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Abstract: A huge increase in fast−charging stations will be necessary for the transition to EVs.
Nevertheless, charging a battery pack at a higher C−rate impacts its state of health, accelerating its
degradation. The present paper proposes a different and innovative approach that considers the
daily routine of an EV Li−ion battery based on a standard driving cycle, including charging phases
when the depth of discharge is 90%. Through dynamic modeling of the EV battery system, the state
of charge evolution is determined for different charging C−rates, considering both real discharging
and charging current profiles. Finally, by applying a suitable post−processing procedure, aging test
features are defined, each being related to a specific EV battery working mode, including charging at
a particular C−rate, considering the global battery operation during its lifespan. It is demonstrated
that, according to the implemented procedure, fast−charging cycles at 50 kW reduce battery lifespan
by about 17% with respect to charge in a 22 kW three−phase AC column, in parity with the discharge
rate. Thus, this work can provide a deep insight into the expected massive penetration of electric
vehicles, providing an estimate of battery useful life based on charging conditions.

Keywords: battery aging; dynamic modeling; electric vehicles; Li−ion battery; rainflow cycle
counting algorithm

1. Introduction

The transportation sector represents one of the most significant sources of carbon
dioxide emissions to date. In 2019, at the EU−27 level, 835 million tons of CO2 were
emitted by the transportation sector, representing about 21.5% of the total delivered CO2
emissions [1]. Specifically, cars were responsible for more than 55% of the total CO2
emissions in this sector [2]. Therefore, the road transportation industry is facing a transition
from internal combustion engine vehicles to electric vehicles (EVs), aiming to reach EU
targets to reduce CO2 emissions, since EVs have proved to be the best alternative to
counteract these problems.

In this framework, battery technology is a key point for this evolution [3] as the
main component in terms of the performance, reliability, and affordability of hybrid and
full−electric vehicles, thanks to recent technical and economic developments in battery
and fast−charging technologies.

Specifically, Li−ion batteries represent a core technology among the different battery
chemistries thanks to their high gravimetric energy density, volumetric energy density, and
power density.

Currently, the long time needed for battery charging, safety, and the absence of
abundant fast−charging stations (FCSs) are the major drawbacks highlighted by electric
vehicle (EV) owners in accelerating the EV transition [4–11]. Essentially, EV owners urgently
need FCSs to rapidly charge their EVs.

On the other hand, charging a battery pack at a higher C−rate impacts its state of
health, increasing the cell degradation rate, mainly due to thermal, mechanical, and lithium
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plating effects [12]. Thus, an increase in the charging current shortens the charging time
but accelerates battery degradation. To mitigate this issue, an EV battery fast−charging
strategy should be developed through the hybridization of non−complex and low−cost
current fast−charging strategies, e.g., by means of controller implementation for C−rate
regulation based on an onboard cell degradation diagnosis solution [12].

Among the EU−27 member states, only 338,191 charging points were installed in
2022, of which 27,000 were for ultra−fast and high−power charging. The total number of
charging points is targeted to increase to 3.9 million by 2030, while the number of charging
points needed at the same date is assessed at 7 million [13]. This highlights how the
infrastructure for EV charging still has to be developed and realized in a large part in the
coming years, thus allowing the implementation of solutions and strategies to mitigate the
impact on EV batteries. This will make electric mobility more competitive with respect to
other alternatives.

Therefore, the research directions for upgrading BEV technologies involve solving the
charging problem of BEVs and improving their application convenience while ensuring
safety during the life of electric vehicles [14].

To this aim, it is crucial to assess, from a quantitative point of view, the impact of
charging current on battery capacity loss rate in a typical operating routine, i.e., in parity
with the discharging profile and maximum depth of discharge.

Some papers provide battery aging models developed for several applications, gener-
ally applied to operating conditions assessed in relation to specific sizing and integration
conditions. For instance, [15] focuses on a Li−ion battery pack, proposing a semiempir-
ical electrothermal aging model that accounts for calendar and cycle aging at different
C−rates and temperatures, also considering vehicle−to−grid (V2G) services. Nevertheless,
the model does not take into account any experiment based on the actual operating BEV
mode, such as the driving cycle. The authors of [16] estimate the state of health (SoH) of
lithium–iron–phosphate (LFP) cells, analyzing the ohmic resistance and peak value of the
incremental capacity. The authors of [17] present a dynamic model of Li−ion batteries
based on the battery equivalent circuit, incorporating electrothermal and aging aspects for
electric vehicles. Other noteworthy studies on Li−ion battery aging models and predic-
tion methods for state−of−health estimation are illustrated in [18–22]. Nevertheless, the
accuracy of these models is often low or requires a long computational time [12].

To address these drawbacks, the present paper proposes a different and innovative
approach that considers the daily routine of EV batteries based on a standard driving
cycle, including charging phases upon achieving a 90% depth of discharge (DoD). Different
charging C−rates are considered. As a matter of fact, such a novel approach aims to fill the
gap with the different approaches presented in the literature on battery aging and battery
state of health assessment, having a significant impact on battery economy, as illustrated
in [23–29]. Through dynamic modeling of the EV battery system, the state of charge (SoC)
evolution is determined for different charging C−rates, considering both real discharging
and charging current profiles. Finally, by applying a suitable post−processing procedure,
aging test features are defined, each being related to a specific EV battery working mode,
including charging at a particular C−rate, considering the global battery operation during
its lifespan. This approach is innovative and more accurate with respect to the state of the
art, i.e., battery aging models developed over standard test conditions not related to real
operation modes, then applied to operating conditions typical of specific applications.

The followed procedure is described in the following sections. Specifically, Section 2
provides a background on the battery aging phenomena and the parameters used to
evaluate degradation. Moreover, it discusses the methodology applied to determine the
cumulative distribution of cycle number per DoD class based on the SoC evolution, aiming
to assess battery cycle aging. Section 3 addresses EV battery modeling and simulation
over defined working profiles, taking into account both real discharging and charging
current profiles. Section 4 deals with the methodology applied to design the accelerated
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aging tests and describes the test rig, while Section 5 presents the obtained numerical and
experimental results.

2. Battery Degradation Theory

Battery degradation rate depends on several stress factors, such as charging, discharg-
ing, time, temperature, and its current state of life [30]. Thus, this process is considered
nonlinear with respect to time and stress cycles, complicating the analysis of test outcomes
and the predictive modeling of the aging process.

2.1. Aging Phenomena

Phenomena that lead to battery degradation typically consist of calendar aging and
cycle aging [31–34].

Calendar aging reveals the degradation over time during resting periods, whose rate is
affected by the temperature and the battery state of charge (SoC). Calendar aging Lcal can be
expressed in (1) as a function of the time t, the average SoC, and the cell temperature (Tc):

Lcal = f (t, SoC, Tc) (1)

Cycle aging represents the life lost due to the battery charging/discharging cycles.
Referring to the i−th cycle, the cycle aging Lcyc is a function of its depth of discharge (DoD),
its average SoC (SoCi), and the average cell temperature Tc,i. Each cycle is modeled as a
single independent stress event, allowing the evaluation of the accumulated degradation
as the sum of the capacity reduction produced by each cycle [35]. The cycle aging Lcyc can
be then expressed as follows (2):

Lcyc = ∑N
i=1 zi f (DoDi, SoCi, Tc,i) (2)

where N corresponds to the identified number of cycles, and zi indicates whether cycle i is
a full− or half−cycle and is used to include the rainflow cycle counting (RFC) algorithm.

Thus, calendar aging and cycle aging are linear degradation processes with respect to
the number of cycles and battery aging, and Lb,tot can be expressed as the sum of these two
contributions, as indicated by (3).

Lb,tot = ∑N
i=1 zi f(DoDi, SoCi, Tc,i) + f (t, SoC, Tc) (3)

Moreover, it is highlighted that when all cycles are equal, the average temperature and
SoC of a single cycle are the same as those of the entire operation; therefore, the temperature
and SoC inputs of Lcal and Lcyc are the same.

2.2. Rainflow Cycle Counting

This algorithm is widely used in material fatigue stress analysis to count cycles and
quantify their depths. It has also been extensively applied to battery life assessment when
subjected to complex charging/discharging cycles [36–46]. In fact, the damage accumulated
in an object subjected to cyclical changes is studied by means of fatigue analysis since the
number of cycles that break the considered object depends on the cycle amplitude [47].

The RFC method identifies cycles from local extrema in the load profile as a function
of cycle amplitude. In Li−ion battery life estimation, SoC represents the load. A set of
SoC−time curves is determined; then, the entire coordinate system is rotated 90 degrees
clockwise, and the time coordinate axis is vertically downward [48]. The procedure is
detailed according to [47].

Initially, RFC reduces the battery SoC history into a sequence of reversals. Reversals
are defined as the local minima and maxima corresponding to the changed load sign. Each
reversal is imagined as a source of water that “drips” down the roof.

RFC counts cycles by considering a moving reference point of the sequence, according
to the ASTM standard [49], as described below:
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1. Count the number of half−cycles by looking for terminations in the flow occurring
when either:

a. It reaches the end of the time history;
b. It merges with a flow that started at an earlier reversal;
c. It encounters a trough of greater magnitude.

2. Assign a magnitude to each half−cycle corresponding to the stress difference between
its start and termination.

3. Pair up half−cycles of equal magnitude (but in opposite sense) to count the number
of complete cycles. Generally, some residual half−cycles are present. Concerning
Li−ion batteries, the most relevant cycles for degradation are those with more than 2%
DoD [50]. Hence, the cycles at a lower DoD are not considered in this work. Figure 1
shows an example of RFC operation on a generic load time history.
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Figure 1. Example of rainflow cycle counting on the load time history. Blue line A−I represents
the cycle amplitude vs. the time, while red segments are the counted cycles according to rainflow
cycle counting.

It is evident from Figure 1 that E−F is counted as one cycle because its amplitude
is completely within F−G. All the other segments are computed as half−cycles. For
the sake of clarity, Figure 2 depicts the operating flow chart of the RFC algorithm ac-
cording to the ASTM standard. The algorithm counts cycles by considering a moving
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reference point of the data sequence, Z, and a moving ordered three−point subset with the
following characteristics:

• The first and second points are collectively called Y;
• The second and third points are collectively called X;
• In both X and Y, the points are sorted from earlier to later in time, although not

necessarily consecutive;
• The range of X, denoted by r(X), corresponds to the absolute value of the difference

between the amplitude of the first point and the amplitude of the second point. The
range r(Y) is equally defined.

Energies 2023, 16, x FOR PEER REVIEW 5 of 15 
 

 

the data sequence, Z, and a moving ordered three−point subset with the following char-
acteristics:  
• The first and second points are collectively called Y; 
• The second and third points are collectively called X; 
• In both X and Y, the points are sorted from earlier to later in time, although not nec-

essarily consecutive; 
• The range of X, denoted by r(X), corresponds to the absolute value of the difference 

between the amplitude of the first point and the amplitude of the second point. The 
range r(Y) is equally defined. 
The RFC algorithm for the analysis presented in this work is customized by authors 

considering the cycle amplitude, a parameter that gives reliable results when applied to 
batteries. This is also experimentally validated by authors on LiFePO4 cells, as reported in 
[44]. 

 
Figure 2. Rainflow cycle counting flow chart diagram. 

2.3. Battery State of Health 
State of health (SOH) is a widely used index to estimate battery aging. It is defined as 

the capacity loss over a certain period because of calendar and cycle aging and can be 
expressed (in p.u.) as: 
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The RFC algorithm for the analysis presented in this work is customized by authors
considering the cycle amplitude, a parameter that gives reliable results when applied to
batteries. This is also experimentally validated by authors on LiFePO4 cells, as reported
in [44].
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2.3. Battery State of Health

State of health (SOH) is a widely used index to estimate battery aging. It is defined
as the capacity loss over a certain period because of calendar and cycle aging and can be
expressed (in p.u.) as:

SOH =
Qmax

Qr
(4)

where Qmax is the maximum charge available of the battery at a certain period, and Qr is
the rated capacity of the fresh cell.

Generally, Li−ion batteries for transport applications are considered at the end of
life (EOL) when their capacity reaches 80% with respect to their initial rated capacity [51].
However, they can be reused in stationary applications for power smoothing, grid support,
and storage. Such use is known as “second life”, and it is adopted to increase large−scale
battery exploitation and reduce the environmental impact of the waste.

3. Dynamic Modeling
3.1. Input Data

To define the experimental procedure for the assessment of the Li−ion battery lifespan
for battery electric vehicles (BEVs), the SC03 cycle has been selected, as reported in [20].
This cycle corresponds to a mileage of 5.763 km with a duration of about 600 s. Figure 3
shows the vehicle speed over time for the considered cycle and the corresponding battery
current profile of the BEV, respectively.
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3.2. Battery Modeling Description

To calculate the number of cycles through the RFC analysis, a dynamic model of
the Li−ion battery of the considered BEV is realized. Specifically, the current profile of
Figure 3b is used as input to the model to assess the battery SoC variation.

The dynamic model of a Q (Ah) capacity battery was tuned by the authors of a
previous research work [52]. Specifically, the open−circuit voltage (Vocv) and the change
in internal resistance (Rint

bat) during charging (Rint,ch) or discharge (Rint,dis) are used to
determine battery behavior. Battery current (Ibat) and voltage (Vbat) can be expressed
according to Equations (5) and (6):

Ibat =
Vocv −

√
V2

ocv − 4Rint
batP

2Rint
bat

(5)

Vbat = Vocv − Rint
bat Ibat (6)
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where P is the power required/delivered to the battery, and

Vocv =

{
Vocv,ch = f1(SoCch)
Vocv,dis = f2(SoCdis)

(7)

Rint
bat =

{
Rint,ch = f1(SoCch)
Rint,dis = f2(SoCdis)

(8)

The data from Equations (7) and (8) were experimentally determined by the authors
and implemented in the model by using look−−up tables. The SoC and the battery voltage
efficiency η are instantaneously determined as follows (9):

SoC = SoCini −
∫

η Ibat
Q

dt (9)

where Ibat has a negative or positive sign during the charging/discharging process, respec-
tively, and efficiency is determined as (10):

η =

{
ηch = Vocv

Vocv−IbatRch

ηdis =
Vocv−IbatRdis

Vocv

(10)

where SoCini is the initial value of SoC, and Q (Ah) represents the battery capacity. The
battery specifications refer to Renault ZoE [20]. Its nominal capacity corresponds to 22 kWh
(55 Ah at 400 V). The ZoE battery is composed of two modules placed electrically in parallel.
and each module is made up of 96 Li−−ion cells electrically connected in series. The DoD
is set at 90%. Figure 4a depicts the measured open−−circuit voltages vs. the state of charge
during charge and discharge for the studied Li−−ion cell, while Figure 4b illustrates the
registered internal resistances vs. the state of charge during battery charge and discharge.
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4. Experimental Activity: Materials and Methods
4.1. Aging Test Design

The experimental aging campaign was carried out on Panasonic NCR 18650 Li−ion
batteries, typically employed in BEVs. The Panasonic NCR datasheet, listed in Table 1, is
detailed in [53]. The maximum continuous discharge/charge currents are, respectively, 2C
and 0.7C.
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Table 1. Main features of the considered Panasonic NCR 18650 Li−ion battery ([53]).

Parameter Value

Nominal voltage 3.6 V
Nominal capacity (at 25 ◦C) 3350 mAh (typical)

Weight 47.5 g
Max discharge C−rate 2C

Max charge C−rate 0.7C
Voltage operating range 2.5 V–4.2 V

The aging procedure is sequentially designed as follows:

• Initial Battery Capacity Determination (BCD).
• Galvanostatic charge/discharge cycling was repeated 30 times up to 150 cycles and

subsequently repeated 75 times up to 300 cycles. Every 30 cycles (until the battery
reaches 150 cycles), BCD was performed to assess the capacity fade due to cycle aging.
Subsequently, when the cell exceeded 150 cycles, BCD was carried out every 75 aging
cycles until the battery reached the maximum number of aging cycles allowed by the
manufacturer. The restricted cycling range of up to 150 cycles was chosen since the
first aging cycles did not follow a linear relation with capacity fading.

BCD was performed by fixing the C−rate at 0.5C (corresponding to a current of 1.7 A)
both in charge and discharge. A voltage range of 2.5−4.2 V was fixed, and the resting time
between charge and discharge was 5 min. Furthermore, the charge was carried out as a
constant current (CC) followed by a constant voltage (CV) process, maintaining the voltage
during CV at 4.2 V until the cut−off current of 65 mA was reached. The cycling tests were
realized by varying the charging C−rate while the discharge C−rate was fixed equal to 2C.
The latter was chosen since it corresponded to the battery’s required current peak value
over the considered driving cycle.

Specifically, two NCR cells were tested at 0.3C and 0.7C. These values correspond to a
charge power of 22 kW (considering a three−phase AC urban charging column) and 50 kW
(i.e., a DC fast−charging column), respectively.

The maximum number of cycles was fixed at 300 since the cell SOH exceeded the 80%
threshold value, as presented in the aging tests performed by the manufacturer [53].

4.2. Experimental Section

This section illustrates the test rig and instrumentation used for the aging tests. Figure 5
depicts the battery test rig. The instruments to realize the aging tests were purchased from
BioLogic®. In detail, the galvanostat/potentiostat BioLogic SP−240 and its external booster
HCV−3048 were used to perform the experiments.
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5. Results and Discussion
5.1. Simulation and Rainflow Cycle Counting

The Renault ZoE battery was simulated through the implemented dynamic model
described in Section 3.2. Figure 6 depicts the SoC variation over the chosen driving cycle
of Figure 3a. It was assumed that the BEV starts with a fully charged battery (SoC equal
to 1). Specifically, the simulation was performed by repeating the driving cycle since the
battery SoC reached its minimum value (i.e., 0.1). Subsequently, the battery was completely
charged to restore the initial condition. According to battery specifications (22 kWh as
nominal capacity), the BEV can travel up to 160 km since the driving cycle was repeated
28 times.
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for the SC03 driving profile.

5.2. Experimental Results

As regards the experimental results to assess the battery life reduction when cycled
at different C−rates (i.e., 0.3C and 0.7C, corresponding to 22 kW AC three−phase and
DC fast−charging columns, respectively), the voltage and current trends over time are
illustrated in Figures 7 and 8 in reference to the 0.3C and 0.7C charging rates, respectively.
It is shown that the voltage trend varies within the allowable range (i.e., from 2.5 V to 4.2 V,
as suggested by the Li−ion cell manufacturer). According to the experimental campaign
described in Section 4.2, battery capacity was measured for the fresh cell every 30 aging
cycles until the battery reached 150 cycles. This was performed since the first aging cycles
do not follow a linear relation with the capacity fading. Subsequently, battery capacity
determination was performed every 75 cycles until the cell reached its end of life (300 cycles,
as reported in the manufacturer’s datasheet).
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Figure 9 illustrates the measured data in terms of the time variation of the battery
maximum capacity (Qmax in Equation (4)) for both experiments on NCR cells.
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Figure 9. Experimental measurements (points) and trends (dashed lines with circles) of battery
maximum capacity when the cells are cycled at 0.3C (red points and red line) and 0.7C (blue points
and blue line) as charge C−rates. Discharge C−rate is fixed at 2C. The horizontal red and blue dotted
lines identify the corresponding 80% SoH of the cells cycled at 0.3C and 0.7C charge rates, respectively.

For both cells, SOH variation over time can be assessed according to Equation (4),
dividing Qmax by Q_r, i.e., the rated capacity of each fresh cell. Specifically, the red dotted
line corresponds to the 80% SOH of the cell cycled at the 0.3 C−rate in the charging phase.
The blue dotted line identifies the 80% SOH condition for the cell cycled at the 0.7 charging
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C−rate. It is emphasized that the results obtained from the experimental tests are in line
with those presented in the NCR battery datasheet, although they refer to different cycling
conditions, as indicated in [53]. Since the EOL for BEV batteries is identified at 80% SOH,
it is evident that the NCR cell can last for about 210 cycles when charged at 0.7C (i.e.,
2510 mAh of remaining useful capacity). On the other hand, by reducing the C−rate to
0.3C, the battery reaches 255 cycles (i.e., a remaining useful capacity of 2680 mAh).

Therefore, in parity with discharge rate (2C), it is highlighted that fast−charging cycles
at 50 kW reduce the battery lifespan by about 17% with respect to the charge in a 22 kW
three−phase AC column.

6. Conclusions

In the coming years, massive penetration of battery electric vehicles is expected. Since
BEVs have a limited mileage range and the current charging columns require a long time
to charge the vehicle, fast−charging stations are needed. Nevertheless, increasing the
charging power contributes to reducing the battery pack lifespan.

To quantify such a reduction, this research work aimed to investigate the effect of dif-
ferent charge rates on NCR cells through experimental aging tests. The main contributions
are the following:

• A dynamic battery model was developed to obtain the SoC variation over the consid-
ered driving cycle.

• A customized rainflow cycle counting algorithm was applied to the SoC profile to
identify the DoD of each cycle for subsequent implementation on the experimental
test rig.

• Galvanostatic charge/discharge cycling interspersed by battery capacity determina-
tion was carried out for two NCR cells, emulating the BEV charge at 22 kW and
50 kW, respectively.

• The experimentally obtained results are in line with the aging performed by
the manufacturer.

• A battery lifespan reduction of about 17% is registered when the cell is discharged at a
higher C−rate (i.e., 0.7C with respect to 0.3C).

Thus, this work can provide deep insight into the expected massive penetration of elec-
tric vehicles, providing an estimate of battery useful life based on users’ charging conditions.
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