine
output prediction. The comprehensive analysis unveiled within this study underscores the
exceptional predictive proficiency inherent to DeepVELOX. Commendable KPI outcomes,
notably exemplified by a remarkably low MAPE of 0.0002 and a notably minute RMSPE
of 0.0974, underscore the model’s capacity to deliver forecasts that are both precise and
dependable. Its near-zero MSE coupled with robust scores across various KPIs amplifies
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its capability to curtail prediction disparities, ensuring a consistent supply of accurate
forecasts. The potency of the DeepVELOX framework extends beyond its predictive finesse.
By seamlessly integrating GBR and GWO into the INVELOX wind power system, Deep-
VELOX accomplishes not only the elevation of wind turbine output prediction accuracy
but also unveils the potential to redefine wind energy technology. Its exceptional aptitude
to operate optimally even when confronted with lower wind speeds addresses a notable
constraint ingrained within traditional wind turbine designs.
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Nomenclature

Abbreviations
AI Artificial Intelligence
DL Deep Learning
NN Neural Network
PV Photovoltaic
IWT INVELOX Wind Turbine
ANN Artificial Neural Network
KNN K-Nearest Neighborhood
QNN Quantum Neural Networks
MAE Mean Absolute Error
LSTM Long/Short-Term Memory
MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
RMSPE Root Mean Square Percentage Error
Parameters
Vt [m/s] Wind Speed
Vcut−in−INVELOX [m/s] Cut-in Wind Speed
VCut−Out−INVELOX [m/s] Cut-out Wind Speed
ρINVELOX [Kg/m3] Air Density
AINVELOX [m2] Generator Blade Area
ηW−INVELOX Efficiency
KP Ratio of Squares of Cross Section, and Pressure Coefficient
SR Wind Speed Amplification Ration
PWT−INVELOX [W] Output Power of INVELOX
→
XP The position vector of the prey
→
X The position vector of the grey wolf
t Indicates the current iteration
→
A Coefficient vector
→
C Coefficient vector
→
a Linearly Decreasing Variable
→
r 1 Random vector
→
r 2 Random vector
F0 Initial prediction
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r1 Residuals
γ Denotes the prediction
v Learning rate
F1 Combined prediction
r2 Updated residuals
γ2 New tree prediction
y Target
L Loss function
M Denotes the number of trees
m Index of each tree
i Single sample
Fm−1 Prediction from the previous step
j A terminal node
γm

j Minimizes the loss function on each terminal node
Xi The sample
nj The number of samples in the terminal node j
vTP Truly Positive Predicted Value
vTN Truly Negative Predicted Value
vFP Falsely Positive Predicted Value
vFN Falsely Negative Predicted Value
n Number of Data
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