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Abstract: Biodiesel is a widely recognized and favored liquid biofuel, primarily attributed to its
biodegradability and non-toxicity. However, the development of biodiesel is hindered by its high
production costs. Here, we developed a method that combines glycerol esterification and transesteri-
fication reaction catalyzed using nano-hydrated CaO for the green production of biodiesel from high
acid value oil. Waste eggshell was chosen as the calcium source to examine the effect of hydration
temperature and duration. The catalysts were optimized using a synthesis process involving under
calcination for 3 h at 875 ◦C, followed by hydration at 60 ◦C for 6 h and subsequent dehydration
at 725 ◦C. The catalyst loading, alcohol-to-oil mass ratio, reaction temperature, and duration were
optimized to 2.5 wt%, 35%, 60 ◦C, and 2 h, respectively. Under the optimized conditions, the yield
of fatty acid methyl ester reached 94.44%. The catalyst was successfully reused eight cycles while
maintaining a yield of fatty acid methyl ester at 80.52%. In addition, a comprehensive overview was
summarized to compare the catalyst preparation methods, reaction conditions, biodiesel yield, and
reusability in the production of biodiesel using eggshell-derived CaO.

Keywords: biodiesel; high acid value oil; biobased calcium oxide; transesterification; hydration

1. Introduction

Due to the limited availability of conventional fossil fuels and increasing concerns
regarding ecological conservation, many countries are transitioning from fossil fuels to
renewable energy sources [1]. Meeting the current energy demand has led to an increased
focus on developing and utilizing green and clean energy sources, such as solar energy
and wind power. However, the challenge of weather and seasonal changes causing an
unstable supply of these energy sources remains a significant concern. Consequently,
utilizing clean and environmentally sustainable biomass fuels as a viable alternative to
fossil fuels is considered an advantageous approach for reducing carbon emissions [2,3].
Fatty acid methyl ester (FAME) has gained considerable interest as the most prevalent
biobased eco-friendly fuel, primarily attributed to its excellent lubricity, non-toxicity, and
biodegradability, usually produced by the transesterification reaction between triglycerides
and methanol using a base catalyst (Figure 1) [4,5].

It has been reported that the production cost of biodiesel is higher than that of petro-
chemical diesel, which hampers its large-scale development [6]. Feedstock expenses con-
stitute approximately 80% of the total cost, underscoring the potential of utilizing waste
oils and fats to effectively reduce production costs [1,7]. However, the high free fatty acids
(FFAs) content in waste oils and fats poses a significant challenge due to the potential
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for saponification reactions during transesterification reactions, leading to a decreased
yield of FAME. Consequently, the necessity for pretreatment methods to mitigate the acid
value of waste oils is evident [6]. To overcome these issues, a two-step biodiesel production
method has been developed [8,9]. In the first step, FFAs are esterified with glycerol, forming
monoglycerides, diglycerides, and triglycerides (Figure 2). Subsequently, the glycerides are
transesterified with methanol to form FAME. Glycerol esterification serves as a practical
pretreatment approach, capitalizing on the by-product of transesterification to reduce acid
value. This method eliminates the need for concentrated sulfuric acid, acid, and excessive
methanol while also requiring less specialized equipment compared to the conventional
direct esterification of FFAs and methanol [10].
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Figure 1. The basic transesterification reaction.

Homogeneous base catalysts such as NaOH and KOH have gained widespread usage
in the biodiesel industry due to their high catalytic activity [11,12]. However, these catalysts
face challenges such as catalyst loss, limited reusability, reactor corrosion, and environ-
mental pollution, which hinder further cost reduction and efficiency improvement [13–15].
Consequently, the development of cost-effective, reusable, and environmentally friendly
heterogeneous catalysts has emerged as a prominent research area in recent years [3,16–19].
Calcium oxide is extensively researched as a green heterogeneous base catalyst for transes-
terification reactions due to its environmentally friendly nature, non-toxicity, affordability,
and effective catalytic activity [20–23]. CaO is abundant in the form of limestone found in
rock formations [20,21,24]. Additionally, CaO can be derived from biological sources such
as bone, exoskeletons, and eggshells, which have been reported to be more environmentally
friendly [25–29]. Among these sources, catalysts prepared from waste eggshells exhibit
higher surface calcium yields compared to those from waste crab shells, making eggshell-
derived CaO more efficient in catalysis [30]. However, while CaO catalysts prepared using
direct calcination from biological resources can achieve a high yield of FAME, they require
higher catalyst loading and longer duration. This is primarily attributed to the catalyst’s
relatively low specific surface area and basic strength [31].
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Hydration-dehydration technique has been reported as an effective method to enhance
the catalytic activity of CaO catalysts derived from biowaste, resulting in improved basic
strength and specific surface area for transesterification reaction [32,33]. The hydration–
dehydration process has been found to significantly reduce catalyst crystallinity and in-
crease specific surface area, as demonstrated by Ashine et al. [34]. Despite the evident
advantages of this technique, its full potential remains largely unexplored in the litera-
ture. While previous studies have demonstrated its convenience and cost-effectiveness in
achieving higher catalytic activity and milder reaction conditions [31–35], there is a notice-
able gap in the existing research concerning the optimization of hydration-dehydration
conditions for these catalysts. This gap presents an opportunity for further investigation
and refinement, aiming to unlock the full catalytic potential of CaO catalysts derived
from biowaste.

In this work, an approach that combined glycerol esterification and transesterification
reaction for biodiesel production from high acid value oil was developed. Waste eggshells
were utilized as the raw material to prepare a series of hydrated CaO catalysts using
calcination, hydration, and subsequent dehydration processes. The structural properties of
the catalysts were determined using various characterizations. The catalyst preparation
conditions were optimized based on their catalytic performance and crystallite size. Further,
the optimized catalyst was employed in the transesterification reaction of glycerol-esterified
oil, and the reaction conditions were optimized. In addition, the reusability of the catalyst
was investigated to determine its stability.

2. Experimental
2.1. Materials

The waste eggshells were obtained from the Dexin canteen located at the Moganshan
campus of Zhejiang University of Technology. The model compound (with an acid value
of 119.13 mg KOH/g) was mixed with soybean oil (Goldfish, China) and oleic acid (pur-
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chased from Shandong Dingyu Bio-Energy Co., Ltd. (Jinan, China), with an acid value
of 200 mg KOH/g) in a mass ratio of 2:3. Glycerol of pure analytical grade, methanol
of pure analytical grade, and Hammett indicators were sourced from Shanghai Titan
Technology Co., Ltd. (Shanghai, China).

2.2. Catalyst Preparation and Optimization

The waste eggshells were washed with water, followed by drying in an oven. Subse-
quently, the dried eggshells were ground and sieved through a 200-mesh sieve. The result-
ing powder was then calcined in air at 875 ◦C for 3 h, using a heating rate of 10 ◦C/min.
The calcined samples were subjected to hydration under various conditions. After the
hydration process, the hydrated samples were dried at 105 ◦C for 6 h. Finally, the hydrated
samples underwent another round of calcination at 725 ◦C for 3 h, with a heating rate of
5 ◦C/min. This step aimed to produce CaO with hydration–dehydration characteristics
(CaOH). To determine the optimal hydration temperature and duration, specific hydration
conditions were employed. The hydrated samples were exposed to different specified
temperatures (45 ◦C, 55 ◦C, 60 ◦C, 65 ◦C, 70 ◦C) for 6 h. This allowed for the identification
of the most favorable hydration temperature within the specified hydration durations (2 h,
4 h, 6 h, 8 h).

2.3. Catalyst Characterization

Thermogravimetric analysis (TGA) was conducted using a Discovery TGA thermo-
gravimetric analyzer from TA Instruments (New Castle, Delaware). The analysis was
performed under an air atmosphere, employing a heating rate of 10 ◦C/min, within a
temperature range of 32–1000 ◦C.

X-ray diffraction (XRD) was conducted using a Bruker AXS D8 Advance X-ray photo-
electron diffractometer from Germany. The XRD measurements were performed with a
tube voltage of 40 kV, scanning the range of 10–80◦ at a rate of 10◦/min. The estimation of
crystallite sizes for both the common and hydrated-dehydrated catalysts was carried out
using the Debye-Scherer equation.

N2 physisorption analysis was conducted using a Mike ASAP2460 Instrument (Nor-
cross, GA, USA). The samples underwent vacuum degassing at 200 ◦C for 6 h. The
mean pore volume and pore size were determined using the Barrett-Joyner-Halenda (BJH)
method, and the specific surface area of the samples was determined using the BET method.

The basic strength of the catalyst was assessed using the Hammett indicator method.
To perform this analysis, 0.05 g of the catalyst was dissolved in 0.5 mL of a solution
containing Hammett indicator, which was further diluted in 10 mL of methanol. The
solution was allowed to stand for a sufficient period of time to ensure system equilibration.
Once the system’s color reached a stable state and exhibited no further changes, it was
compared to the acid-base color of the indicator to determine the catalyst’s basic strength.

Scanning electron microscopy (SEM) analysis was performed using a Czech TESCAN
(Brno, Czech Republic) desktop scanning electron microscope for specimen characterization.

2.4. Glycerol Esterification of Feedstock

To reduce the acid value, glycerol esterification was employed to obtain glycerol-
esterified oil. The feedstock was mixed with glycerol in a mass ratio of 4:1, and the resulting
mixture was preheated to 240 ◦C under a nitrogen flow rate of 200 mL/min. Rotation
speed was set at a rate of 500 r/min, and the reaction was initiated at 240 ◦C. The reaction
was maintained under these conditions for 3 h to ensure that the acid value of the product
was below 1 mg KOH/g. To obtain glycerol-esterified oil, the glycerol was subsequently
distilled under high vacuum conditions (20–80 Pa). The acid value of the samples was
determined using titration following the national standard GB/T 5530 [36].

The composition analysis of the glycerol-esterified oil was determined using a Shi-
madzu LC-20AT high-performance liquid chromatography (HPLC) system. A Kromasil
NH2 column (250 mm × 4.6 mm, 5 µm) and a refractive index detector (RID) were em-
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ployed. The mobile phase consisted of hexane and isopropanol (9:1, v:v), flowing at a rate of
0.8 mL/min. A sample injection volume of 10 µL was used, and the oven temperature was
maintained at 35 ◦C. The composition of monoglycerides, diglycerides, and triglycerides
was determined using the area normalization method.

2.5. Catalytic Tests and Product Analysis

The transesterification reaction of the glycerol-esterified oil was conducted using a
50 mL three-neck flask equipped with a reflux condenser, magnetic stirrer, and thermome-
ter. Methanol and the catalyst were mixed at 500 r/min and preheated to a specified
temperature (50–65 ◦C). Subsequently, 20 mL of glycerol-esterified oil was added to the
three-neck flask, and the moment when all the oil had been added was considered the
starting point of the reaction. The effect of different variables was explored for the trans-
esterification reaction, including catalyst loading (1.5–3.5 wt%), alcohol-to-oil mass ratio
(25–45%), reaction temperature (50–65 ◦C), and corresponding reaction duration (1–3 h) in
several separate sets of experiments. At the end of each experimental group, 1–2 mL of the
reaction mixture were sampled and centrifuged to separate the catalyst from the mixture
for analysis. Before analyzing the biodiesel product, any excess methanol in the mixture
was spin-distilled in a water bath at 70 ◦C for 20 min. The FAME composition and content
were determined using gas chromatography (Shimazu GC2014, Kyoto, Japan) with a flame
ionization detector (FID) and a polar DB-5 capillary column (30 m × 0.25 mm, 0.25 µm).
The FAME content of the production was calculated using Equation (1) and served as the
evaluation index for the FAME yield of the transesterification reaction.

Yield of FAME (%) =
Actual FAME mass

Theoretical FAME mass
»

FAME concentration
Total concentration

× 100% (1)

2.6. Catalyst Reusability

The reusability of the catalyst was evaluated under optimized reaction conditions.
Following the completion of the reaction, the catalyst was separated from the reaction
mixture using centrifugation. To remove any adsorbents, such as glycerol, glycerides, and
biodiesel, the catalyst was washed with a mixed solution of methanol and hexane (in a
mass ratio of 1:1). Subsequently, the catalyst was dried at 105 ◦C without undergoing any
additional treatment.

3. Results and Discussion
3.1. Results of Glycerol Esterification

After the glycerol esterification and distillation of excess glycerol, the composition
and properties of the resulting glycerol-esterified oil were analyzed and are summarized in
Table 1. Using the pretreatment process, the acid value of the initial feedstock was signifi-
cantly reduced from 119.13 to 0.83 mg KOH/g. This pretreatment effectively prevented
catalyst deactivation and demonstrated minimal impact on the subsequent transesterifica-
tion reaction [6,37]. The glycerol-esterified oil primarily comprised triglycerides, accounting
for 93.44% of the total composition.

Table 1. Composition and properties of glycerol-esterified oil.

Index Unit Value

Acid value mg KOH/g 0.83
Saponification value mg KOH/g 199.05
Monoglyceride content % (m/m) 2.95
Diglyceride content % (m/m) 3.61
Triglyceride content % (m/m) 93.44
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3.2. Catalyst Optimization
3.2.1. Catalyst Dehydration Temperature Optimization

The determination of the optimal dehydration temperature was accomplished using
thermogravimetric analysis (TGA) conducted on the hydrated catalyst (Figure 3). The
TGA profile exhibited two distinct mass loss regions: one spanning from 400 to 475 ◦C,
attributed to the decomposition of Ca(OH)2 into CaO, and the other ranging from 630 to
705 ◦C, attributed to the removal of water trapped within the crystallite structure. The
cumulative mass loss observed was 25.4%, aligning well with the theoretical mass loss
anticipated from the dehydration of Ca(OH)2 to CaO. Notably, an increase in temperature
beyond the optimal point results in catalyst sintering, which compromises its catalytic
activity [38]. Consequently, based on the TGA findings, a dehydration temperature of
725 ◦C was selected as the optimum for the precursor, ensuring complete fragmentation of
the CaO particles and maximizing catalytic efficiency.
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3.2.2. Hydration Optimization

Figure 4a illustrates depicts the influence of hydration temperature on the yield of
FAME and crystallite size. A hydration period of 6 h was employed, and temperatures rang-
ing from 45 ◦C to 70 ◦C were investigated. The transesterification reaction was conducted
under the following conditions: rotation speed of 500 r/min, alcohol-to-oil mass ratio of
40%, reaction temperature of 60 ◦C, and catalyst loading of 2.5 wt%. The reaction was sus-
tained for 2 h. The yield of FAME exhibited an upward trend as the hydration temperature
increased until it reached 60 ◦C, where the maximum yield of 93.90% of FAME was attained.
However, a decline in yield was observed as the hydration temperature was elevated
beyond the optimal point. Therefore, the optimum hydration temperature was determined
to be 60 ◦C. The catalytic mechanism is illustrated in Figure 5 [39,40]. The active site on the
catalyst surface, when combined with methanol, produces a highly reactive nucleophilic
methanolic anion, which is more favorable to attack the electrophilic carbonyl carbon in the
triglyceride to form a diglyceride, which reacts similarly to the monoglycerides, ultimately
giving the FAME [35,38,41]. Figure 4a clearly demonstrates a negative correlation between
catalyst crystallite changes at different hydration temperatures and the resulting yield
of FAME. The change in hydration temperature directly impacted the hydroxylation of
CaO, influencing the fragmentation of the original CaO crystallites and the subsequent
growth of new crystallites following further dehydration. Smaller crystallites and lower
crystallinity contributed to a great number of active sites on the catalyst surface, as well
as increased alkalinity, which promoted the formation of methanol anions, enhancing
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overall reactivity and promoting a higher yield of FAME [22,27,42]. The crystallite size
data from the XRD results corroborated this deduction. In addition, the application of
lower hydration temperature facilitates the transesterification reaction while reducing the
required energy input.
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Figure 5. Catalytic mechanism.

During the hydration process, the duration of hydration plays a crucial role in the
destruction and regeneration of catalyst crystallite [31]. Figure 4b illustrates the effect
of hydration duration on the yield of FAME and crystallite size. Specifically, when the
hydration temperature was set at 60 ◦C, hydration duration ranging from 2 h to 8 h was
investigated. The transesterification reaction was carried out under conditions of a rotation
speed of 500 r/min, a mass ratio of alcohol-to-oil of 40%, a reaction temperature of 60 ◦C,
and a catalyst loading of 2.5 wt%, with a reaction duration of 2 h. As depicted in Figure 4b,
with increasing hydration duration, the original crystallites were continuously destroyed,
and new crystallites formed and grew. The crystallite size decreased to a minimum of
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13.9 nm when the hydration duration reached 6 h, resulting in a corresponding increase in
the yield of FAME to 93.92%. However, as the hydration duration was further prolonged,
the destruction of original crystallites continued, accompanied by the growth of new
crystallites. This led to a decrease in the density of active sites on the catalyst surface,
ultimately resulting in a decline in the yield of FAME. Based on these observations, it can be
concluded that the optimum hydration duration for achieving the highest yield of FAME
was 6 h.

3.3. Catalyst Characterization
3.3.1. XRD Analysis

The XRD patterns of the catalysts, including common CaO, CaOH-45-6h, CaOH-55-6h,
CaOH-60-6h, CaOH-65-6h, CaOH-70-6h, CaOH-60-2h, CaOH-60-4h, CaOH-60-6h, and CaOH-60-8h,
are presented in Figure 6. The results demonstrated that the catalysts prepared at differ-
ent hydration temperatures and duration exhibited identical peak positions and lattice
parameters to those prepared without hydration. This indicated that catalytically active
species remained unaffected by the hydration temperature and duration. The crystallite
sizes of both the common catalyst and each hydrated catalyst were estimated using the
Debye–Scherer equation (Figure 4). The results revealed a significant reduction in the
crystallite size of the hydrated-treated CaO, indicating a strong influence of hydration
temperature on the crystallinity and crystallite size of the catalysts [27,32]. Furthermore,
when the hydration duration was set to 6 h under different temperature conditions, no
characteristic peaks of Ca(OH)2 were detected. The changes in the diffraction peaks of
Ca(OH)2 can be found when the hydration duration varies, demonstrating the occurrence
of changes in the growth and fragmentation of old and new crystallites.
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3.3.2. N2 Physisorption Analysis and Basic Strength Analysis

Table 2 presents the N2 physisorption and basic strength analysis results, indicating
that the hydration treatment rendered the CaO catalyst mesoporous, thereby facilitating the
diffusion of reactants. The common catalyst exhibited a BET surface area of 1.6429 m2/g,
whereas the catalyst subjected to further hydration-dehydration displayed significantly
larger BET surface areas. This observation aligns with the understanding that a higher sur-
face area exposes more active sites, leading to improved catalytic performance and higher
conversion efficiency [31–33]. Thus, it can be concluded that the hydration–dehydration
process enhanced the BET surface area of CaO. Furthermore, Table 2 reveals that the hydra-
tion temperature and duration also had an impact on the BET surface area, pore volume,
pore size, and basic strength. The duration of hydration did not have a significant influence
on the change in BET surface area or the basic strength of the catalyst. Upon optimizing
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the catalyst preparation, the most favorable catalytic performance was observed with
CaOH-60-6h, exhibiting a basic strength within the range of 12.2–15.6 and the highest BET
surface area [43,44]. However, contrary to expectations, further increasing the hydration
temperature led to unexpected results despite the relatively large BET surface area of the
CaOH-70-6h catalyst (Figure 4a). N2 adsorption–desorption isotherms displayed a type IV
isotherm shape for both common CaO and CaOH-60-6h, as illustrated in Figure 7. Analysis
of the BJH pore size distribution confirmed that CaOH-60-6h exhibits larger mesoporous
structures in comparison to common CaO.

Table 2. N2 physisorption and basic strength analysis of catalysts.

Catalyst BET Surface
Area (m2/g)

Mean Pore
Diameter (nm)

Total Pore
Volume (cm3/g) Basic Strength

CaO 1.6429 10.8644 0.004449 9.3 < H_ < 12.2

CaOH-45-6h 11.6408 48.2618 0.135590 9.3 < H_ < 12.2

CaOH-55-6h 9.6729 50.4828 0.077243 12.2 < H_ < 15.6

CaOH-60-6h 14.8209 43.8119 0.130846 12.2 < H_ < 15.6

CaOH-65-6h 12.4565 40.6488 0.111106 12.2 < H_ < 15.6

CaOH-70-6h 13.9873 29.0470 0.106863 9.3 < H_ < 12.2

CaOH-60-2h 13.7889 45.9859 0.110861 12.2 < H_ < 15.6

CaOH-60-4h 12.4309 36.4223 0.084373 12.2 < H_ < 15.6

CaOH-60-8h 12.8146 41.8096 0.093936 12.2 < H_ < 15.6
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3.3.3. SEM Analysis

The SEM images presented in Figure 8 depict the morphologies of the common CaO
catalyst, as well as the CaOH-60-6h, CaOH-45-6h, and CaOH-70-6h catalysts after calcination at
725 ◦C. The common catalyst (CaO) exhibited a spindle-like agglomerate structure with
large particles, limited pore structure, and a larger particle diameter, averaging between
0.5–1 µm. This morphology aligned with the low specific surface area determined using
N2 physisorption analysis. Conversely, the hydrated catalysts displayed distinct grain mor-
phologies characterized by smaller particle sizes and a honeycomb-like porous structure,
which corresponded to the high specific surface area determined using N2 physisorption
analysis. The formation of this porous structure can be attributed to the decomposition
of Ca(OH)2 and the release of bound water from the calcium oxide at elevated tempera-
tures. The activity of gaseous water molecules during this process disrupted the original
cluster structure, resulting in increased porosity that enhances the catalytical effect of the
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reaction [31,32]. Particle size analysis revealed that the hydration temperature influenced
the particle sizes. Although the average particle sizes of the catalysts prepared at hydration
temperatures of 45, 60, and 70 ◦C were within the range of 80–100 nm, the catalyst prepared
at a hydration temperature of 60 ◦C exhibited a smaller average particle size of 82.66 nm,
which was consistent with the smaller crystallite size observed in the XRD results.
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3.4. Transesterification Process Optimization
3.4.1. Catalyst Loading

Under the reaction conditions of a rotation speed of 500 r/min, a mass ratio of alcohol-
to-oil of 40%, a reaction temperature of 60 ◦C, and a duration of 2 h, the effect of catalyst
loading on the yield of FAME was investigated. As depicted in Figure 9a, increasing
the catalyst loading from 1.5 wt% to 2.5 wt% resulted in an enhancement of the yield of
FAME. The yield of FAME reached 91.85% when the catalyst loading was 1.5 wt%. The
maximum yield of FAME of 94.07% was achieved when the catalyst loading was 2.5 wt%.
This increase in yield can be attributed to the availability of more effective active sites for
the reaction at higher catalyst loading, leading to increased efficiency. However, when the
catalyst loading exceeded 2.5 wt%, the yield of the FAME trend began to decline. This can
be attributed to the overall mass transfer resistance in the system, where the mass transfer
limitation between the reactants and the catalyst became the rate-controlling step compared
to the intrinsic reaction [35]. Therefore, the optimal catalyst loading was determined to be
2.5 wt%.

3.4.2. Alcohol-to-Oil Mass Ratio

In practical biodiesel production, the mass ratio of methanol to oil plays a crucial
role in determining the biodiesel yield. Although a theoretical alcohol-to-oil mass ratio
can be calculated based on the stoichiometric ratio using the composition of mono-, di-
and triglycerides in the oil, additional methanol is typically employed to promote the
positive equilibrium towards biodiesel production. Therefore, relying solely on the molar
ratio provides limited guidance in the actual process [31]. The effect of the alcohol-to-oil
mass ratio on the yield of FAME was investigated, as shown in Figure 9b. Maintaining the
reaction for 2 h at a rotation speed of 500 r/min, a catalyst loading of 2.5 wt%, and a reaction
temperature of 60 ◦C, the results revealed an optimal alcohol-to-oil mass ratio of 35%.
Within the range of 25–45 wt%, the yield of FAME remained consistently around 90%, with
a peak value of 93.73% achieved at the 35% alcohol-to-oil mass ratio. Beyond the 35 wt%
mark, it was presumed that excess methanol diluted the reaction system. This dilution
restricts the interaction between glycerides and catalytically active sites, consequently
hindering the reaction between methanol and the oil and reducing the overall yield [45].
Therefore, based on these findings, the optimal alcohol-to-oil mass ratio was determined to
be 35%.
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3.4.3. Reaction Temperature

The effect of the reaction temperature on the yield was investigated by maintaining
the reaction for 2 h at a rotation speed of 500 r/min, an alcohol-to-oil mass ratio of 35%,
and a catalyst loading of 2.5 wt%. The temperature range examined spanned from 50 ◦C
to 65 ◦C, as illustrated in Figure 9c. The results demonstrated a gradual increase in yield
as the reaction temperature was elevated. This observation aligned with the expected
influence of reaction temperature on reaction kinetics, where higher temperature enhanced
the kinetic energy of molecules in the system, facilitating more effective collisions between
reactants and leading to an increased yield [35,45,46]. A remarkable yield of approximately
97.36% was attained at a reaction temperature of 65 ◦C. However, it is noteworthy that
operating at such a high temperature surpasses the boiling point of methanol (64.7 ◦C at
atmospheric pressure). This requires the use of additional cooling utilities and leads to
increased energy consumption per unit in industrial-scale production. Consequently, the
optimal reaction temperature was determined to be 60 ◦C.
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3.4.4. Reaction Duration

The effect of reaction duration on the yield of FAME was investigated while maintain-
ing a rotational speed of 500 r/min, an alcohol-to-oil mass ratio of 35%, a catalyst loading
of 2.5 wt%, and a reaction temperature of 60 ◦C. As depicted in Figure 9d, the highest
yield of FAME of 94.44% was achieved within a reaction duration of 2 h. However, a slight
decrease in the yield of FAME was observed when the reaction duration exceeded 2 h. This
phenomenon may be attributed to the increasing presence of glycerol, which affects the
equilibrium as the duration of the transesterification reaction extends [35]. Therefore, the
optimal reaction duration was determined to be 2 h.

3.5. Catalyst Reusability

The reusability of CaO as a heterogeneous catalyst in the transesterification reaction
was investigated to assess its practicality and potential for large-scale biodiesel produc-
tion [47]. As shown in Figure 10, the catalyst exhibited consistent performance with a
yield exceeding 80% even after eight cycles of reuse. Thus, the prepared catalysts have
productive reusability, indicating that the hydration–dehydration of CaO has the potential
for large-scale production as a heterogeneous base catalyst for biodiesel production [33,48].
It should be noted, however, that some degree of catalyst deactivation was observed during
the reusability experiments, warranting further investigation in future studies.
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3.6. Comparison of FAME Production Using the Eggshell-Derived CaO

Table 3 presents a comprehensive overview of scientific experiments utilizing eggshell-
derived CaO as a catalyst for biodiesel production. These studies have explored various
aspects, such as preparation methods and catalyst preparation conditions, including calcina-
tion conditions and hydration processes. In comparison to the studies listed in Table 3, the
optimized catalyst employed in this project for the transesterification reaction of glycerol-
esterified oil demonstrated notable advantages. Firstly, it achieved a significant reduction
in catalyst loading, leading to a more efficient and economical process. Additionally, it
exhibited a relatively high yield of FAME within a more suitable temperature range, op-
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timizing the reaction conditions for biodiesel production. Furthermore, this optimized
catalyst presented remarkable improvements in its cycle life, ensuring enhanced reusability
compared to previous studies.

Table 3. Summary of the FAME production using the eggshell-derived CaO.

Catalyst

Feedstock

Reaction Conditions
Yield/

Conversion
(%)

Reusability
(Cycles) Ref.

Type Preparation
Method

Calcination
Temperature

(◦C)

Catalyst
Amount

(wt%)

Alcohol-to-
Oil

Molar/Mass
Ratio

Temperature
(◦C)

Duration
(h)

Loaded
CaO

(CuFe2O4)
Precipitation 800 Chicken fat 3.0 15:1 (molar) 70 4.0 94.52 (Y) - [49]

Bio-CaO Calcination 900 Sunflower
oil 3.0 9:1 (molar) 60 3.0 97.75 (C) - [30]

Supported
CaO (SiO2) Impregnation 900 Waste

cooking oil 8.0 14:1 (molar) 60 1.5 91.00 (Y) 2 [50]

Bio-CaO Calcination 800 Palm olein
oil 10.0 12:1 (molar) 60 2.0 94.10 (Y) - [51]

Bio-CaO Calcination 900 Palm oil 20.0 9:1 (molar) 60 3.0 94.49 (C) 4 [40]

Hydrated-
dehydrated

CaO

Calcination-
hydration-

dehydration-
calcination

1st—900
2nd—600

Waste
frying oil 5.0 12:1 (molar) 60 1.0 94.52 (C) 6 [33]

Hydrated-
dehydrated

CaO

Calcination-
hydration-

dehydration-
calcination

1st—900
2nd—800

Waste
cooking oil 2.5 12:1 (molar) 60 2.0 94.00 (Y) - [52]

Hydrated-
dehydrated

CaO

Calcination-
hydration-

dehydration-
calcination

1st—875
2nd—725

Glycerol-
esterified

oil
2.5 35 wt% 60 2.0 94.44 (Y) 8 This

Study

4. Conclusions

In this study, an approach that combined glycerol esterification and transesterifica-
tion reaction to produce biodiesel from high-acid-value oil was proposed. Hydration–
dehydration-treated eggshell-derived CaO catalysts were synthesized and applied in the
transesterification of glycerol-esterified oil. Using systematic optimization, the optimal
catalyst CaOH-60-6h was synthesized under calcination of 875 ◦C for 3 h, hydration of
60 ◦C for 6 h, and dehydration of 725 ◦C. Under the optimal reaction conditions (catalyst
loading of 2.5 wt%, alcohol-to-oil mass ratio of 35%, reaction temperature of 60 ◦C, and
reaction duration of 2 h), the yield of FAME of 94.44% was obtained. In addition, the
catalyst exhibited excellent reusability, maintaining a yield of FAME at approximately
80% even after eight reaction cycles. Using a comprehensive comparison, the optimized
eggshell-derived nano CaO catalyst demonstrates enhanced activity, superior reusability,
and milder reaction conditions. Overall, the technique is promising for biodiesel production
from high-acid-value oil, with great potential for replacing homogeneous base catalysts for
the large-scale production of biodiesel.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en16186717/s1, Figure S1: SEM images of fresh CaO cata-
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