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Abstract: In the context of the global drive towards sustainability and rapid integration of renewables,
electric vehicles, and charging infrastructure, the need arises for advanced operational strategies
that support the grid while managing the intermittent nature of these resources. Microgrids emerge
as a solution, operating independently or alongside the main grid to facilitate power flow manage-
ment among interconnected sources and different loads locally. This review paper aims to offer
a comprehensive overview of the different control strategies proposed in the literature to control
microgrids with electric vehicle charging stations. The surveyed research is primarily categorized
according to the employed control algorithms, although distinctions are also made based on defined
microgrid architecture, utilization of specific power sources, and charging stations configurations.
Additionally, this paper identifies research gaps in the current research. These gaps encompass the
use of oversimplified models for charging stations and/or renewable sources operation, limited
simulation time periods, or lack of experimental testing of proposed approaches. In the light of these
identified shortcomings, this manuscript presents recommendations for guiding future research.
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1. Introduction

Top topics of our lives nowadays include decarbonization and environmentally
friendly lifestyles. This movement towards sustainability also impacts the operation of
electrical power systems, presenting various challenges for their efficient management and
control. As the world strives to integrate a growing proportion of renewable energy sources
and reduce reliance on fossil fuels, traditional power grids encounter stability issues due to
the fluctuating nature of renewables. Moreover, changes in energy consumption patterns
among consumers introduce added complexity to the equation.

To ensure a seamless and sustainable integration of renewable energy sources into
the power grid, addressing these challenges is of paramount importance. Innovative
approaches, such as demand-side management and advanced grid control algorithms, hold
the key to adapting power systems to the dynamic nature of renewable energy generation
and consumer demand. In this regard, the concept of the smart grid has emerged, aiming
to create a reliable, efficient, and sustainable energy infrastructure by leveraging modern
communication, automation, and information technologies [1].

Microgrids, as a specialized form of smart grid, have gained popularity in recent
years. These autonomous and localized energy systems operate independently or in
coordination with the main grid to generate, distribute, and manage electricity for specific
geographic areas of interconnected consumers [2]. With their ability to function as self-
contained entities, equipped with their own energy resources, control mechanisms, and
often energy storage capabilities, microgrids offer promising solutions for energy resilience
and sustainability.

Managing microgrids effectively is critical to realizing their full potential. By ensuring
efficient coordination of energy resources and controlling energy flow, microgrids can
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effectively balance supply and demand, minimize energy waste, and optimize energy
consumption patterns. Furthermore, advanced control strategies and tools are required to
guarantee the reliability and resiliency of microgrids, especially in light of their growing
association with the electric vehicle (EV) revolution.

The rising popularity of electric vehicles as a means to reduce carbon emissions in the
transportation sector introduces a new dimension of complexity to the energy landscape [3].
The increasing number of EVs and the time windows of their charging sessions significantly
impact the operation of power systems, necessitating more sophisticated control strategies
to align the charging patterns of EVs with grid conditions. This close interplay between
electrical power systems and the transportation sector underscores the need for advanced
control measures to ensure the seamless integration of EVs into microgrids, safeguarding
stable and resilient power supply to consumers.

Numerous literature reviews address the charging of electric vehicles. In Savio Abra-
ham’s work [4], the authors present connector types, architectural configurations of charg-
ing stations, and control algorithms proposed for charging control. However, the role of
the charging station in the electric power systems or microgrids is usually absent. There
are also reviews for specific control algorithms. Nimalsiri [5] undertakes a comprehensive
evaluation of decentralized control algorithms, while [6] focuses on hierarchical control
algorithms. However, both [5,6] neglect the critical influence of the charging station on grid
operation—be it conventional or microgrid.

There are also reviews that deal with the role of EV charging stations within the
electrical grid. The review in [7] focuses on EVs and their charging stations in energy
and transportation systems. That review also addresses market-driven charging station
management. However, [7] fails to address the effects of charging stations on microgrid
stability and operation. Similarly, the study in [8] deals with the optimal management
strategies in grids with electric vehicles, but the specifics of microgrids with EV integrations
are omitted.

There are also reviews that focus on the microgrid’s operation but most of these studies
neglect the effects of EV charging stations. Vadi’s work [9], for instance, critically evaluates
control optimization methods for transient stability in microgrids, yet this work sidesteps
exploration of how EV charging stations affect microgrid operations. Likewise, [10] dissects
reinforcement learning methods in the power management of grid-tied microgrids as a tool
more adaptive to stochasticity in such grids. However, there is no information about the
effect of EV charging stations on microgrid operation or on the islanded microgrids’ control
algorithms. On the other hand, the review in [11] studies the role of EVs in the microgrid.
The authors in [11] deal with design, control, energy management, and protection in DC
microgrids for EV charging. A review of AC or hybrid microgrids is missing, and even
more so, the primary focus of these microgrids is to supply required power to the charging
station and coverage of other loads is neglected. There is also a review in [12] that studies
the role of the so-called fleet operator that can control charging groups of EVs. However,
independent usage of personal EVs is neglected.

This review aims to discuss the role of EV charging stations in microgrid operation
more generally. This paper presents studies with different microgrid architectures and
various control algorithms, as well as the different roles of EV charging stations in mi-
crogrid operational strategies. The main contribution of this paper is the definition of
the current research shortcomings and the research gaps that should be addressed in fu-
ture research to enable the implementation of such advanced operational strategies in
real-world applications.

The rest of this paper is organized as follows: Section 2 presents the review methodol-
ogy and statistics of the presented research studies. Next, Section 3 presents the research
studies that focus on power control in the microgrids with charging stations. Similarly,
Section 4 discusses the studies that deal with voltage control and Section 5 focuses on
the research papers covering the economic operation control of microgrids. The studies
with other control strategies than the previous ones are presented in Section 6. Section 7
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discusses the research gaps in presented manuscripts and defines recommendations for
future work. Section 8 concludes the paper.

2. Review Methodology and Statistics

The compilation of scientific papers for this review article was based on searching
for certain keywords within scientific databases. The keywords applied for the search
in scientific databases were “microgrid”, “control”, “charging”, and “station”, thereby
ensuring the inclusion of articles that incorporated any of these terms. The scientific
databases used for the search included Web of Science, Scopus, and IEEE Xplore with the
selected articles discussing the topic of microgrid control with charging stations for electric
vehicles. During the selection of relevant literature, we followed a similar process to the
one presented in [13], with the literature selection going through several steps. In the initial
step, the aforementioned keywords were utilized for search in the scientific databases. The
second step involved reading the titles and abstracts of the articles obtained from the search
in the scientific databases. This process led to a compilation of a set of literature for each
scientific database. Subsequently, the individual sets of literature were merged into a single
set from which duplicate papers were removed. The final step in the literature selection
process entailed the full-text reading of the articles, based on which the final set of literature
utilized for this review article was compiled. The final set of publications presents, from the
author’s perspective, the most relevant articles to the topic discussed in this review article.
To help with the discussion and division of reviewed literature, a number of statistics were
made and are shown in this section.

2.1. Reviewed Publications

The final set of publications consists of 70 papers which were published in journals as
well as papers from conferences. The publications selected for this review span from the
year 2010 to the present day. In recent years, there has been an increase in the frequency
of publications related to microgrid control with charging stations for electric vehicles.
This recent increase in interest in this topic may be caused by the increase in the number
of EVs as well as in the number of corresponding charging stations, or as a response to
many initiatives planned as a tool to reduce greenhouse gas emissions. The frequency of
selected publications through the years is shown in Figure 1. The graph representing the
distribution of journal papers and conference papers among the final set of papers is shown
in Figure 2 where it can be seen that the majority of papers discussed in this review are
from journals. Figure 3 shows the distribution of different publishers among the selected
set of papers, as well as between journals and conference papers. From this graph, it is
apparent that most of the journal papers in our selection are from ELSEVIER and MDPI,
while almost all conference papers are from IEEE. It is important to note that the paper
selection was conducted at the end of the second quarter of 2023.
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2.2. Types and Architectures of Microgrids

Research in the utilization of microgrids has in recent years gained more interest
due to the development and utilization of renewable energy sources (RESs), as well as
electric vehicle charging stations. Utilization of microgrids provides a flexible solution
for the implementation of these facilities and at the same time provides space for the
implementation of novel control structures. Microgrids are typically divided into three
types based on the characteristic of currents and voltages used by the loads in the microgrid.
These types are AC microgrid, DC microgrid, and Hybrid microgrid. The architecture
of a microgrid is based on the interconnection between the distribution network and the
microgrid. The most common architectures in literature are grid-connected microgrids and
islanded microgrids. The distribution of the different types and architectures of microgrids
in our final set of papers is shown in Figure 4.

In the case of microgrid types (Figure 4a), the majority of microgrids were operated
as DC microgrids, and in the case of microgrid architectures (Figure 4b), the majority of
microgrids were operated in grid-connected mode. In a few of the papers [14,15], the
authors tested their control mechanisms in grid-connected as well as in islanded mode
to prove the reliability of their systems. During the full read of some papers, it was not
clearly stated or defined what type of microgrid or architecture of microgrid was used in
these papers. Therefore, in these cases, we used the abbreviation of the phrase “not defined
(n.d.)” to visualize these papers in graphs.
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2.3. Energy Generation and Storage in Microgrids

One of the advantages of microgrids is the possibility for implementation of comple-
mentary power sources to enable the independent operation of the microgrid system from
the utility grid. This possibility has enabled increased research in the area of microgrid
implementation. Complementary power sources used in microgrid systems are either
renewable energy sources such as photovoltaic systems (PV), wind turbines (WT), fuel cells
(FC), and small hydro generators (SHG), or conventional energy sources powered by fossil
fuels such as diesel generators (DG), microturbines (MT), and combined heat and power
(CHP). The utilization of renewable energy sources is the most common method utilized
for independent energy generation where solar and wind power are most commonly used.
RESs also provide a possibility to reduce greenhouse gas emissions associated with energy
production. The distribution of different energy sources used in the final set of review
papers can be seen in Figure 5. From the final set of papers, only three papers did not utilize
RESs, as it is possible to see from Figure 5a representing the distribution of individual RESs
among the final set of papers. On the other hand, conventional energy sources (CESs) were
not utilized in 55 papers from the final set. The rest of the papers either had one or more
RESs or CESs. In the case of one paper, the authors have not stated clearly the type of RES,
so therefore to represent this case in a graph we used the same abbreviation “n.d.” as in the
previous section. To represent a situation when no RESs or CESs were used in a discussed
paper, the abbreviation of the phrase “not present (n.p.)” is used to visualize these papers
in graphs.
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Another important part of microgrids in combination with RESs is the use of energy
storage systems. Energy storage systems (ESS) are used primarily for the storage of excess
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power produced by the RESs and the subsequent use of this energy to support microgrids
themselves, or individual loads placed in microgrids, or to provide support to the utility
grid. In addition to the power flow exchange, the storage system can be used for power
quality or microgrid stability control. The most common storage system is the battery
storage system (BSS) which was used in 48 papers as shown in Figure 6. Other storage
systems used in the literature are hydrogen storage systems (HSS), supercapacitors (SC),
and fuel cell energy storage (FCES). Similarly, for complementary power sources, not all
review papers have energy storage systems implemented in their respective microgrids.
Therefore, to represent these papers in graphs, we used the abbreviation “n.p.” as defined
in a previous section.
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2.4. Loads and Charging Stations in Microgrids

There has been a significant increase in the adoption of electric vehicles in recent
years as a result of international efforts to reduce greenhouse gas emissions and promoting
sustainable transportation solutions. An increase in the numbers of electric vehicles conse-
quently leads to an increase in the numbers of charging stations [16]. To prevent problems
in electrical networks caused by the irregular nature of charging station consumption
(electric vehicles charging) or to exploit advantages of energy transfer between electric
vehicles and charging stations (vehicle to grid (V2G) concept), installations of electric
vehicle charging stations within microgrids are being used and researched. In reviewed
papers, different charging stations were mentioned and used in the control structure of
microgrids. The distribution of different types of charging stations is shown in Figure 7b.
The most used charging station type in reviewed papers was the AC charging station (CS),
followed by the fast charging station (FCS), and the third most used type was slow DC
charging. In 12 reviewed papers, the type of charging station was not clearly defined,
and therefore to represent these cases we again use the abbreviation “n.d.”. Additionally,
charging stations with other loads (Figure 7a) were also implemented into the microgrids
in a total of 40 papers from the final set. These loads represent residential loads in the form
of houses or apartment buildings, workplace loads, or industrial loads that were connected
to the discussed microgrids.
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2.5. Control Strategies in Microgrids

The utilization of a microgrid system allows for implementing various control strate-
gies that can improve microgrid operation, increase the utilization RESs, and maximize the
economic benefit or other aspects associated with a microgrid system utilization. During
the literature review, we have identified three major control objectives most frequently oc-
curring in the literature. These objectives are power control, voltage control, and economic
operation control in addition to other less frequently occurring control objectives (frequency
control, current control, etc.). Figure 8 shows the distribution of different control objectives
amongst the final set of papers discussed in this review. It is important to note that in some
papers multiple control objectives were discussed and implemented to increase operational
control or to compare multiple control strategies. A closer discussion of each major control
objective is presented in the following sections.
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3. Power Control Strategies of Microgrids

Implementation of power control brings a number of possibilities which can improve
microgrid operation. Power control in microgrid operation can improve the utilization of
energy sources within the microgrid, minimize the dependence on the utility grid, or even
manage the power flow. Control objectives used in combination with power control are
discussed in the following subsections.

3.1. Power Flow Control of Microgrids

Power flow control strategy represents a method used for the optimal distribution of
power between energy sources connected to the microgrid, utility grid, ESS, loads, and EVs
connected to the microgrid through CS. Optimal distribution of power can improve the
power balance, power quality, or stability of a microgrid, and in a microgrid with electric
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vehicle charging stations (EVCS) it can ensure that the EVs connected to the CS are charged
to an optimal level. To achieve this, researchers are using different control methods or
control algorithms, as well as different configurations of microgrid systems.

Most of the reviews studies with power flow control are focused on DC microgrids. In
Sayed’s work [17], the authors focused on energy management for a DC microgrid system
in islanded mode to control power distribution from different RESs to EVs connected to the
CS within a microgrid. Charging of connected EVs is regulated based on the amount of
power produced from RES and energy stored in battery storage. Power flow management
with a fuzzy logic controller in [18] is used for voltage stabilization in a DC microgrid for
EVCS. The proposed controller is used to coordinate power flow between the PV power
plant, BSS, and the utility grid based on variations in EVCS demand and intermittent power
generation. The fuzzy logic controller was also used in [19] for a supervisory control system
to achieve power balance between the energy supply and EVCS within a DC microgrid.
In García-Triviño’s work [20], a fuzzy logic controller is used for a decentralized energy
management system to control power flow, bus voltage, and battery storage state of charge.
The DC microgrid proposed in this paper consisted of FCS, PV system, and battery energy
storage with connection to the utility grid. The control proposed in [20] was used to control
the power flow of a PV system, BSS, and utility grid to supply the desired amount of power
for the charging of EVs connected to FCS. Whit proposed how control of the FCS was able
to work in a stand-alone mode for extended time periods. In Abraham’s works [21,22],
a strategy for the power management of reliable power supply was introduced. The
proposed power management is based on fuzzy logic control, which directs bidirectional
power flow between EVs, BSS, and utility grid. Vehicle-to-vehicle (V2V) concept was used
in these papers to provide share power between EVs when necessary. In Naik’s work [23],
a smart energy management strategy is proposed to tackle issues of intermittent nature of
PV power generation and EV load as well as ensure sustainable power flow control for EV
charging stations connected to DC microgrids. Presented energy management used the
control of BSS and small hydro generators to meet the peak EV load demand as well as to
reduced dependency on the utility grid. Energy management system in [24] is presented for
a hybrid system of DC microgrid with multi-battery storage system, a grid-tie inverter with
a PV installation, and FCS. The energy management system in this paper is responsible for
energy exchange control with the utility grid as well as for allocating the battery strings to
different components of the hybrid system. String allocation control must ensure that the
battery connected to this string can successfully meet the EV charging demand. Paper [25]
presents an energy management strategy for the supply infrastructure of EVCS placed in a
DC microgrid. The control system aims to control energy exchange between microgrid and
utility grid and ensure reliable service to the users from cost-effective energy supply to EVs.
The control system also controls charging/discharging of EVs to reduce power purchases
from the utility grid or to take advantage of selling prices to the utility grid. The energy
management system proposed in [26] represents decentralized control techniques used for
the bipolar DC microgrid. The proposed system controls power sharing between individual
parts of the microgrid and utility grid according to the load demand. In addition to power
control, paper [26] proposed voltage control which will be discussed in Section 4. In
paper [27], power management with voltage control was introduced. Power management
was implemented to distribute available power to a fleet of EVs used as taxis. The proposed
power management is capable of modifying the amount of energy sent to EVs depending
on the microgrid situation. Paper [28] introduces intelligent hybrid energy management
control to provide a reliable power balance for microgrid operation. The proposed control
aims to effectively address fluctuations in a microgrid and enable reliable EV charging.

Only two of the reviewed papers with power flow control define their proposed
control algorithms for AC microgrids. Authors in [29] study power quality improvement
or precisely the active and reactive power control. They have proposed an approach to
optimally control the active and reactive power of ultra-fast charging stations (UFCS)
and RESs. Control strategy aims to coordinate the demands of EVs and other loads with
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power provided by RESs and to minimize the charging time of connected EVs. Reactive
power regulation was achieved by control of UFCS and PV converters. Paper [30] presents
a P/V droop voltage controller for voltage regulation by controlling active power flow
between EVs and microgrids. The proposed controller ensures utilization of EVs as a
distributed energy storage system. Through the utilization of this controller, EVs were used
to provide peak shaving and valley filling, thus contributing to the stable operation of the
islanded microgrid.

More studies proposed their algorithms for hybrid microgrids. A power management
strategy is introduced in [31] for a hybrid microgrid with a hybrid energy storage system to
enhance power sharing among subgrids of hybrid microgrids and improve steady state and
transient response, as well as to enhance the voltage stability of both subgrids. To test the
effectiveness of the proposed control strategy, authors performed simulations for varying
loads, PV power outputs, DG outages, and EV charging. Similarly, in [32] the power flow
control scheme was introduced to improve power stability, power quality, system reliability,
and optimal power distribution in hybrid microgrids. The proposed control provided
continuous and reliable power to all loads connected to the microgrid as well as to the
CS. The control scheme in [32] was based on an adaptive neural network Q-learning full
recurrent adaptive neuro-fuzzy control. Paper [33] presents a new configuration for a
unified power quality controller (UPQC) in combination with EVCS to improve power
quality while ensuring the demand of EVCS. UPQC control is modified to address the
charging of EVs by using power from the utility grid directly while compensating for power
quality issues. During power outages or power interruptions, EVs were used through
UPQC control as emergency power sources. Energy management for optimal power flow
from the PV system and the utility grid to EVCS, BSS, and loads is described in [34]. The
proposed control is used to optimize the EVCS load for Aligarh Muslim University while
reducing operational costs of the EVCS microgrid.

There are also a few papers that do not define the information about the proposed
microgrid architecture, such as in [35–38]. In Parmar’s work [35], a fuzzy logic-based
control is proposed to control the charging and discharging of plug-in-hybrid EVs as well
as to manage other loads connected to the microgrid. Fuzzy logic control implements the
V2G concept to allow the utilization of EVs with different charging profiles to provide
support to the microgrid for optimum management of the daily load demand. Paper [36]
presents a demand management approach to reduce peak demand by utilizing power
from RES and EVCS. The proposed system consists of residential loads, critical commercial
loads, RESs, and EVCS. The EVCS is represented by BSS and EVs, which are used as
charging/discharging loads. The proposed method is capable of reducing peak demand,
increasing the reliability of the microgrid, and increasing the profits of EVCS. Paper [37]
presents a Hunger Games Search optimization algorithm to optimally allocate distributed
generators into the microgrid with the aim to reduce power losses in the presence of
an EVCS. In Olama’s work [38], a Lyapunov-based hybrid model predictive control is
proposed for energy management of renewable energy sources, different ESS, and EV’s
batteries to achieve safe and reliable operation of the microgrid. The proposed control uses
EV’s batteries to avoid fluctuations in energy demand to achieve optimal operation. The
proposed energy management strategy is capable of dealing with energy management
problems as well as ensuring the close-loop stability of the microgrid.

Information about the microgrid systems of the papers mentioned in this section is
presented in Table 1.
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Table 1. Information about the microgrid systems with power flow control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[17] DC Islanded
PV n.p. Battery storage X

DC
WT FSC

[18] DC Grid connected PV n.p. Battery storage X n.d.

[19] DC Grid connected
PV

n.p. Battery storage
Hydrogen storage 8 FCSWT

FC

[20] DC Grid connected PV n.p. Battery storage 8 FCS

[21] DC Grid connected PV n.p. Battery storage 8 DC

[22] DC Grid connected PV n.p. Battery storage 8 DC

[23] DC Grid connected
PV n.p. Battery storage 8 DCSHG

[24] DC Grid connected PV n.p. Battery storage 8 FCS

[25] DC Grid connected PV n.p. Battery storage 8 DC

[26] DC Islanded PV n.p. Battery storage X DC

[27] DC Grid connected
PV n.p. Battery storage 8

FCS
WT DC

[27] DC Islanded
PV

n.p. Battery storage X n.d.WT
FC

[28] AC Grid connected PV n.p. n.p. X UFCS

[30] AC Islanded
PV

DG n.p. 8 ACWT

[31] Hybrid Grid connected PV DG
Battery storage

8 n.d.Supercapacitor
FCES

[32] Hybrid Grid connected
PV

MT
Battery storage

X ACWT Supercapacitor
FC Hydrogen storage

[33] Hybrid Grid connected n.p. n.p. n.p. X DC

[34] Hybrid Grid connected PV n.p. Battery storage X AC

[35] n.d. Islanded
PV

DG n.p. X n.d.WT

[36] n.d. Grid connected PV n.p. Battery storage X n.d.

[37] n.d. Grid connected n.d. n.p. n.p. X AC

[38] n.d. Grid connected
PV

DG
Battery storage

X ACWT Supercapacitor
FC Hydrogen storage

3.2. Controlling the Self-Consumption of Microgrids

Paper [39] presents a novel DC microgrid power architecture for efficient charging
of EVs. The proposed microgrid is based on PV generation, BSS, and grid connection,
with EVs having direct access to their DC charger input. Unlike conventional power
architecture designs, the PV system is directly coupled to the DC link without a static
converter, which increases energy efficiency and reduces control complexity. The power
management proposed in [39] controls power output from a PV system, which thereby
enables self-consumption of the energy produced within microgrid and the utility grid is
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used only as a backup power source. The authors in [40] proposed an energy management
system based on hysteresis V2G control. The designed system is capable of minimizing
the impact of continuous charging current modulation on the life of EV batteries and of
maximizing microgrid self-consumption. The authors simulated the proposed system with
data measured in an actual microgrid with intermittent RESs production. Papers [41–43]
present the implementation and evaluation of self-consumption operational strategies
based on data from a microgrid at the EUREF-Campus in Berlin, Germany. The focus of
the operational strategy in [41,42] is on supplying energy for EVCSs by controlling the
energy generation of local sources and energy supply from the utility grid. The presented
operational strategy is capable of achieving the sustainable application of EVs in an urban
microgrid and with the deployment of a BSS can achieve CO2 emissions reduction. In
Feizi’s work [43], an optimalization algorithm for demand side management is used to
reduce load peaks by using the EVs and BSS as flexible loads. The presented algorithm was
able to achieve 100% self-sufficiency.

Information about the microgrid systems of the papers mentioned in this section is
presented in Table 2.

Table 2. Information about the microgrid systems with self-consumption control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[39] DC Grid connected PV n.p. Battery storage 8
DC
FSC

[40] AC Grid connected PV n.p. n.p. X AC

[41] AC Grid connected PV CHP Battery storage 8 AC

[42] AC Grid connected PV CHP Battery storage 8 AC

[43] AC Grid connected PV n.p. Battery storage 8 AC

3.3. Controlling Maximum Utilization of RES and Power Quality in Microgrids

The maximum use of RESs within a microgrid provides the possibility to decrease the
microgrid dependency on the utility grid. The paper in [44] discusses the technical issues
related to the uncoordinated charging of EVs and how this can lead to ineffective utilization
of RESs connected to the CS and the microgrid, and how this can cause overloading of the
utility grid. For this reason, the authors of [44] proposed an energy management strategy
with aims to minimize the usage of utility grid power and to maximize the use of PV power
as well as to store PV power when the CS is not used. The proposed energy management
also controls the charging of EVs and BSS and based on the state of charge of the EVs and
BSS determines the operational mode of microgrid operation. In Locment’s work [45], a
control strategy for maximizing power extraction from the PV sources and power flow
management is designed to consider the state of charge of the EVs and power demand of
the load connected to the DC microgrid. The maximum use of RESs can also be used to
improve the social welfare of EVCS users as is demonstrated in [46]. The authors of the
paper used power from a PV system to charge EVs which led to the maximalization of social
welfare. This charging control was introduced to optimally distribute available power from
a PV system to connected EVs. Paper [47] proposes a control strategy for microgrids with
EVs. The proposed control strategy is employing a multi-objective technique that aims to
achieve power factor regulation as well as economic battery charging. The control strategy
uses the EVCS control to support power factor issues, allowing for full PV generation.

Information about the microgrid systems of the papers mentioned in this section is
presented in Table 3.
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Table 3. Information about the microgrid systems with maximum utilization of RES and power
quality control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[44] Hybrid Grid connected PV n.p. Battery storage X DC

[45] DC Grid connected
PV n.p. Battery storage 8 FCSWT

[46] AC Grid connected PV n.p. n.p. 8 AC

[47] AC Grid connected PV n.p. n.p. X AC

4. Voltage Control Strategies of Microgrids

Another strategy commonly used in research papers for microgrid control is voltage
control. Voltage control provides the possibility for reliable control of individual compo-
nents of microgrids, or for control of microgrid stability, or to design power converters and
controllers with specific control structures. The papers with voltage control objectives are
discussed in this section.

4.1. Microgrid Voltage Sag Mitigation Control

Papers [48,49] present a decentralized control system for microgrids with EV fast
charging stations. The aim of this control is to reduce utility grid reliance and improve
power quality. To improve power quality, the authors are using a distribution static
compensator (D-STATCOM) with the objective of mitigating the voltage sag within a
microgrid. The authors in both papers proposed the utilization of an EV battery as a DC
source of a D-STATCOM through the V2G technology. One of the differences between these
two papers is the utilization of different control methods. In Mohammed’s work [48], the
authors used a sliding mode control together with a fuzzy logic control, while in [49] the
authors used a decentralized control system based on Proportional Integral (PI) controllers.

Paper [50] presents a coordinated control strategy of dynamic voltage restorer (DVR)
and EVCS in a microgrid. In this paper, two categories of voltage sag (interior, exterior) are
addressed with different compensating methods. For interior voltage sag, only the DVR is
used, while on the other hand for exterior sag, DVR with cooperation from EVCS is used.

In Table 4, information about the microgrid systems of the papers mentioned in this
section is presented.

Table 4. Information about the microgrid systems with voltage sag mitigation control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[48] DC Grid connected PV n.p. n.p. X FCS

[49] DC Grid connected PV DG n.p. 8 FCS

[50] AC Grid connected n.p. n.p. n.p. 8 n.d.

4.2. Controlling the Bus Voltage of Microgrids

Most of the studies with bus voltage control have focused on grid-connected microgrid
architectures. In paper [51], a bus voltage control strategy for a hybrid microgrid with EVCS
is proposed. The proposed bus voltage control is maintained by a novel uninterruptible
inverter which is used to provide uninterrupted power to the EVCS as well as ensure
stable operation of the microgrid. Paper [52] presents a control strategy based on the
virtual battery model. The primary aim of this control strategy is to control the bus voltage,
dispatch power among the individual elements of the microgrid, and reduce the negative
impact of EV fast charging on the electrical grid. In García-Triviño’s work [20], the authors
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proposed a decentralized control method with fuzzy logic controllers to coordinate power
flow as was mentioned in Section 3.1 with bus voltage and battery energy storage state of
charge (BSS SOC). The bus voltage control was used to ensure power balance among the
components within a microgrid (EV FCS, PV system, BSS, utility grid) and to control the
BSS SOC. Similarly, as with [20] a decentralized control was proposed in paper [53], but
in this paper a PI controller was used for the bus voltage control. DC bus voltage in [53]
was controlled by the power sources within the microgrid to ensure stable charging of EVs.
Paper [54] proposes smart charging of PEV with a small scale wind energy system as a
source. The control strategy proposed in [54] is the coordination control based on DC link
voltage to support the operation of EVCS in stand-alone as well as in grid-connected mode.
To provide an efficient power management of a DC microgrid, a power reference-based
drop controller is designed to regulate bus voltage through energy storage. The intelligent
control method for DC FCS is proposed in [55]. The authors are using the comprehensive
AC/DC converter control to inject reactive power into a network to control the voltage and
thus keep DC bus voltage at a constant value.

On the other hand, there are just a few studies that have dealt with the islanded
operation of the microgrids. The authors in [56] proposed an enhanced control method
for UFCS in islanded DC microgrids to reduce the transients of the DC bus voltage. To
achieve this, the authors proposed an enhanced control strategy for the local controller
of the EV converter. The hierarchical control strategy for a PV-based microgrid with EV
wireless charging station is presented in [57]. The control structure is composed of central
and local controllers where the central controller is used to assess the operation mode of the
system and to select the local controllers and the local controller is used for battery storage
control, high frequency (HF) inverter DC bus voltage control, and EV charging control. The
control structure proposed in [57] can through HF inverter DC voltage controller regulate
DC bus voltage and thus change the wireless charging power. In Bhargavi’s work [58], a
control strategy for EV is proposed to increase the maximum rate of charging capacity only
if generation exceeds the load demand.

Table 5 presents information about the microgrid systems with bus voltage control
discussed in this section.

Table 5. Information about the microgrid systems with bus voltage control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[51] Hybrid Grid connected PV n.p. Battery storage X AC

[52] DC Grid connected PV n.p. Battery storage 8 FCS

[53] DC Grid connected PV n.p. Battery storage 8 FCS

[54] DC Grid connected
PV n.p. Battery storage 8 DCWT

[55] DC Grid connected n.p. n.p. n.p. 8 FCS

[56] DC Islanded PV n.p. Battery storage 8 UFCS

[57] DC Islanded PV n.p. Battery storage X Inductive

[58] DC Islanded
PV n.p. Battery storage X DCWT

4.3. Voltage Regulation and Stability Control

In paper [59], a controller for an EVCS DC microgrid is designed to keep voltage
stability and suppress the power system dynamics. To design the DC microgrid controller,
the authors proposed a firefly algorithm combined with particle swarm optimalization.
Paper [60] describes a new approach for the integration of EVs into the electrical grid, with
the aim to reduce their impact on the grid and to provide ancillary services to the AC utility
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grid. The proposed control can stabilize the voltage of a DC microgrid while providing
ancillary services. Additionally, the authors demonstrated that use of V2G mode in micro-
grids with EVCS can help to support the stability of the electrical system. The adaptive
bidirectional droop control for an EV parking lot with V2G service is proposed in [61]. This
control strategy is coupled with solid state transformer for the voltage regulation within
the microgrid. To validate the effectiveness of the proposed control strategy, the authors
conducted experimental testing using a physical prototype.

A close-loop control structure based on feedback signals from EVCS, distributed
generators, and load demand in the microgrid is presented in [62] to increase the reliability
and stability of the system. In paper [27], DC voltage control was implemented through
a PI controller in the battery storage to manage the microgrid voltage. Additionally,
power management was introduced in this paper as was discussed in Section 3.1. In
Benamar’s work [63], a nonlinear control was presented to ensure the voltage stability
of a DC microgrid by considering the fluctuations of the PV production as well as the
EV demand.

Information about the microgrid systems with voltage regulation and stability control
discussed in this section is presented in Table 6.

Table 6. Information about the microgrid systems with voltage regulation and stability control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[59] DC n.d.
PV

n.p. Battery storage
Hydrogen storage 8 n.d.WT

FC

[60] DC Grid connected PV n.p. n.p. 8 DC

[61] AC Grid connected PV n.p. Battery storage 8 DC

[62] Hybrid Grid connected
PV n.p. Battery storage X DCWT

[63] DC Islanded PV n.p. Battery storage
8 DCSupercapacitor

5. Economic Operation Control of Microgrids

Economic operation control of microgrids presents the different aspects of microgrid
control used to achieve desired outcomes. Desired outcomes can be beneficial for microgrid
operators, users of microgrids, or both based on the control objectives. The most commonly
occurring objectives used in economic operation control are discussed in this section.

5.1. Maximizing the Profits of Microgrids and Energy Trading

Paper [64] presents a control solution for a smart microgrid with an EVCS to maximize
the profits of microgrid owners by selling energy to EVs. To achieve this, the authors
proposed the energy management system which controls the power profile of the microgrid.
The coordinated dispatch method for PV power generation microgrids with EVs is proposed
in [65]. The proposed method is using the power forecasting model based on real data to
maximize the profits of microgrids and thus maximize the PV power consumption.

The paper in [66] introduces a predictive control algorithm for economic optimization
in a microgrid that is connected to the utility grid and EVCS. The system is modeled using
the Energy Hubs methodology, and the proposed algorithm is responsible for managing
electricity purchase and sale to the grid. In Mendes‘s work [67], a control strategy for
optimal operation of microgrids as well as energy sale and purchase into microgrids
is introduced. The proposed strategy can manage properly the purchase and sale of
energy to the external network, ensure the charging of EVs, and manage load demand.
Multi-period optimal energy scheduling and trading for multi-microgrids is discussed
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in [68]. In this paper, comprehensive models of multi-microgrids integrated with an urban
transportation network through fast charging stations is formulated. Trading schemes are
used to maximize profits for each microgrid through buy-low-sell-high fashion and at the
same time minimize travel expenses in response to the FCS charging prices defined by the
individual microgrids.

Table 7 presents information about the microgrid systems with profit maximization
and energy trading discussed in this section.

Table 7. Information about the microgrid systems with profit maximization and energy trading.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[64] AC Grid connected
PV n.p. Battery storage X ACWT

[65] n.d. Grid connected PV n.p. n.p. 8 n.d.

[66] n.d. Grid connected
PV n.p. Battery storage

X n.d.WT Hydrogen storage

[67] n.d. Grid connected PV n.p. Battery storage
8

FCS
Hydrogen storage DC

[68] n.d. Grid connected
PV

DG n.p. X FCSWT

5.2. Minimizing the Operational Costs of Microgrids and Electricity Costs

Paper [69] proposes a two-stage optimal framework to handle the online dispatch
problem of grid connected microgrids. The first stage in the proposed framework is to
minimize the total operating cost and the second stage determines the power allocation for
CS. The proposed framework can effectively realize the optimal dispatch and reduce the
operating cost. An optimal management system to minimize operational costs of hybrid
microgrids is proposed in [70]. The proposed approach manages power sources connected
to the microgrid together with EVs charging/discharging to reduce operational costs of
microgrids. In Han’s work [71], an optimal control method for microgrid systems with
residential loads based on EV virtual energy storage is proposed. For optimal control,
multi-objective optimization is used with minimal electricity cost, EV battery state of health,
and carbon emissions as objective functions. Paper [72] presents economical scheduling of
EVs connected to the microgrid to reduce electricity cost. To minimize the electricity cost,
the authors used charging/discharging control of EVs connected to microgrids. An optimal
scheduling strategy is presented in [73] to minimize operational costs of EV charging-
swapping-storage integrated stations and microgrids. The proposed coordination of the
charging process is capable to transfer charging demand from the peak demand time to
valley demand time, thus reducing the peak-to-valley difference and reducing operational
costs of microgrids. In Xu’s work [74], similarly to previous papers, optimal scheduling is
proposed. The aim in [74] is to reduce charging costs of EVs as well as to reduce power loss
of microgrids to improve overall efficiency of microgrids. Paper [75] presents a real-time
power management strategy for intelligent infrastructure for recharging electric vehicles
based on a microgrid system. The strategy proposed in the paper aims to minimize the
energy cost of microgrids and maximize the use of PV power. An energy management strat-
egy and an optimal operation strategy of EVs and battery swapping stations are discussed
in [14]. The objectives of the operational strategy are the minimization of operational costs
and the maximization of benefits of microgrids in islanded operation mode. To minimize
operational costs, authors adopted price mechanisms to flatten the demand curves which
reduces the difference between the peak and valley demand. The optimal operation of a
community based microgrid is presented in [76] to minimize operational costs of micro-
grids and thus maximizing economic benefits for the prosumers. The goal of the paper
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is achieved by optimal scheduling of charging and discharging of EVs based on dynamic
day ahead prices. Paper [77] presents an energy management system based on a dynamic
optimalization model to minimize operational costs of microgrids as well as to minimize
CO2 emissions. The proposed approach is tested and applied to the case study of the
Sanova University Campus. A day ahead demand schedule strategy is proposed in [15] to
improve the cost-effectiveness of the microgrid. The proposed strategy is based on optimal
load shifting of demand with incentive and penalty pricing as a decision support for uses.
An energy management model for a smart community microgrid including battery swap-
ping stations and residential loads is formulated in [78]. The optimization algorithm is
formulated to minimize the average long-term energy cost of consumption and operational
cost while securing the quality of service for battery swapping stations and residential loads.
In Liao’s work [79], an energy management system for a smart home and an EV charging
parking lot is presented. Energy management aims to minimize electricity payment for
smart home while ensuring users’ comfort and minimizing costs of EV charging within
the EV charging parking lot. The control strategy for smart homes involves control and
scheduling of home appliances and scheduling is also used in the case of the EV parking
lot. In the case of the EV parking lot, the EVs also join in an ancillary service market of
emergency reserve capacity. Paper [80] presents real-time management and scheduling of
EVs in a commercial microgrid with PV generation, partially curtailable load, and battery
storage unit for backup. The proposed control structure is capable to allocate and distribute
power based on the energy price thus minimizing the cost of power to the microgrid.

Information about the microgrid systems of the papers mentioned in this section is
presented in Table 8.

Table 8. Information about the microgrid systems with objectives to minimize operational costs of
microgrids and electricity costs.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[69] DC Grid connected
PV n.p. Battery storage X DCWT

[70] Hybrid Grid connected PV DG n.p. X n.d.Islanded FC MT

[71] AC Grid connected PV n.p. Battery storage X AC

[72] DC Grid connected
PV

MT Battery storage X DCFC

[73] n.d. Grid connected
PV

MT Battery storage X
FCS

WT Swapping

[74] AC Grid connected PV n.p. Battery storage X AC

[75] DC Grid connected PV n.p. Battery storage 8 FCS

[14] AC
Grid connected PV n.p. n.p. X

AC
Islanded WT Swapping

[76] AC Grid connected PV n.p. Battery storage X AC

[77] n.d. Grid connected
PV

MT Battery storage X n.d.WT

[15] AC Grid connected
Islanded

PV
DG
MT

Battery storage X ACWT
FC

[78] n.d. Grid connected
PV n.p. n.p. X SwappingWT

[79] AC Grid connected PV n.p. n.p. X AC

[80] AC Grid connected PV n.p. Battery storage X AC
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6. Other Control Strategies

The control strategies discussed in the previous section represented the most com-
monly used control strategies for microgrid control. This section contains control strategies
that were presented only in a few papers from our final set. The following subsections dis-
cuss combined control strategies for microgrid control in which the authors used multiple
distinctive objectives to achieve desired outcomes and frequency controls.

6.1. Combine Control Strategy for Microgrid Control

Multi-microgrid network energy management is proposed in [81] to maximize the
energy exchange between microgrids to reduce the load fluctuation, minimize the amount
of energy purchased from the distribution network, and encourage self-healing capability
to maintain the system operation during fault events. To help deal with disturbances
and maintain system stability, the V2G concept is used during fault events. Paper [82]
presents a control problem of microgrids integrating renewable generation, hybrid storage
technologies, and interaction with V2G systems. The objectives of microgrid control were
to maximize the use of renewable energy sources, coordinate the use of battery bank and
hydrogen storage to minimize the oscillation between production and demand, perform
the charging of EVs, and make the purchase and sale management of electricity to the
external network. In paper [83], the authors suggest an optimal planning technique for
identifying the locations and sizes of EVCS and hybrid RESs inside a microgrid. The main
objectives of the proposed technique are minimization of voltage deviation, power loss, the
cost of building renewable resources, and the cost of charging EVs. To solve the proposed
problem, the authors used a novel jellyfish search optimizer.

Information about the microgrid systems of the papers mentioned in this section is
presented in Table 9.

Table 9. Information about the microgrid systems with combined control strategies for microgrid
control.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[81] DC Grid connected
PV n.p. Battery storage X

FCS
WT DC

[82] DC Grid connected
PV

n.p. Battery storage
Hydrogen storage X

FCS
DC

WT
FC

[83] n.d. Grid connected
PV n.p. n.p. 8 n.d.WT

6.2. Frequency Control of Microgrids

Paper [84] proposes a V2G strategy for primary frequency control inside an industrial
microgrid. The primary frequency control is achieved by the charging and discharging
of EVs based on the signals from the industrial grid operator. Paper [85] presents the
droop-controlled charging/discharging strategy of EVs to ensure frequency stability in
an islanded microgrid through primary frequency control. The proposed control strategy
considers EV state of charge to maintain battery lifetime and ensures the availability of the
EV as needed.

Table 10 presents information about the microgrid systems with frequency control
discussed in this section.
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Table 10. Information about the microgrid systems with frequency control of microgrids.

Ref.
Microgrid Energy Generation

Energy Storage Other Loads Char. Stations
Type Architecture RES CES

[84] n.d. Grid connected
PV n.p. n.p. 8 ACWT

[84] AC Islanded PV DG n.p. X AC

7. Discussion

Integration of renewable energy resources and electric vehicle charging stations into
the microgrid system has emerged as a significant research subject due to the potential
it presents for the efficient use of these resources. This integration offers the possibilities
to increase the reliability and self-sufficiency of microgrids while enabling them to pro-
vide ancillary services to the utility grid. To achieve the desired operational objectives,
researchers have designed and tested various control mechanisms, as highlighted in the
reviewed literature. The most commonly implemented control mechanisms discussed
in the literature are power control, voltage control, and economic operation control of
microgrid systems, as indicated in Figure 8. Each of these control mechanisms has been
discussed in detail in previous sections, with corresponding literature cited for further
reference and understanding. These control strategies play a key role in optimizing the
performance and overall efficiency of microgrid systems, thereby preparing the way for
sustainable and resilient energy management designs.

7.1. Operational and Control Strategies

The main aim of this review article is to provide a comprehensive overview of the
different operational strategies employed in microgrids that incorporate electric vehicle
charging stations. As mentioned above, the classification of various operational strategies
or objectives has been discussed in previous sections. In the literature review, the use of
charging stations has been observed in two different forms: active participation through
controlled charging/discharging and passive participation as uncontrolled charging where
the charging stations are considered only as loads. Figure 9 illustrates the distribution of
charging station utilization in microgrid operational control. Notably, of the total number
of papers reviewed (70), 46 papers actively employed charging stations for controlled
charging or discharging to achieve specific goals based on the microgrid control strategy
adopted. This active use of charging stations highlights their importance in improving the
operational efficiency and overall performance of microgrids while facilitating a range of
control options to optimize energy management and grid stability.
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For successful implementation of control strategies in real-world applications, it is
important to validate these strategies using models that combine real-world data from
the RESs and charging stations operation, EV user behavior, load demand, and other
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components of the microgrid. However, in the reviewed literature, the most common
approach among the authors was to test their proposed control strategies in microgrid
simulations with simplified models of EV charging habits without using actual real-world
data. This lack of inclusion of real-world data in the testing may introduce uncertainties
and limit the accuracy of the results. In papers [34,43,71], the authors used real EV charging
data for simplified estimation of charging station behavior, and in [77,78] the authors
used information from travel surveys. The authors of these papers used real-world data
for charging stations representation and charging stations are actively participating in
proposed control strategies. Data about real charging station power consumption were
also used in [52,74] to test the proposed control strategies, despite the fact that the charging
station participated only passively in the proposed control strategies. To represent more
realistic behavior of charging stations during the testing of a proposed control strategy, it
is important to use real EVs charging data that can represent EVs charging behavior in a
specific microgrid system more accurately. Through implementation of different methods
of data generation, it is possible to generate new simulation input data for charging station
behavior, and thereby simulate different sets of scenarios with the same historical data. The
most used method in the reviewed literature is the utilization of probability distribution
functions, which are based on real EV charging data and can generate new simulation input
data based on the shape of the distribution function [15,24,25,62,73,80]. Other methods
used in the reviewed literature to generate data based on real data include the Monte Carlo
method ([24,65]) and the Markov method [76]. These methods are used to simulate and
generate data that mimic real-world properties. The Monte Carlo method was also used
in [14,72] to generate SOC parameters for EVs. In papers [24,65], the authors used real
data for charging station representation despite the fact that charging stations acted only
passively in their control strategies. To implement the proposed strategies, it is imperative
to test them by using real-world data.

7.2. Interaction of Proposed Control Strategies with Real-World Applications

Simulated operation time is another important aspect connected to the assessment of
results for the proposed control strategy and in assessing if the proposed control strategy
can be implemented in real-world application. In the reviewed literature, thirty-three
papers simulated their control strategies on 24 h simulation operation and only four papers
([24,69,78,80]) used a simulation time longer than 24 h. Longer simulation time can provide
the possibility to test the proposed system with more complex behavior and represent more
precisely the real-world application.

In papers [19,21,22,31,44,57], the authors compared simulations of their control strate-
gies on experimental models to see how real components could react with the proposed
control. Compering simulation results with results from an experimental model provides a
more comprehensive understanding of how the proposed control strategy will function in
real-world implementation.

7.3. Research Shortcomings and Research Gaps

The literature review presented in this paper highlights several research shortcomings
that require further attention to ensure the successful implementation of the proposed
control strategies in real microgrid systems. Further research is necessary to effectively
address these shortcomings. Specifically, future research efforts should prioritize the use
of real data to test and validate control strategies, especially in charging station modeling.
By incorporating real data, the reliability and applicability of the proposed methodologies
can be improved in real microgrid conditions. Another shortcoming that often appears
in the reviewed literature is that the presented control strategies are simulated on short
time periods, which allows for better presentation of the results but does not allow us
to see the more complex behavior of the simulated system. On the other hand, longer
simulation times allow us to evaluate the long-term performance and see the more complex
behavior of the proposed control algorithms on simulated systems. This literature review
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also revealed some research gaps, notably the aspect of validation of the proposed con-
trols strategies through comprehensive comparison between simulated results and results
obtained from experimental testing or real-world implementation on a microgrid system.
Such a comparison provides indisputable evidence of the functionality and effectiveness
of the proposed control approach, but the length of the operation window and different
operation states used for comparison are also of utmost importance. Another research gap
is the absence of a control strategy that would address the preservation of reserved capacity
in the microgrid. This could provide a new approach for the power exchange between
microgrid and main grid as well as increase the economic benefits of microgrid operation.

8. Conclusions and Research Prospects
8.1. Conclusions

With the global shift towards sustainability and the rapid deployment of renewable
energy resources, electric vehicles, and charging stations, it becomes crucial to explore
strategies that can provide grid support while addressing the inherent intermittent nature
of renewables and EVs. In this context, microgrids offer an ideal solution as they can
operate independently or in coordination with the main grid, facilitating the generation,
distribution, and management of power flow among interconnected resources.

The growing number of EVs can significantly impact the operation of power systems,
requiring more sophisticated control strategies to match EV charging patterns with grid
conditions. This close interplay between electrical power systems and the transportation
sector underscores the importance for advanced control measures to ensure the seamless
integration of EVs into microgrids, thereby safeguarding a stable and resilient power
supply for consumers of EV charging stations as well as stable and efficient operation of
microgrids. In response to these challenges, researchers have been developing and testing
various control strategies for microgrids with EV charging stations in recent years.

8.2. Research Prospects

This review paper aims to offer a comprehensive overview of the different control
strategies proposed in the literature to control microgrids with electric vehicle charging
stations. Additionally, this paper sought to identify common shortcomings and research
gaps in the current literature. Among the most common shortcomings identified in the
existing literature are the limited number of publications utilizing real EV charging data,
the simplistic approach in determining EV charging station consumption, and the relatively
short simulation time periods for the proposed control strategies. Addressing these short-
comings in future control strategies is crucial to increase the effectiveness and robustness
of the proposed approaches and to increase their real-world applicability. In addition,
this review highlighted gaps in current research, including the limited number of control
strategies that have been tested on experimental microgrid models or directly in real micro-
grid settings. Notably, a significant research gap in the current literature is the absence of
control strategies specifically adapted to address the preservation of reserved capacity in
microgrids using EV charging stations.

To address these gaps and to advance microgrid control strategies, future research
should focus on incorporating real EV charging data, adopting more sophisticated models
to represent realistic EV charging station behavior, and conducting tests with longer simu-
lation times to evaluate the long-term performance of control strategies. The experimental
validation of the proposed control strategies within microgrid configurations, along with
the development of novel control strategies addressing the preservation of reserved capac-
ity of microgrids will further contribute to significantly improve the overall efficiency and
practical implementations of microgrid systems with EV charging stations.

Furthermore, to facilitate a comprehensive comparison and evaluation of different
control strategies in both current and future research works, it is essential to establish a
universal benchmark network. This benchmark network will serve as a standardized plat-
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form for testing and evaluating the effectiveness of the proposed control strategies, thereby
providing a deeper understanding of their application in different microgrid scenarios.
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Nomenclature

AC Alternating Current
BSS Battery Storage System
CES Conventional Energy Sources
CS Charging Station
DC Direct Current
DG Diesel Generator
D-STATCOM Distribution Static Compensator
DVR Dynamic Voltage Restorer
ESS Energy Storage System
EV Electric Vehicle
EVCS Electric Vehicle Charging Station
FC Fuel Cells
FCES Fuel Cell Energy Storage
FCS Fast Charging Station
HF High Frequency
HSS Hydrogen Storage Systems
CHP Combined Heat and Power
MT Microturbine
n.d. not defined
n.p. not present
PI Proportional Integral
PV Photovoltaic
RES Renewable Energy Source
SC Supercapacitor
SHG Small Hydro Generators
SOC State of Charge
UFCS Ultra-Fast Charging Station
UPQC Unified Power Quality Controller
V2G Vehicle-to-Grid
V2V Vehicle-to-Vehicle
WT Wind Turbine
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