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Abstract: The present paper introduces the formulation and development of a bilinear quadratic
control algorithm for Modular Multilevel Converters (MMCs), with a specific emphasis on achieving
internal energy stabilization and balance within the converter. A bilinear average model of the
MMC is employed, enabling the separation between the DC voltage and the voltage generated by
submodules. The algorithm proposed in this study is formulated using bilinear theory and is founded
on quadratic feedback control principles. The stability of the suggested controller is scrutinized
using a meticulous mathematical approach based on Lyapunov theory. Subsequently, the theoretical
findings are assessed using a comprehensive MMC switching model implemented in Matlab Simscape
Electrical. The utilization of a phase-shift PWM technique, accompanied by a sorting algorithm,
is considered in the study. Additionally, a comparison between the proposed bilinear controller
and a standard PI controller is conducted. The outcomes demonstrate that the proposed controller
effectively facilitates the regulation of circulating and AC currents, along with managing the internal
energy of MMCs. Consequently, this achievement makes a noteworthy contribution to the field, as
it introduces an innovative bilinear control approach capable of stabilizing all the state variables of
MMCs converters using a single control law.

Keywords: Modular Multilevel Converter; bilinear control; nonlinear control; Lyapunov theory;
Lyapunov stability

1. Introduction

The current electrical grid comprises a wide variety of energy generation sources
(such as hydro, nuclear, wind, or solar plants) connected to consumer centers, regardless of
distance [1]. Nowadays, the scenario has become even more complex because renewable
generation is intrinsically intermittent and unpredictable. Consequently, managing power
flow throughout the entire grid has become a challenge [2]. In this context, High Voltage
Direct Current (HVDC) technology offers technical advantages such as increased transmis-
sion capacities, reduced transmission losses, independence from the system’s frequency,
and greater cost-effectiveness compared to AC after a break-even distance [3].

The most recent advancement in the context of converters for HVDC is the Mod-
ular Multilevel Converter (MMC) topology. This topology combines the advantages of
Voltage Source Converters (VSCs) with increasing voltage levels and lower harmonic
production [4–6]. The three-phase MMC topology consists of two arms per phase: upper
(u) and lower (l) arms, referring to the leg of the converter that generates the voltage over
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and under the neutral point, as depicted in Figure 1. In each arm, there are N submod-
ules (SMs) connected in series, which are switched sequentially to produce N + 1 voltage
levels on the Alternating Current (AC) side of the converter. Each SM is a half-bridge
with one capacitor that stores energy, as shown in detail in the figure. Moreover, the SM
switching produces a harmonic current that circulates between the arms (icir,j), composed
of second-order harmonics as well [7,8]. The MMC has several advantages due to its mod-
ular design, including lower switching losses, lower harmonic contents in the output AC
voltage, and a smaller station footprint. These advantages give it potential for applications
in a wide voltage range [3,9].
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Figure 1. Three-phase MMC.

Significant progress has recently been made in MMC control [10–14]. Approaches
based on PI controllers for energy control, voltage oscillation reduction, and DC bus voltage
stabilization were proposed by [15,16]. Moreover, in [17], current and energy control,
including energy balancing, of a periodic bilinear time-varying state-space MMC model, is
achieved by a periodic linear quadratic regulator. In [18], a discrete-time bilinear model
of an MMC is developed and controlled using a sum-of-squares decomposition method.
Additionally, [19] proposes an analytical filter to eliminate the intrinsic oscillations in the
SM capacitor’s energy and to improve the dynamic response of the system. Similarly, in [20],
a proportional resonant controller aims to regulate the positive and negative sequences
of the circulating converter current. Controlling the internal dynamics of an MMC is
important to ensure the stability and robustness of the system. Some control schemes
that do not consider these internal dynamics may still stabilize the system asymptotically
thanks to the linearization in the modulation step. However, these control schemes are
less robust because they are prone to poorly damped oscillations on the DC side of the
converter. Therefore, it is required to control the MMC’s internal dynamics to prevent these
issues [9].

In [21], an improved average model is proposed, where a switching function model
represents each converter’s arm that accurately includes each SM’s capacitor dynamics.
Furthermore, in [22], a continuous model is used, where a variable-voltage source function
describes the arms. A commonality among these models is the increase in system order,
leading to heightened complexity in the proposed solutions.

The aforementioned control strategies are mainly based on cascaded control of the
arm’s energies and the arm’s current control loops. As an alternative to these approaches,
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the objective of this research is to propose a control strategy capable of individually control-
ling each of the state variables using a single control law (AC current, circulating current,
total energy, and energy distribution among all upper/lower arms). It also aims to provide
rigorous proof demonstrating that the proposed control strategy ensures asymptotic stabil-
ity within the entire region where a Lyapunov function holds (similar to the development
in [23] for low-voltage grids). This approach offers the advantage of enabling an explicit
computation of the operational region for the proposed controller. The main contributions
of this research are summarized as follows:

• a direct control strategy for all state variables of the converter (SM energies and
currents);

• a Lyapunov-based stability analysis to demonstrate the suitability of the proposed
scheme for asymptotically stabilizing the complex dynamics of the MMC using a
single control law.

An average model [18] was used to develop the control, while performance validation
was carried out using a detailed MMC switching model implemented in Matlab Simscape
Electrical. The switching model includes a low-level controller, which effectively achieves
SM voltage balancing. This low-level control has implemented a sorting algorithm based
on the standard technique described in [7].

2. Model of a Modular Multilevel Converter

An illustration of an MMC is shown in Figure 1. The N SMs connected in an arm
produce a voltage equal to vm,j, as shown in detail for upper arm phase a (vu,a). It is a
three-phase converter and each phase (j = a, b and c) is connected with a leg that consists of
upper and lower arms (m = u or l). There are two operational modes for the SMs; mode
OFF implies 0 V as output and mode ON entails VSM = VDC/N as output when the system
is well-balanced. It is considered that an inductor L is connected in series to each arm of
the MMC to limit the short-circuit current and high-frequency harmonics. Additionally, for
the average model, the SM switching losses can be represented by an equivalent resistor
R. On the AC side, an RL filter is considered per phase (Rc and Lc). Lastly, the voltage
at the Direct Current (DC) side is set as VDC/2 by the converter on the other side of the
transmission line, while on the AC side, v f ,j represent the voltage at each phase on the
Point of Common Coupling (PCC) with frequency ω.

Based on the MMC circuit shown in Figure 1, an average model can be defined for
each phase j by applying Kirchhoff’s voltage law as follows:

−VDC
2

= −vu,j − Riu,j − Li̇u,j + Rciv,j + Lc i̇v,j − v f ,j

(1)

j = a, b and c
VDC

2
= vl,j + Ril,j + Li̇l,j + Rciv,j + Lc i̇v,j − v f ,j (2)

The converter currents can be rewritten in terms of icir,j and iv,j in Equation (3), which
are the circulating and AC side currents, respectively [20].

icir,j =
iu,j + il,j

2
, iv,j = −iu,j + il,j (3)

Adding (1) and (2) and replacing Equation (3), one obtains the current dynamic (4) for
the phase j from the AC side.

i̇v,j = −
Req

Leq
iv,j +

vu,j − vl,j

Leq
+

2v f ,j

Leq
(4)
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where
Req = R + 2Rc, Leq = L + 2Lc

Considering Park’s transformation matrix, the system in dq0 reference is obtained.
Taking into account that, in the equilibrium of balanced systems, the zero component is
equal to zero, Equation (4) can be rewritten as system (5), which describes the AC current
state variables that should be controlled as follows:

i̇v,d =− Req

Leq
iv,d + ω · iv,q +

vu,d − vl,d

Leq
+

2v f ,d

Leq

i̇v,q =−ω · iv,d −
Req

Leq
iv,q +

vu,q − vl,q

Leq
+

2v f ,q

Leq

(5)

By subtracting (2) from (1) and replacing Equation (3), the circulating current dynamic
is obtained:

i̇cir,j = −
R
L

icir,j −
vu,j + vl,j

2L
+

VDC
2L

(6)

In the dq0 frame, (6) can be rewritten as system (7), where vu,0 + vl,0 = vd0 means the
DC component in the converter legs. Then, system (7) describes the circulating current
dynamics in the dq0 reference that should be controlled.

i̇cir,d =− R
L

icir,d + ω · icir,q −
vu,d + vl,d

2L

i̇cir,q =−ω · icir,d −
R
L

icir,q −
vu,q + vl,q

2L

i̇cir,0 =− R
L

icir,0 −
vd0
2L

+
VDC
2L

(7)

The operation of an MMC implies voltage changes in the SM’s capacitor. In this way,
SMs will be used to synthesize the output AC voltage and, as a consequence, to drive
the output currents. Based on this, it is possible to directly state that the voltage on SMs’
capacitor means a certain amount of stored energy per SM. In this paper, the total amount of
energy stored in the entire MMC is considered as a state, as well as the difference between
the energy stored on all upper and lower arms. In this approach, proposed by [18], using
the MMC’s average model, the total stored energy (Wh) is achieved by the converter power
balance, which represents the derivative of the converter’s energy.

Ẇh = −3
4

vu,div,d +
3
2

vu,dicir,d −
3
4

vu,qiv,q

+
3
2

vu,qicir,q +
3
4

vl,div,d +
3
2

vl,dicir,d

+
3
4

vl,qiv,q +
3
2

vl,qicir,q + 3icir,0vd,0

(8)

Similarly, the derivative of the energy balance (Wv) is defined as the difference between
the stored energy on upper and lower SMs, as shown below:

Ẇv = −3
4

vu,div,d +
3
2

vu,dicir,d −
3
4

vu,qiv,q

+
3
2

vu,qicir,q −
3
4

vl,div,d −
3
2

vl,dicir,d

− 3
4

vl,qiv,q −
3
2

vl,qicir,q

(9)
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Finally, considering the state vector as x = [iv,d iv,q icir,d icir,q icir,0 Wh Wv]T and the
controller input as u = [vu,d vu,q vl,d vl,q vd0 ]

T , the three-phase MMC can be represented as
the following bilinear form:

ẋ = Ax +
ρ

∑
k=1

Bkukx + bkuk + z (10)

where, considering ρ = 5 to represent a three-phase MMC,

A =



− Req
Leq

ω 0 0 0 0 0

−ω − Req
Leq

0 0 0 0 0

0 0 − R
L ω 0 0 0

0 0 −ω − R
L 0 0 0

0 0 0 0 − R
L 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0



B1 =


0 0 0 0 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 0
− 3

4 0 3
2 0 · · · 0

− 3
4 0 3

2 0 · · · 0



B2 =


0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0
0 − 3

4 0 3
2 0 0 0

0 − 3
4 0 3

2 0 0 0



B3 =


0 0 0 0 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 0
3
4 0 3

2 0 · · · 0
− 3

4 0 − 3
2 0 · · · 0



B4 =


0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0
0 3

4 0 3
2 0 0 0

0 − 3
4 0 − 3

2 0 0 0



B5 =


0 · · · 0 0 0 0
...

. . .
...

... 0 0
0 · · · 0 0 0 0
0 · · · 0 3 0 0
0 · · · 0 0 0 0


b1 =

[
1

Leq
0 − 1

2L 0 0 0 0
]T

b2 =
[

0 1
Leq

0 − 1
2L 0 0 0

]T

b3 =
[
− 1

Leq
0 − 1

2L 0 0 0 0
]T

b4 =
[

0 − 1
Leq

0 − 1
2L 0 0 0

]T
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b5 =
[

0 0 0 0 − 1
2L 0 0

]T

z =
[

2v f ,d
Leq

2v f ,q
Leq

0 0 VDC
2L 0 0

]T

3. Bilinear Control Theory

MMCs, as the majority of power electronic converters, can be represented by a bilinear
model [24], because their states multiply control inputs as in (10). In the following, we
consider a bilinear system with state variables x ∈ Rn and input u ∈ Rρ.

3.1. Bilinear System Stability—A General Case

There are several ways to study the stability of bilinear systems [25]; however, a direct
way to carry out this task is to apply standard Lyapunov theory (see [26,27]).

In this context, the goal is to find a positive definite Lyapunov function candidate V,
whose time derivative will be negative definite. In this way, the candidate Vg : Rn → R > 0
could be defined as a quadratic function as

Vg(x) = xT Px (11)

with a symmetric positive definite matrix P ∈ Rn×n, and we can compute the derivative of
the Lyapunov function:

V̇g(x) =(Ax +
ρ

∑
k=1

Bkukx + bkuk)
T Px

+ xT P(Ax +
ρ

∑
k=1

Bkukx + bkuk)

=xT [AT P + PA]x + 2xT P
ρ

∑
k=1

uk(Bkx + bk)

(12)

where

(Bkukx + bkuk)
T Px = xT P(Bkukx + bkuk)

Under the control law uk = −αs[Bkx + bk]
T Px, with a positive constant αs and the

further assumptions that for k = 1, ..., ρ, it is true that (Bkx + bk)
T Px 6= 0 ∀x 6= 0 and that

xT [AT P + PA]x ≤ 0 (see [28]), Equation (12) will enter a closed loop:

V̇g(x) ≤− φ||x||2 − 2αs

ρ

∑
k=1

(xT P(Bkx + bk))
2

V̇g(x) <0

(13)

where the constant φ is greater than or equal to zero.
Considering αs > 0, Lyapunov’s theory assures that the full system is asymptotically

stable.

3.2. Bilinear System Stability—Studied Case

Following [29], with the purpose of maintaining the state variable x on a desired

operation point x̄, we perform a change of variables x
4
= x̃ + x̄, and u

4
= ũ + ū.



Energies 2023, 16, 6713 7 of 23

Applying the change of variables in Equation (10), one obtains (14):

˙̃x + ˙̄x = A(x̃ + x̄) +
ρ

∑
k=1
{(ũk + ūk)(Bk(x̃ + x̄) + bk)}+ z (14)

which can be rewritten into two parts, where the input reference values (ūk) on the equilib-
rium can be defined as

˙̄x = Ax̄ +
ρ

∑
k=1

ūk(Bk x̄ + bk) + z = 0 (15)

and then

˙̃x = Ax̃ +
ρ

∑
k=1

ūkBk x̃ +
ρ

∑
k=1

(Bk x̃ + Bk x̄ + bk)ũk (16)

The evolution of the error states is analyzed by the Lyapunov function and its deriva-
tive:

V(x̃) = x̃T Px̃ (17)

V̇(x̃) = x̃T(ÃT P + PÃ)x̃︸ ︷︷ ︸
1st Term

+

+ 2[
m

∑
k=1

ũk(Bk x̃ + Bk x̄ + bk)]
T Px̃︸ ︷︷ ︸

2nd Term

(18)

where Ã = A + ∑
ρ
k=1 ūkBk

ũk = −αk[Bk x̃ + Bk x̄ + bk]
T Px̃ (19)

uk = ũk + ūk (20)

Remark 1. Because of the MMC model characteristics (shape of A matrix), not all state variables
are present in the first part of Equation (18). In this way, this part of the Lyapunov function
derivative would only be negative semi-definite. As a consequence, its 2nd part will provide the
remaining states.

Acknowledging these facts, the following procedure based on Lemma 1 of [30] is nec-
essary to design the controller and access the stability properties of the closed loop system.

Matrix Ã ∈ Rn×n has two zero eigenvalues, λn−1(Ã) = 0 and λn(Ã) = 0, such that
Ã admits the Jordan decomposition Ã = UΛU−1, where U ∈ Cn×n is non-singular and
Λ is a diagonal Jordan matrix of Ã. Considering ΛR := diag(<e(Λi)) for all i ∈ [1, n− 2],
then since <e(λi) < 0 ∀ i ∈ [1, n− 2], there exists a matrix ΓR ∈ Rn−2×n−2, symmetric
and positive definite, such that ΓRΛR + ΛT

RΓR = −Φ, where the diagonal matrices Φ ∈
Rn−2×n−2 and Γ ∈ Rn×n are positive definite, and constants Γ1, Γ2 > 0 as follows:

Φ :=

 Φ1 0 0

0
. . . 0

0 0 Φn−2

 (21)
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Γ :=



1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 0 Γ1 0

0 0 0 0 Γ2


(22)

We solve the equation ΓΛ + Λ∗Γ = −Q, where

Q :=



Φ1 0 0 0 0

0
. . . 0 0 0

0 0 Φn−2 0 0

0 0 0 0 0

0 0 0 0 0


(23)

Then, P = U−TΓU−1 is Hermitian positive definite, since Γ is symmetric positive
definite and U−1 has full rank (see [30]). That implies that V(x) is a real positive definite
function. Next, the derivative of the Lyapunov function V̇(x̃) is evaluated as

V̇(x̃) = −
n−2

∑
c=1

Φc||x̃c||2+

− 2(
ρ

∑
k=1

αk((Bk x̃ + Bk x̄ + bk)
T Px̃)2)

(24)

with x̃c, Φc, c = 1 . . . n− 2, the n− 2 error states not associated with a zero eigenvalue and
their exponential decay rates, and where we can show that for typical values ∑

ρ
k=1 αk((Bk x̃+

Bk x̄ + bk)
T Px̃)2 6= 0 ∀x̃ 6= 0, and as a consequence, V̇(x̃) < 0, ∀x̃ 6= 0.

Theorem 1. The MMC converter described by the system of equations (10), under the bilinear
control law described in Equation (19), and with desired equilibrium point satisfying Equation (15),
and the assumption that for k = 1, ..., ρ, it is true that (Bk x̃ + bk)

T Px̃ 6= 0 ∀ x̃ 6= 0, will
be asymptotically stabilized towards this equilibrium point, inside the whole domain where the
assumption is valid.

Proof. The proof is standard and is obtained by virtue of the positive definite Lyapunov
function (17) of the error system, in which closed-loop derivative (24) is negative definite.
Then, by Lyapunov theory, the considered equilibrium point is asymptotically stable.

Remark 2. It is important to remark that (24) is negative definite for any tuning parameter value
αk > 0 (including all αk equal to one single value). These parameters indeed set the speed of
convergence of the terms αk((Bk x̃ + Bk x̄ + bk)

T Px̃)2 → 0. The larger those values, the faster the
overall system will converge to its equilibrium point, in a trade-off with the control efforts. It is then
necessary to proceed with an optimization strategy for this tuning, even though any chosen value
will keep the system stable. Such an optimization study will be carried out in future works.
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In order to use the bilinear control defined above, the references for the state variables
and the steady-state inputs must be derived from the desired outputs. Consequently,
Equation (15) is solved to obtain ū, as shown in (25) for c ∈ [1, n− 2].

ū = γ x̄c + ζ (25)

γ =



Req
2 −ω

Leq
2 −R w 0

ω L+Lc
2

Req
2 −wL −R 0

− Req
2 ω L+Lc

2 −R ω 0
−ω L+Lc

2 − Req
2 −ωL −R 0

0 0 0 0 −2R



ζ =
[ −v f d −v f q v f d v f q vDC

]T

Following the AC active and reactive power definitions in Equations (26) and (27)
below, the desired values for the AC currents are defined in Equations (28) and (29).

Pe =
3
2

v f ,div,d (26)

Qe = −
3
2

v f ,div,q (27)

x̄1 = īv,d =
2P̄e

3v f ,d
(28)

x̄2 = īv,q =
2Q̄e

3v f ,d
(29)

Since the components dq of circulating current in an MMC do not produce useful
power, and in addition, they increase the converter losses, they should be minimized. For
this reason, their references are taken as zero:

x̄3 = īcir,d = 0, x̄4 = īcir,q = 0 (30)

Reference for zero component of the circulating current comes from the equilibrium
point ( ˙̄x = 0) of Equation (8), replacing (25) and (30) to obtain Equation (31) as follows:

x̄5 = īcir,0 =
VDC −

√
V2

DC − 4R(x̄1ū1 + x̄2ū2)

4R
(31)

One of the roots is unfeasible since it brings the MMC to a very high dissipating mode,
so the other root is chosen.

The reference to SM energy is linked with SMs’ capacitor voltage, and this can be
expressed as in the following equation:

VDC − 2Ricir,j − 2Li̇cir,j = 2NVSM (32)

applying Park’s transformation in Equation (32), the equilibrium point for capacitors’
voltage is

VSM =
VDC − 2Rx̄5

2N
(33)

Then, the stored energy per SM, with capacitor CSM, can be shown as

WSM =
1
2

CSMV2
SM (34)
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By Equation (34), considering all active SMs, the total energy of the converter is obtained:

x̄6 = W̄h = 6 N Wc =
3CSM

4N
(VDC − 2Rx̄5)

2 (35)

Because of the symmetric shape of converters, upper and lower arms should have the
same stored energy, Wup

c and W low
c , respectively, during steady state, so zero is chosen as

the reference for the energy balance:

3N Wup
c − 3N W low

c = x̄7 = W̄v = 0 (36)

The state reference and the stability condition defined above fuel the simulation
test section.

4. Validation of the Proposed Control Strategy

The dynamic performance of the proposed bilinear control strategy applied to an
MMC switching model (shown in Figure 1) was verified by computer simulations using the
Matlab Simscape Electrical environment. The system’s parameters and the controller gains
are presented in Table 1. The feedback gains were chosen by a trade-off between speed
of response and control effort. In this way, the controlled variables could have the speed
dynamics of classical power systems. As explained in Remark 2, any positive value chosen
for the parameters αk assures the stability of the equilibrium point. An optimization study
would be necessary to set optimal values, which will be carried out in future works. In the
present case, all parameters were set to the same value, with already good performance
(even if not an optimal performance).

Table 1. Parameters of simulated system and bilinear control’s gains.

Parameter Value Parameter Value

SMMC 50 MVA α1 0.5

VAC 30 kV α2 0.5

VDC 180 kV α3 0.5

Lc 5 mH α4 0.5

L 14 mH α5 0.5

Rc 0.03 Ω Γ1 1

CSM 3 mF Γ2 1

Freq 60 Hz Φc 1

R 0.5 Ω N 20

The performance of the proposed bilinear control strategy for the MMC was evaluated
through step changes in the converter operating point of variables such as active and
reactive power (Pe and Qe), total stored energy (Wh), and on the energy balance from the
upper and lower arms (Wv). The tests were carried out in three-step changes: for active
and reactive power, for total stored energy, and for the energy balance. For comparison
purposes, a PI control based on [16] was implemented. The PI control was tuned according
to [31]. The diagram in Figure 2 summarizes the implementation of PI (white blocks) and
bilinear (black blocks) controllers, while gray blocks are common for both controllers.
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Figure 2. PI and bilinear control diagram.

4.1. Step Changes on Active and Reactive Power References

The performance of the proposed bilinear control strategy for the MMC was first
evaluated through step changes on active (Pe) and reactive power (Qe). Active and reactive
power are followed by state variables in Figure 3. The system is initialized, transmitting
zero power.

The considered controllers, bilinear, and PI, provide to the states icird and icir0 different
references. So, for those two states, it is written Ref. Bilinear to indicate the bilinear
controller’s reference and Ref. PI to identify the PI’s references. The remaining states have
the same references, indicated as Ref.

The second and third graphics represent direct (iv,d) and quadrature (iv,q) AC currents.
These two state variables have a direct relation with the required power, shown in the
first graphic.

At t = [0.05 0.15 0.25 0.45 0.55] s, the changes in the active power reference occur. In
this test, the bilinear and PI controllers were capable of tracking the iv,d reference in less
than 4 ms; meanwhile, state iv,q is lightly affected by the changes in Pe. The iv,q follows
the change that occurs in reactive power at t = [0.1 0.30 0.40] s. It can be observed that
the controller was capable of bringing iv,q to its reference īv,q, for all operating points.
Furthermore, for both controllers PI and Bilinear, it is possible to see the coupling effect
between iv,d and iv,q, while the change in one state implies a transient deviation (from the
reference) in the other.

Concerning the state variable icir,d, there are distinct references for each controller as a
result of each implementation. Under PI, the reference changes from zero for each active
power step. However, PI control drives the state variables to their references. In addition
to that, Bilinear keeps icir,d in the īcir,d = 0. The controllers hold the quadratic component
(icir,q) in the desired reference for most of the operating points. When Qe changes from
positive to zero and negative values, the state variables present a slower response under
bilinear control (from t = 0.30 s).

Directly related to the amount of DC power that is transferred, changes in icir,0 (6th
graph) follow the changes in iv,d (directly linked with AC active power). Here again, the
control also performs well and the PI time response is around 100 ms and around 10 ms for
bilinear. In the seventh graph, the total converter energy is shown, and it swings for each
new power operation change. It is clear that this state is slower than the others, as it takes
around 200 ms to track the reference again under bilinear control.

The eighth graph shows the energy balance between the upper and lower arms.
Controls keep the state variable around the reference, however with a slow speed of
convergence. Under bilinear control, energy balancing (Wv) requires more than 150 ms to
track its reference, while at the same time, under PI control, state variables require different
speeds of convergence according to the operation points.
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It is important to highlight that Figure 3 summarizes a number of operating points in
a matter of 0.7 s to explore possible control constraints.

Table 2 summarizes the comparison control performance between the proposed bilin-
ear control and the standard PI control. Other important control aspects such as stability,
region of attraction, parameter tuning, and robustness are described next, where the bilinear
control presents great advantages compared with PI control.

Table 2. Performance comparison between bilinear and PI control.

PI Bilinear Comments

ivdq

Larger overshoots

and oscillations
Smaller overshoots

Similar settling

time for both

icircdq

Good reference tracking

(nonzero reference)

Steady state errors,

but closer to zero
Similar oscillation

icirc0

Very good track

of reference
Larger oscillations

Different references

for each controller

Wh
Very good track

of reference
Steady state errors

Bilinear with

oscillating dynamics

Wv Larger overshoots Smaller overshoots
Both present steady

state errors

4.2. Varying Total Converter Energy

Figure 4 aims to demonstrate the controllers’ management over the converter energy.
In the second graphic, iv,d is shown, followed by iv,q, icir,0, Wh, and Wv.

For this test, the converter operating point was set to 70% of the nominal power, at
0.05 s. The converter energy reference was changed by ±10% from the nominal value
(3.6 MJ) in this test. The seventh graphic shows the total converter energy (Wh), where
either bilinear or PI controllers drive the energy to its reference value. The tracking process
takes less than 50 ms for both controllers. The speed of convergence can be modified by
modifying the controller gains according to the grid requirements, respecting the converter
capability curve. The tracking process of total energy (Wh) implies an overshoot in state
variable icir,0 (sixth graphic), because this state variable handles the DC output power,
which is directly linked with stored energy. The PI behavior can also be regulated by
gain tuning.

4.3. Disturbance in Energy Balance

One of the goals of the proposed control strategy is to keep the energy balance be-
tween the upper and lower arms of the MMC (Wv). On the previous tests (four-quadrant
operation), Wv was kept around its reference value (W̄v = 0). Although the MMC control
strategies in general aim at keeping Wv = 0, it would be interesting to know how the
operation with Wv 6= 0 would influence the proposed control strategy and the behavior
of the considered states. With this purpose, a disturbance is considered as an imbalance
between upper and lower converter arms. A positive value of Wv means that there is more
energy in the upper arms than in the lower, and a negative value means more energy in the
lower arms. The eighth graphic in Figure 4 shows Wv. Each state reacts in a distinct way,
as follows:
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Figure 3. Bilinear and PI controllers in four-quadrant operation.
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Figure 4. Bilinear and PI controllers with energy step changes.

• The fourth and fifth graphics show circulating current icir,d and icir,q. Their behaviors
are proportional to changes in Wv, more pronounced in icir,d than in icir,q. Furthermore,
to increase the upper arms’ energy (at t = 1 s), circulating currents icir,dq become



Energies 2023, 16, 6713 15 of 23

negative (which means a change in the current direction), and to balance upper and
lower energies, currents become positive (at t = 1.5 s). They also become positive to
balance lower arms at t = 0.9 s. PI and bilinear have similar performance.

• Under the bilinear controller, state variables icir,0 and Wh show overshoot for each
change in Wv, while under PI, these changes do not produce overshoot.

• Lastly, the control response for an unbalanced condition of Wv is shown in the eighth
graphic. It shows that bilinear control reacts at around 100 ms to drive the state to a
desired reference, while PI presents a faster response.

The test presented above pointed out for bilinear control that circulating current
components, icir,dq0, and total energy, Wh, actuate to manage the energy flow between the
upper and lower converters’ arms.

4.4. Robustness Analysis

A set of scenarios are created where parameter uncertainties are considered. For each
scenario, one parameter (R, L, or CSM) assumes ±10% or ±20% from its nominal value.
Meanwhile, the bilinear controller is computed using the parameters’ nominal values. At
t = 0.01 s, the operating point is changed.

Figures 5 and 6 consider uncertainties in arm resistance R and inductance L. There,
one may see that the bilinear control still keeps stability with a very small difference from
the nominal value, even with important parameter errors. Considering the variation in re-
sistance, the controller was able to track the references, except for state Wh. One explanation
for this result is that reference calculation for icirc0 and Wh, Equations (31) and (35), is based
on resistance value. For this reason, the controller is tracking a slightly different reference.

In the case of errors in L, one may observe a very small ('1%) stationary error in
ivd and Wh; meanwhile, the other states are perfectly driven to their references in all
proposed scenarios.

For C uncertainties (Figure 7), the bilinear controller tracked the references for all
states well. It should be highlighted that the capacitor voltage’s initial condition is the same
for all the scenarios; therefore, the initial energy in each sub-module varies according to its
capacitance value. That is the reason that the energy initial condition in Figure 7 is different
for each value of C. However, it is interesting to note that the proposed controller steered
Wh to its reference for these different initial conditions. Similar behavior is observed for the
scenario when the DC voltage is different than the nominal value; see Figure 8.

Figure 9 presents state variables facing errors in AC voltage. There is a time-varying
response during transitory, with a fast convergence to the desired value. The states ivd
and ivq presented minor stationary error. This can be explained by the calculation of their
references (īvd and īvq), Equations (28) and (29), which takes into consideration the nominal
values of the AC voltage.

4.5. SM Voltage Balancing

Figure 10 shows the voltage balancing of phase C lower arm sub-modules. Figure 10a
shows that the voltage average value is almost constant during a 2-second simulation.
Figure 10b shows in detail the voltage on each sub-module. It is noteworthy that the
proposed controller regulates the total energy and energy balance between the lower and
upper parts of the converter. The voltage balance among sub-modules is performed by the
sorting algorithm after the PWM modulation stage. This sorting algorithm [7], however, is
not a result of the present paper.

These simulations used a simulated model which is much more realistic than the one
used for control design. Nevertheless, the controller was able to stabilize the system to its
reference, as expected from the theoretical analysis. This illustrates the robustness of the
proposed scheme.
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Figure 5. The system state over variation of parameter R with bilinear controller.
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Figure 7. States over variation of parameter C with bilinear controller.
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Figure 8. Fluctuation of DC voltage with bilinear controller.
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Figure 9. Error on AC voltage with bilinear controller.
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Figure 10. SMs’ voltage balancing for lower arm of phase C.

5. Conclusions

This paper presents a bilinear control for an MMC converter, which directly controls all
its state variables, AC, DC, and circulating currents and MMC energy, using a single control
law. A rigorous mathematical proof is given for its stability, which is based on Lyapunov’s
theory. The controller provides asymptotic stabilization for the three-phase MMC, and
the use of a Lyapunov function implies formal verification of stability and an explicit
region of attraction for the considered model. Moreover, a sensitivity analysis is shown,
presenting very good robustness properties for realistic parameter errors. In addition,
the small number of tuning parameters, and the existence of the Lyapunov function as a
guideline, make its tuning much easier than for a set of cascaded PIs, which is the standard
in industry.

A bilinear control technique is simulated using a detailed switching model in the Mat-
lab Simscape Electrical environment. The theoretical and simulated results show that the
proposed controller suits MMC time response and overshoot requirements, and provides
an effective trade-off between power and energy control in the converter. Moreover, the
energy management provided by the bilinear controller opens the way for new ancillary
services for grid support, both for AC and DC grids, such as fast frequency response or
synthetic inertia.

Comparing the bilinear control with respect to standard PI control, there is a rigorous
stability proof for the first, with a well-established operating range, which is not true for PI.
In the simulations, the controllers showed similar performance and robustness, with an
improvement in the case of the bilinear control. Future work will use experimental setups
to better investigate the properties of this control system. Likewise, optimization of the
control gains will be investigated to further improve the performance of the controller.
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