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Abstract: Non-technical losses (NTLs) verified in the power distribution grids cause great financial
losses to power utilities. In rural distribution grids, fraudulent consumers contribute to technical
problems. The Southern region in Brazil contains more than 70% of the total rice production and
power irrigation systems. These systems operate seasonally in distribution grids with high NTL con-
ditions. This work aimed to present an artificial intelligence-based system to help power distribution
companies detect potential consumers causing NTLs. This minimizes the challenge of maintaining
compliance with current regulations and ensuring the quality of services and products. In the pro-
posed methodology, historical energy consumption information, meteorological data, satellite images,
and data from energy suppliers are processed by artificial intelligence, indicating the suspicious
consumer units of NTL. This work presents every step developed in the proposed methodology
and the tool application in a pilot area. We detected a high number of consumers responsible for
NTLs, with an accuracy of 63% and an average reduction of 78% in the search area. These results
corroborated the effectiveness of the tool and instigated the research team to expand the application
to other rice production areas.

Keywords: non-technical losses; rural electrical grids; artificial intelligence; pilot study; energy for
agricultural processes; energy efficiency

1. Introduction

Commercial loss is one of the main problems in power distribution companies, con-
tributing to financial losses. Several studies on energy loss detection have reported this
problem. Glauner et al. [1] presented the most advanced research efforts in a detailed and
up-to-date analysis of the algorithms, features, and datasets. They identified the most
important scientific and technical challenges in detecting non-technical losses (NTLs) and
suggested how these challenges can be addressed in the future. Shah et al. [2] proposed
an algorithm to estimate actual energy losses when smart meter measurements are in-
correct and to determine energy consumed by other sources of NTLs. They tested the
algorithm using simulations to verify its effectiveness in the accurate identification of NTLs
by determining technical losses.

To increase efficiency, power utility companies should minimize energy losses resulting
from distribution system outages, anomalies in distribution grids, and fraudulent con-
sumers. This is particularly crucial in rural distribution grids, which are usually large-sized
and unautomated and operate on radial systems.
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Our research question was: Is it possible to use artificial intelligence (AI) to identify
irregular irrigation users? Irregular irrigation users are those committing fraudulent energy
consumption. Identifying these irregularities allows inspection field teams to focus on the
most suspicious sources of NTLs. To answer the research question, we defined a region to
analyze consumers using irrigation systems for rice crops, which delimits the pilot study
area. This work did not aim to prevent NTLs but to identify them in consumer units and
help the power distribution company detect potential consumers causing NTLs.

Brazil is one of the top ten rice producers in the world, and rice production strongly
depends on irrigation systems. In Brazil, crop production using different irrigation systems
corresponds to 8.2 million hectares (Mha), and rice production occupies the second largest
irrigation area, after sugarcane production, corresponding to 1.2 million hectares [3]. Thus,
the analysis of energy consumption in irrigation systems becomes important.

In the pilot study area, the volume of water required by the flood-irrigated rice crops
is approximately 6500 m3·ha−1 during an average irrigation period of 90 days [4]. Thus,
the large volume of water leads to high energy consumption in irrigation systems, becoming
important to find economic losses.

Information on energy losses in Brazil and the rural distribution grids for irrigation
systems will be presented. We also briefly analyzed some studies on NTLs.

1.1. Energy Losses in Brazil

In Brazil, the total energy losses in power distribution accounted for approximately
14% of the low-voltage market in 2021. This represented 43.9% of the total energy in-
jected [5]. Figure 1 presents the energy losses comparing the total losses, technical losses,
and NTLs over the years. In this period, total energy losses remained between 13% and
15% of the total energy injected into the customer. NTL is the difference between the
total loss and the technical loss. In 2021, NTL was 6.5%. The total amount of energy loss
corresponding to NTLs in power distribution was about 34.66 TWh, while technical losses
were 40.40 TWh. Therefore, these energy losses significantly affect power utility companies
and consumers.

Figure 1. Energy losses compared to the energy injected over the years in Brazil.

The lack of equipment efficiency, NTLs, and power distribution grid overload are
pertinent concerns in rural distribution grids. NTLs (commercial losses) refer to the amount
of unbilled energy. Non-metered energy and fraudulent consumers lead to NTLs [6].
The cost of NTLs is paid by the power utility companies and/or legitimate consumers.
NTLs occur both in urban and rural power distribution grids.

Figure 2 shows the irrigated crop area in Brazil. In 2017, the irrigated crop area was
6.7 million hectares, of which 25% were concentrated in the southern region [3]. More than
70% of the Brazilian rice is produced in the state of Rio Grande do Sul [7]. Sugarcane is the
main crop in the first largest irrigated area, which accounts for 39.8% of irrigation.
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Figure 2. Distribution of irrigation in the Brazilian regions.

The irrigation land use over time in the Brazilian regions shows that irrigation has
been widely used in several crops. Over the decades, the irrigated crop area in southern
Brazil has decreased.

Figure 3 shows that the Brazilian rice crop area has decreased in recent years [8]. How-
ever, the average productivity has increased since the irrigated crop area is proportionally
more productive than the rainfed area. The productivity of irrigated rice crops is more than
three times higher than non-irrigated rice crops.

Figure 3. Variation of the rice crop area (irrigated and rainfed) compared with the total production
in Brazil.

Rice production has been relatively stable due to greater efficiency in water use and
advances in crop management technology. Although the crop area has decreased, the crop
yield levels have increased. In the last decade, the area under rainfed cultivation declined
to less than 500 thousand hectares, while the area under irrigated cultivation was between
1.3 and 1.4 million hectares [8].
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Figure 4 shows the amount of energy consumed by irrigation systems in the state of
Rio Grande do Sul (RS) [9]. This location concentrates the irrigated rice crops in Brazil.
The highest energy consumption was in western municipalities, ranging from 30 to 210 mil-
lion kWh. These are the main irrigated rice crop areas. The energy cost for irrigation
systems corresponds to approximately 7% of the total production cost, after the cost of
fertilizers (15%) and water (9%) [10]. In the rice crop period, between October and February,
energy consumption increases by more than 500 GWh to meet the irrigation demand. Irriga-
tion efficiency should also be considered, along with concerns about meeting the demand in
rural activities. The irrigation systems use motors and pumps to provide water to crops [11].
Thus, improving irrigation efficiency increases productivity and producer profits.

Figure 4. Energy consumption for irrigation in the state of Rio Grande do Sul (RS).

Rice irrigation by flooding uses ditches in the cropped area to conduct the water
to where irrigation is required. This irrigation system has lower implementation and
maintenance costs. Rice farms in southern Brazil have extensive irrigated areas, which
require pumping stations to maintain a water layer during the irrigation cycle between 80
and 100 days. The energy consumption in pumping stations receives a differential tariff
system, Horo-Seasonal green, and adopts a restricted schedule.

Köpp et al. [12] suggested reference values for sizes or pumping station operations to
define the performance index (Pi). The authors proposed an acceptable index corresponding
to a “good” rating of energy consumption for each hectare of irrigated crop according to
Equation (1).

Pi < 750 kWh · ha−1 (1)

Due to the high volume of rice crops in the state, the pilot study area considers
irrigation users from one of the municipalities with the largest irrigated rice crop area.
Irrigation users are good candidates for NTLs due to the large amount of energy consumed.

We cannot access accurate information about crop areas since the concessionaire
does not have adequate mapping of crops, nor the cropped area in the western border
region of the state. The equipment in rural grids is not telemetered, making it difficult to
determine monthly consumption. As a result, most data are collected over long intervals.
The commercial sector database is responsible for billing and presents many inconsistencies,
making it impossible to use data from some consumers.

1.2. Detection of Non-Technical Losses

Several solutions for the detection of NTLs have been proposed, such as Omar et al. [13],
Park and Kim [14], and Buzau et al. [15]. This diversity is due to different contexts and
problem specificities.
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De Oliveira Ventura et al. [16] studied the impact of NTLs on power distribution
companies in Latin America. The NTLs reduce companies’ revenues, and the electricity
tariffs paid by the final consumers include part of these revenue losses. The percentage of
NTLs distributed to consumers varies according to the national regulator.

Some studies applied big data to power distribution grids. However, many studies
focused on specific services in low- and medium-voltage distribution grids. Big data appli-
cations in power distribution grids can perform fault detection, predictive maintenance,
transient stability, state estimation, power quality monitoring, topology identification, load
and profile, load failure, and NTL detection [17].

Savian et al. [18] analyzed how NTLs affect countries, utilities, and society. They
explained the main barriers and strategies for detecting NTLs and analyzed the most
important regulations of NTLs from different countries. They demonstrated the impact of
NTLs on the economy and society and presented strategies to mitigate electricity fraud.

Saeed et al. [19] classified the techniques for detecting NTLs as either hardware-based
or non-hardware-based. Teles Faria et al. [20] linked NTLs to particular populations and
locations considering social factors associated with electricity fraud.

Hardware-based NTL methods use meters that have specific devices installed on
consumer units. This device enables power distribution companies (PDCs) to detect any
malicious activities by consumers, according to Viegas et al. [6] and Xia et al. [21]. Installing
these devices on the consumer premises requires significant new infrastructure.

Advances in communications and data processing on energy consumer behavior
allowed for the development of non-hardware-based methods for detecting NTLs. Thus,
researchers are investigating this type of NTLs solution method, whose main focus is to
detect the presence of electricity theft from the energy consumption data, as reported by Cui
et al. [22], Khan et al. [23], and Feng et al. [24].

Messinis and Hatziargyriou [25] and Saeed et al. [19] categorized non-hardware-based
methods into three groups: data-driven, network-driven, and hybrid. These methods
require energy consumption measurements. The data-driven method uses data related
to the consumer, such as personal and spatial technical characteristics, social information,
and financial information. The network-driven method uses data such as topology and
measurements from remote terminal units (RTUs) and observer meters [26]. The hybrid
method combines the two previous ones.

Data-oriented methods are solely based on data analysis and machine learning.
The methods are categorized as either supervised or unsupervised [25]. Supervised meth-
ods use labeled data, which can be sorted into two classes: positive/fraud or negative/not-
fraud, such as support vector machine (SVM), artificial neural network (ANN), optimum-
path forest (OPF), decision trees (DT), and nearest neighbor (k-NN). Unsupervised methods
do not use labeled data.

Network-based methods use information from smart meters and calculate various
physical parameters of the distribution grid [27]. The methods are classified based on the
main concept or algorithm used, namely, state estimation, load flow, or special sensors for
detecting fraud [26].

Hybrid methods share characteristics of both data-oriented and network-oriented
methods. Some combinations have been proposed by Messinis et al. [26], such as combining
SVM with observer meters to verify the energy balance and combining SVM with decision
trees and observer meters.

Ahmad et al. [28] proposed several approaches to detect unauthorized energy con-
sumption and other methods used for electricity theft. They identified various setbacks
and problems that arise in the implementation of measures to control unauthorized en-
ergy consumption.

The detection of NTLs is critical for power utility companies. This challenge is even
more pronounced for customers in rural distribution grids. Power utility companies
conduct inspections to detect NTLs at selected customer locations based on predictions.
Rural inspections are expensive due to the long distances that should be covered by the
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technicians during on-site inspections for NTLs [1]. Inspection in rural areas is difficult,
requiring the displacement of technicians and the inaccessibility of some consumers due to
vegetation and environmental conditions. Thus, investment in the accuracy of prediction
should be important.

Despite the several studies on detecting NTLs, there are limited studies on rural
energy consumers or irrigated crops. This work proposes a methodology to identify areas
of interest related to rural energy consumption for irrigation systems. We define a model
that uses AI algorithms and applied it to selected data to detect NTLs. To validate the
proposed methodology and data selection, a pilot study area is considered. We also analyze
the accuracy of the proposed methodology.

The main contributions of this work are as follows:

- The identification of a dataset from the meteorological data of the study area, historical
energy consumption data, and crop information.

- The analysis of the selected data for rural energy consumers served by non-automated
distribution grid for irrigation systems.

- The definition of a methodology based on AI algorithms to detect NTLs in irrigated
rice crops.

- A validation procedure for the proposed methodology.

2. Methodology

The proposed methodology describes the steps and techniques for detecting NTLs
in crop irrigation systems. The tool development is part of a pilot project in partnership
with the Federal University of Santa Maria and the power utility company CPLF Energy
(Companhia Paulista de Força e Luz). This project aims to detect NTLs in the state of Rio
Grande do Sul, southern Brazil. This region concentrates most rice producers using crop
irrigation systems.

We divided the proposed methodology into three main phases: (1) the selection of
variables based on their relevance to the energy consumption for irrigation systems, (2) the
development of an AI model, and (3) the validation and adjustment of the model based on
field inspections. Figure 5 shows the flowchart of the proposed methodology, presenting
the study area, the detection system for NTLs, and the result analysis.

Figure 5. Flowchart of the proposed methodology.
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This flowchart starts with the analysis region selection by searching the consumer
database. Then, the algorithm is executed to select the input variables for the fuzzy logic
algorithm. These variables are selected from those related to energy consumption for
irrigation systems. The fuzzy logic algorithm identifies suspicious consumer units of NTLs.
The system prioritizes the suspicious consumer units, and an inspection list is sent to
the field inspection team. Then, the results from field inspections are compared to the
inspection list generated by the system.

First, we analyzed the most significant variables that affect the energy consumption in
rice irrigation systems. We considered the meteorological variables, the variables related
to rice crops, and the data from the energy supplier. We adopted correlation analysis to
understand the relationships among these variables and excluded redundant or unrelated
variables to understand their respective relationships with energy consumption.

Next, we treated the selected variables using normalization, synchronization, and miss-
ing data removal. In the second step, the previously processed variables serve as inputs to
the AI algorithms, as described in Figure 6.

Figure 6. Flowchart of the irrigation and expert systems.

A fuzzy logic algorithm receives this information and predicts if additional irrigation
is required by the rice crops analyzed. Next, an expert system indicates the consumer units
that significantly differ from the expected energy consumption for the current rice crop.
These consumer units are identified as suspicious sources of NTLs. A list of suspicious
consumer units is generated for field inspection.

Finally, field inspection teams inspect the suspicious consumer units. The data gener-
ated by the field inspection will be used to improve the algorithm. This will foresee the
expansion of the current pilot project into a permanent one at the power utility company.

2.1. Variable Selection

A study on technological mapping identified the most significant factors that con-
tribute to energy consumption in rice irrigation systems in southern Brazil. The study
contains a literature review, interviews with experts, and field inspections of irrigated
rice crops.

Data on water usage in rice crops is directly associated with the need for supplemental
irrigation. These data are related to the energy consumption by the water pumping
system. Meteorological and crop variables directly impact energy consumption. The energy
consumption pattern of the consumer unit in previous harvests is also a significant factor.
Furthermore, the suspicious consumer units of NTLs are reinforced by the total energy loss
rate of the energy supplier.
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Four groups of variables are available: meteorological data, crop data, historical energy
consumption, and electricity data from the energy supplier.

Meteorological data: the National Institute of Meteorology (INMET) [29] provides
sixteen variables from weather stations in Brazil, such as precipitation; wind speed and
direction; and average, maximum, and minimum values for temperature, humidity, atmo-
spheric pressure, and dew point. Data from weather stations closest to a given region are
interpolated to provide more accurate values. Figure 7 shows the weather stations located
in southern Brazil (dark ellipses).

Figure 7. Location of the weather stations in southern Brazil.

Crop data: crop area, soil type, and crop type variables are available from satellite
images and specific algorithms. Figure 8 shows part of the satellite image data processing
used to recognize the crop area and, subsequently, classify the crop type [30]. January is
considered the optimal month for acquiring satellite images to identify rice crops. At the
end of the satellite image processing, the crop area, in hectares, is identified and calculated
for each segment of the rice crop.

Figure 8. Satellite image processing for detecting flood-irrigated rice crops. (a) Sub-image us-
ing normalized difference vegetation index (NDVI), (b) Intermediate image with only crop areas,
and (c) sub-image with limits of crop areas, resulting in crop segments.

Historical power consumption: historical energy consumption data are available
from the power utility company database together with the installed capacity of the con-
sumer unit.
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Electricity data: electricity data for rural consumer units can be accessed in the power
utility company database, while data on energy losses are based on Reference [31].

This large number of data led us to select the most significant variables for the pro-
posed methodology. Since some variables are mutually dependent, i.e., they carry redun-
dant data, we can select only one of the correlated variables. Thus, we created a statistical
model based on correlation analysis and direct selection.

For this step, we used a dataset comprising ten consumer units (irrigated rice crops)
and three rice crop from 2019/20, 2020/21, and 2021/22. We defined a correlation value of
0.80. Figure 9 presents the results for the meteorological variables.

Figure 9. Results for the correlation analysis of the meteorological variables. The gray cells indicate
high correlations.

From the sixteen variables available, we selected rainfall (precipitation), wind speed,
wind direction, average temperature, average humidity, and minimum humidity. The re-
maining variables were excluded since they had a high correlation value with at least one
of the selected variables.

The crop area, soil type, and crop type variables were included in the correlation
analysis with the six meteorological variables to test their correlation with energy con-
sumption. Although we stated the correlation value of 0.80 as a standard for variable
selection, we also considered variables with higher correlation values. Table 1 presents the
correlation analysis results for the meteorological variables. Rainfall (precipitation), wind
speed, average temperature, and crop area were identified as the four variables correlated
with energy consumption for supplemental irrigation of rice crops.

Table 1. Correlation between meteorological data and energy consumption data. The gray cells
indicate high correlations.

Cons. Unit 1 Rain Wind_Spd Wind_Dir Avg_Temp Avg_Hum Min_Hum

Cons. Unit 1

Rain −0.6534603

Wind_Spd 0.58037816 −0.3653789

Wind_Dir −0.1700813 0.31345217 −0.073045

Avg_Temp −0.0756694 −0.0356799 −0.1929023 −0.4006796

Avg_Hum −0.1504893 0.40660993 −0.1572344 0.54020871 −0.6705209

Min_Hum −0.1346516 0.39005796 −0.1209171 0.55059828 −0.6780857 0.99892129
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Energy loss data from energy suppliers is not directly related to energy consumption
in irrigation systems. These data will be used later in the expert system step.

Correlation analysis plays a vital role and aims to improve the performance of the
fuzzy logic algorithm. Reducing the number of variables decreases rule numbers and
programming complexity of the algorithm. The number of inputs optimizes processing
and computational costs during operation.

2.2. Fuzzy Algorithm

The fuzzy logic algorithm predicts the need for the supplemental irrigation of rice
crops. The primary irrigation source for these crops comes from natural replenishment
through precipitation. Evaporation, plant transpiration, and vertical water percolation
through soil lead to water losses that are not naturally replaced. The main irrigation
systems in southern Brazil use electric motors.

Irrigation demand is inversely proportional to precipitation but directly proportional
to wind speed, average temperature, and crop area. The irrigated crop area variable
was defined by analyzing data from satellite images of the region. The parameters of
the meteorological variables were determined based on climate normals available by
INMET [32].

Each variable was assigned to three membership functions (low, average, and high)
based on the trapezoidal function. The parameters of each membership function were
determined by combining statistical analysis and expert opinion. Figure 10 shows the
fuzzification of the rainfall variable (precipitation).

Figure 10. Fuzzification of the rainfall variable.

The set of rules for the fuzzy logic algorithm is based on expert opinions about the
impact of each variable on the need for supplemental irrigation. We consulted experts in
meteorology, phytotechnics, and rice crops production. Then, historical data from the last
three crop seasons were used to refine the rules.

The output of the fuzzy logic algorithm is defined as the necessary irrigation period
within the crop, denoted by period f and measured in hours, proportional to the irrigation
needs in that crop. Figure 11 illustrates the defuzzification and parameterization of the
output variable.

Figure 11. Defuzzification of the output variable.
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This irrigation period parameter allowed us to predict energy consumption for the
rice crop (E), as given by Equation (2), in kWh, where P is the installed capacity present
in the power utility company database. The energy consumption index per area (CPA),
in kWh·ha−1, can be calculated by Equation (3), where A represents the crop area.

E = Pxperiod f (2)

CPA = E/A (3)

This metric is compared to the statistical normal values for the analyzed region to
identify consumer units that differ from the standard behavior. The expert system performs
this step.

2.3. Expert System Algorithm and NTLs Suspicious Consumer Indication

According to Köpp et al. [12], the average energy consumption index per area (CPA)
for rice irrigation in the pilot study area ranges from 550 to 750 kWh·ha−1 per harvest. This
approach aims to identify consumer units whose energy consumption is above or below
the average range. We give particular attention to those consumer units whose energy
consumption is below the average range, and they are tagged as suspicious consumer units
of NTLs. The power utility company is also interested in consumer units whose energy
consumption exceeds the average range since they indicate low efficiency in the irrigation
system and may receive investments in energy efficiency projects.

The expert system considers the results of the energy consumption index per area of
each consumer unit and intersects this information with the total energy loss index of the
energy supplier in which the consumer unit is located.

The historical energy consumption behavior of the consumer unit is also compared to
the nearby consumer units. For instance, in a particular crop, if the average behavior of
the consumer group was to increase energy consumption and if the energy consumption
varied in the opposite direction, it reinforces the suspicion of NTLs.

The expert system is developed using a fuzzy logic algorithm to incorporate the
desired relationships between the three variables into the set of fuzzy rules. These results
classify the suspicious consumer units of NTLs into very high suspicion, high suspicion,
mean suspicion, low suspicion, or low efficiency.

Table 2 summarizes the standard inserted into the expert system to evaluate suspi-
cious NTLs.

Table 2. Guiding principles to fuzzy rules development.

Energy
Consumption

Index per Area
Total Energy

Losses
Behavior towards

Neighbors

Very high suspicion Below the average
range Above 25%

Variation in the
opposite direction,
greater than 35%

High suspicion

Below the average
range Above 25%

Variation in the
opposite direction,
between 1 and 35%

Below the average
range Below 25%

Variation in the
opposite direction,
greater than 35%

Mean suspicion

Below the average
range Below 25% Variation in the

same direction

In the average
range Above 25% Variation in the

opposite direction

Low suspicion In the average
range Below 25% Variation in the

same direction

Low efficiency Above average
range Any situation Variation in the

same direction
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For instance, a consumer unit classified as high suspicion of NTLs occurs when the
energy consumption index per area is below the average range, while the total energy
losses of the energy supplier is above 25% and the energy consumption behavior between
the last harvests differs by more than 35%.

The expert system allowed us to generate a field inspection list, based on power utility
company criteria.

2.4. Field Inspection

In the pilot project, we considered the total crop area of 75,800 hectares and about
475 consumer units for rice crop irrigation. Consumers were tested following the proposed
methodology, to generate an inspection list of the suspicious consumer units associated
with NTLs. Considering the total number of consumers, 90 were identified as the main
suspects in the pilot study area. From these, a total of 60 were inspected by the inspection
field teams to verify possible tampering and fraud in the power measurement systems.
The next section describes the results of the field inspections.

3. Results and Discussion

The pilot study area comprised 5,702,098 km2, as shown in Figure 12. This crop area
is studied in two periods. The first one was between 2021 and 2022 and the second one
between 2022 and 2023. The first crop period had 248 consumer units (2021/2022), while
the second one had 227 (2022/2023).

Figure 12. Pilot study area.

Applying the proposed methodology to all consumer units selected, we can observe
that 90 were pointed out as potential NTLs, as shown in Table 3. The suspicious consumer
units of NTLs are classified from mean to very high suspicion. We also highlighted that the
proposed methodology reduced the search space for NTLs by 73.79% in the first rice crop
and 88.99% in the second one. In general, the search space for NTLs is reduced by 81.40%,
as shown in Figure 13.
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Table 3. Proposed methodology for consumer unit classification stratified by rice crop.

Crop Period 21/22 Crop Period 22/23 Total

Suspicious 65 25 90
Unsuspicious 183 202 385

Total 248 227 475

Figure 13. Reduction of the search space for suspicious and unsuspicious consumer units.

Field inspection lists are generated for all suspicious consumer units of NTLs detected.
Since the number of unsuspicious consumer units is high, we selected a sampling of 10% of
these consumer units to be inspected. Thus, for the first rice crop, 65 suspicious consumer
units and 25 unsuspicious consumer units will be inspected. For the second rice crop,
25 suspicious consumer units and 20 unsuspicious consumer units will be inspected.

After field inspections, for the first rice crop, we confirmed 28 consumer units as
responsible for NTLs of the total of 65 suspicious consumer units detected. All 25 unsus-
picious consumer units sampled were confirmed unsuspicious. For the second crop, we
confirmed 12 suspicious consumer units as responsible for NTLs of the total 25 detected,
and all 20 unsuspicious consumer units sampled were confirmed.

By considering both crops together, there were 90 suspicious consumer units of NTL;
40 were confirmed as suspicious and 45 as unsuspicious. This confusion matrix analysis is
shown in Table 4.

Table 4. Confusion matrix analysis of two crop seasons using the proposed methodology.

Predicted

Suspicious Unsuspicious

Actual Suspicious 40 0
Unsuspicious 50 45

The confusion matrix analysis can determine the accuracy and error rate of the pro-
posed methodology. The accuracy is the ratio between the true and false positive results
and the total number of observations, as given by Equation (4). The error rate is the ratio be-
tween the true and false negative results and the total number of observations, as presented
in Equation (5). We also determined the specificity and precision of the model. Specificity
is the ratio between the true negatives and the sum of false positives and true negatives,
as stated in Equation (6). Precision is the ratio between the true positives and the sum of
true positives and false positives, as in Equation (7).

accuracy =
TruePositive + TrueNegative

Total
(4)
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errorrate =
FalsePositive + FalseNegative

Total
(5)

Speci f icity =
TrueNegative

FalsePositive + TrueNegative
(6)

Precision =
TruePositive

TruePositive + FalsePositive
(7)

The accuracy of the proposed methodology was 63%, while the error rate was 37%.
The accuracy was slightly below that of Dominguez et al. [33], who applied a machine-
learning model and reached 74% accuracy. Viegas et al. [34] used a fuzzy-based model and
achieved similar accuracy (63.6%). Some studies reported precision results above 90%, such
as Salman Saeed et al. [35] who used decision tree, Messinis et al. [26] who applied support
vector machines, and Saeed et al. [36] who used ensemble bagged tree models. It may
seem that the proposed methodology was inferior when compared to those last studies.
However, for high accuracies in which the dataset is unbalanced, this measure is not suitable.
For example, if a dataset has 90% of negative cases and the model classifies all of them as
negative, an accuracy of 90% will be reached. In addition, the aforementioned studies did
not focus on rural areas, accounting for several consumers due to the customer density in
urban grids. In this work, for the pilot study area, the number of consumer units is quite
small compared to the other studies. In this sense, specificity and precision measurements
are used as an additional analysis. For both indicators, the proposed methodology reached
100%. Salman Saeed et al. [35] reached 98.2% and 93.2% for specificity and precision,
respectively. Saeed et al. [36] reached 98.2% for specificity, and Messinis et al. [26] did not
present such information.

The power distribution company currently uses correlation analysis and direct selec-
tion to identify the most significant variables in the meteorological and cultural data and
energy consumption records. The sampling and data collection are completely manual,
and the detection of NTLs has an accuracy of 57%. This work proposed a methodology
that uses automation to obtain relevant data from the database, makes a total analysis of
the areas of interest, and presents greater precision. Thus, the fuzzy logic algorithm can
bring greater flexibility and speed for application in different areas of interest.

For the pilot study area, the results were promising and proved the effectiveness of the
proposed methodology. In addition, this work is restricted to one culture and one area due
to the difficulty of accessing commercial data from the power utility company. However,
we could evaluate the effectiveness of the proposed methodology.

We can observe that the error rate is linked only to false positives, i.e., the detection
of suspicious consumer units of NTLs has proved to be energy-inefficient consumer units.
This is due to the selection criterion for the suspicious consumer units of NTLs since this
classification encompasses both the inefficiency of the consumer unit and the presence
of NTLs.

By changing the criteria to consider only high and very high suspicious consumer
units, there is a high chance that consumer units with NTLs would not be included in the
list, which would be disastrous for a system seeking this fact. However, even considering a
more adjusted suspicion criterion, we can guarantee that unsuspicious consumer units of
NTLs do not have this characteristic. Thus, this criterion can be understood as the most
interesting one. Some adjustments should be made to the modeling to include other factors
that are not currently accessible, such as a long-term history for each consumer unit.

The results from field inspections classified the inconsistencies as follows: 3.5% as
irregular with billing impact and 10.6% as irregular without billing impact. The first
category includes fraud, equipment problems, and process errors. In practice, the field
inspection teams should register the fraud detected as equipment failures and recovery as
part of the loss since the legislation allows for the concessionaire to review the values of the
last three months from inspection registration.
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4. Conclusions

Power utility companies have faced the challenge of identifying NTLs in rural areas.
Effectively, field inspections are difficult in the rural distribution grids in the state of Rio
Grande do Sul, in southern Brazil, due to their characteristics.

The pilot study area was effective at reducing the search area for NTLs in consumer
units. This work established a multi-parametric and multi-criteria model that allowed us
to classify consumer units based on the suspicion of NTLs.

In this pilot study, we selected rice crop irrigation to analyze energy consumption. Our
proposed methodology achieved promising results and could be robust enough to establish
standards for other crops, such as sugarcane and coffee, achieving the same accuracy as rice.

This work presents a comprehensive methodology to establish the criteria for suspi-
cious consumer units of NTLs in irrigation systems. The contribution is significant since
on-site inspection is costly due to large areas usually located far from urban centers. Reduc-
ing the search space for these consumer units helps to reduce inspection costs and increases
the effectiveness of actions to prevent NTLs in irrigation systems.

Reducing commercial losses enables power utility companies to improve load forecasts,
providing compensation during more critical moments. As a result, the quality of the energy
delivered to all consumers served by the rural grids improves.
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