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Abstract: This paper proposes a novel virtual inertia control strategy for distributed power systems
with high penetration of renewable energy sources. The strategy uses a quasi-Z-source power
converter to emulate the inertia response of a synchronous generator by regulating the DC-link
capacitor voltage in proportion to the grid frequency deviation. This paper analyzes the effect of
inertia on the frequency regulation of a single-area power system and derives the parameter design
method and limitations of the virtual inertia. The paper also introduces the working principle
and modulation technique of the quasi-Z-source power converter and presents the virtual inertia
control scheme based on a voltage-frequency controller. The paper verifies the feasibility and
effectiveness of the proposed strategy through MATLAB/Simulink simulations and dSPACE semi-
physical experiments. The results show that the proposed strategy can reduce the frequency deviation
and rate of change of frequency (RoCoF) by 20% and 50%, respectively, under load disturbances.
The paper demonstrates that the quasi-Z-source power converter can provide flexible and adjustable
virtual inertia for distributed power systems without additional energy storage devices.

Keywords: distributed power system; quasi-Z-source power converter; virtual inertia; virtual
synchronous generator; frequency regulation

1. Introduction

Renewable energy generation technology is the most widely used and representative
energy development direction in the world. Promoting the development and utilization of
renewable energy is the trend of energy policies in various regions [1]. As the penetration
rate of renewable energy in the grid increases, the inertia of the grid will gradually decrease
since renewable energy is integrated into the grid through static power electronic converters
that do not contain any inertia. The reduction in inertia will cause the deviation value of
the grid to be more significant when the frequency fluctuates and will seriously threaten
the stability and reliability of the power system [2,3].

Inertia is an inherent property of the rotor of a Synchronous Generator (SG). The
SG rotor automatically slows down and releases the kinetic energy stored in its rotor to
reduce the Rate of Change of Frequency (RoCoF) of the grid when the grid frequency
drops. Moreover, it also helps to minimize the maximum deviation of frequency dips.
The frequency response curve of a synchronous motor in a power system in the event of
a network-side tripping event is shown in Figure 1, where only the primary frequency
regulation process is given and the secondary frequency regulation process is neglected.
The inertia effect mentioned above is also shown in Figure 1, and the load reduction process
is similar to it [4].

Recently, different solutions to solve the decreasing inertia problem of distributed
power systems have been proposed by a large number of scholars. The mainstream inertia
improvement method uses wind turbines to simulate inertia generation. The virtual inertia
control strategy in wind power systems, based on energy storage technology, including
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fuzzy control and state observers to compensate for wind turbine inertia, was studied
in [5,6]. Limited torque control was presented in [7] to provide inertia responses, and an
energy storage device was used to solve the frequency drop problem of the Doubly Fed
Induction Generator (DFIG) in the process of rotor speed recovery. Based on the droop
control strategy, [8] proposed to allow wind turbines to participate in a frequency regulation
process so that they can continuously provide virtual inertia support for the power system.
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The majority of the existing research focuses on alternative methods for enhancing
inertia, apart from the utilization of grid-level energy storage technologies like batteries,
supercapacitors, and flywheels, which serve to compensate for grid frequency deviations.
The photovoltaic storage system’s storage battery device was proposed in [9], and the
battery’s charge and discharge rate is adjusted quickly by calculating the grid frequency
and battery state to generate virtual inertia. In [10], the frequency nadir, settling frequency,
and RoCoF of battery energy-storage systems (BESS) are improved via a flexible synthetic
inertial control technique. The grid RoCoF is determined using a frequency-locked loop like
a phase-locked loop [11], which directly influences battery output power. In [12], an adap-
tive inertial simulation control strategy for a high-speed flywheel energy storage system
uses a power excitation method to evaluate the disturbance level to engage in frequency
regulation quickly and accurately. The authors of [13] propose a virtual inertia control
approach for wind power, solar, and energy storage equipment during mild disturbances.
Experimental testing has not confirmed this method. Energy storage devices can boost
system inertia, but they can also cause low efficiency and safety and cost issues.

A concept known as Virtual Synchronous Generator (VSG) technology, which operates
grid-connected inverters as synchronous generators, is another well-known method for
improving inertia [14–18]. The purpose of using the VSG control strategy is to give the
inverter a role similar to that of a synchronous generator so that the accepted theory of
traditional power systems can still be used in modern power systems with high levels of
renewable energy penetration. Although it is possible to simply increase the inertia of the
system by arbitrarily setting the virtual inertia coefficient of the VSG, this is based on the
premise that the VSG can output or absorb infinite high power, which is far from proven.
Virtual inertia control based on a synchronous generator model is proposed in [19], which
introduces the dynamic equations of a synchronous generator into the inverter, making the
inverter show an inertia response similar to that of a synchronous generator. This method
can replicate the dynamic characteristics of a synchronous generator, but it requires high
computational power and accurate parameter estimation. Virtual inertia control can also
be achieved through sliding-mode control [20] or voltage-frequency control [21]. Sliding-
mode control forms a sliding-mode surface between output power and the grid frequency
of the inverter, effectively suppressing system disturbance and uncertainty. However, it
requires a reasonable sliding-mode surface design and gain design. On the other hand,
voltage-frequency control makes the DC-side capacitor voltage proportional to the grid
frequency, allowing for simple adjustment of the virtual inertia time constant. Still, it
requires consideration of the limitation of the DC-side capacitor voltage.
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This study presents a novel virtual inertia technique to solve the aforementioned
inertia problem. It simulates the grid-required inertia by using the capacitor group on
the DC side of the quasi-Z-source grid-connected power converter. The Z-source con-
verter aims to overcome some of the limitations of traditional power electronics convert-
ers. The topologies, modulation techniques, and application of Z-source converters were
studied in [22,23]. Z-source converters can be classified into two types: Z-source and
quasi-Z-source converters. The quasi-Z-source converter has some advantages over the
Z-source converter, such as continuous input current, lower voltage stress, and a simpler
modulation technique [24]. However, few studies have explored the potential of Z-source
converters for providing virtual inertia to distributed power systems, which is the main
contribution of this paper.

This work focuses on the utilization of virtual inertia in distributed power systems
through the application of quasi-Z-source power converters. It is a novel method that
applies Z-source converters to virtual inertia control in distributed power systems, which
can enhance the system frequency stability and power quality under various disturbances
and uncertainties. The main contributions of the study are:

• Modeling and analyzing a single-area power system with a synchronous generator, a
grid-connected power converter, and different types of loads;

• Developing a virtual synchronous generator control strategy for an inverter to simulate
the AC grid and provide grid support;

• Designing a virtual inertia scheme based on the energy stored in the DC-link capacitors
of the quasi-Z-source power converter, and deriving the control parameters for the
quasi-Z-source side and the AC side;

• Simulating and experimenting with the proposed virtual inertia control strategy using
Matlab/Simulink software and a 1 kW prototype.

2. Effect of Inertia on Frequency Regulation of Power Systems

A simplified schematic diagram of a single-area power system is shown in Figure 2,
which includes several typical components of the power system: a synchronous generator,
a renewable energy grid-connected power converter, and a resistive load unaffected by
frequency. In this system, Pm is the power generated by the synchronous generator alone,
which is provided by the power system to the outside world. Ppv is the difference between
the power consumed by the AC/DC rectifier and the power generated by the DC/AC
inverter, which is absorbed by the grid-connected power converter. PL is the power
consumed by resistive-like loads that are independent of frequency. The grid-side resistive
load affects the variability of the output power of the grid-connected power converter.
Therefore, Ppv is constant unless there is a load change event in the power system.
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where J represents the sum of the moments of inertia of the generator and turbine, H rep-
resents the inertia time constant of the synchronous generator at a standardized value, 
and the relationship with the rotational inertia J is given in (1). Egen represents the rota-
tional kinetic energy of the rotor, and VArated refers to the rated power of the system, which 
is 1 kW in this paper. 
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Figure 2. Single-area power system structure.

It is assumed that the quasi-Z-source grid-connected power converter does not pro-
vide virtual inertia support in the single-area power system shown in Figure 2 when the
frequency of the power system is regulated by the synchronous generator only. A block
diagram of the frequency regulation framework of a typical power system containing a
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reheat turbine is shown in Figure 3, where TG denotes the time constant of the governor,
while FHP, TRH, and TCH are the mechanical time constants of the reheat turbine [25].

Energies 2023, 16, x FOR PEER REVIEW 4 of 19 
 

 

Synchronous 
generator

SG

Quasi-Z source power 
converter

Frequency independent 
resistive load

mP

1L 2L
2C

pvC

pvP

1C

eP

LP

 
Figure 2. Single-area power system structure. 

− −

D
Speed 

governor

Inertia

DPΔ

1
2H

1
s

+

_L puPΔ
mPΔ −

1
1+ GT s

1
(1 )(1 )

+ HP RH

CH RH

F T s
T s T s+ +

+

Reference load     

+
+

Steam turbine

1/ R

_r puωΔ
_n puω

puω

  
Figure 3. Block diagram of power system frequency regulation. 

Table 1 lists the frequency regulation structure and the associated system parameter 
values shown in Figure 3. In general, the inertia time constant H is a common measure of 
the inertia magnitude in power systems. It has typical values of 5 s for gas-fired genera-
tors, 3.5 s for coal-fired generators, 3 s for nuclear generators, and 3 s for hydroelectric 
generators [4]. The well-known second-order Mechanical Oscillation equation, which 
mathematically describes the electromechanical behavior of synchronous generators, can 
be derived from Figure 3: 

_
_ _ _

2

2

/ / (2 )

r pu
m pu L pu r pu

gen rated ref rated

d
P P H D

dt
H E VA J VA

ω
ω

ω

Δ
Δ − Δ = + Δ

 = =

 (1)

where J represents the sum of the moments of inertia of the generator and turbine, H rep-
resents the inertia time constant of the synchronous generator at a standardized value, 
and the relationship with the rotational inertia J is given in (1). Egen represents the rota-
tional kinetic energy of the rotor, and VArated refers to the rated power of the system, which 
is 1 kW in this paper. 

Table 1. Parameters’ value of power system. 

Description Parameter Value 
Droop coefficient R 0.02 

Rotor speed coefficient TG 0.1 s 
Turbine coefficient FHP 0.3 s 

Reheat engine time constant TRH 7.0 s 
Main inlet time constant TCH 0.2 s 

Inertia time constant H 5 s 
Rated frequency fref 50 Hz 

Damping coefficient D 1.0 
Rated power VArated 1 kVA 

It is worth mentioning that the block diagram of the linearized frequency regulation 
structure shown in Figure 3 is only applicable to small-signal analysis, where the grid 

Figure 3. Block diagram of power system frequency regulation.

Table 1 lists the frequency regulation structure and the associated system parameter
values shown in Figure 3. In general, the inertia time constant H is a common measure of the
inertia magnitude in power systems. It has typical values of 5 s for gas-fired generators, 3.5 s
for coal-fired generators, 3 s for nuclear generators, and 3 s for hydroelectric generators [4].
The well-known second-order Mechanical Oscillation equation, which mathematically
describes the electromechanical behavior of synchronous generators, can be derived
from Figure 3:  ∆Pm_pu − ∆PL_pu = 2H d∆ωr_pu

dt + D∆ωr_pu

H = Egen/VArated = Jω2
re f /(2VArated)

(1)

where J represents the sum of the moments of inertia of the generator and turbine,
H represents the inertia time constant of the synchronous generator at a standardized
value, and the relationship with the rotational inertia J is given in (1). Egen represents the
rotational kinetic energy of the rotor, and VArated refers to the rated power of the system,
which is 1 kW in this paper.

Table 1. Parameters’ value of power system.

Description Parameter Value

Droop coefficient R 0.02
Rotor speed coefficient TG 0.1 s

Turbine coefficient FHP 0.3 s
Reheat engine time constant TRH 7.0 s

Main inlet time constant TCH 0.2 s
Inertia time constant H 5 s

Rated frequency f ref 50 Hz
Damping coefficient D 1.0

Rated power VArated 1 kVA

It is worth mentioning that the block diagram of the linearized frequency regula-
tion structure shown in Figure 3 is only applicable to small-signal analysis, where the
grid frequency f r fluctuates around its nominal value f ref and the frequency regulation
performance is not limited by the power rating of the synchronous generator.

To quantify the effect of power system inertia on frequency regulation, the transfer
function from load disturbance ∆Pm_pu to frequency deviation ∆ωr_pu can be obtained
according to Figure 3 as:

GPL->ωr =
−R(1 + TGs)(1 + TCHs)(1 + TRHs)

(2Hs + 1)(1 + TGs)(1 + TCHs)(1 + TRHs)R + FHPTRHs + 1
(2)

Figure 4 gives the zero-pole and frequency response plots of (2) under 5% load addition,
where the zero point is represented as a circle and the pole as a cross.
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The system has a higher-order transfer function (2), which cannot be analyzed using
the time-domain performance index of a typical second-order system. However, the figure
shows that the system has three zeros and four poles on the real axis, including a pair
of conjugate poles. The conjugate poles are the dominant poles, as they are close to the
imaginary axis and far from the other poles and zeros. As H increases, the system poles
P3 and P4 approach and tend to cancel the zero points Z2 and Z3, which are a pair of
dipoles. This reduces the maximum frequency deviation and RoCoF of the system, but also
prolongs the regulation time.

Furthermore, (2) is simplified using the dominant pole method; the system is repre-
sented by Z1, P1, and P2; and the simplified transfer function obtained is

GPL->ωr =
−R(1 + TRHs)

(2Hs + 1)(TRHs + 1)R + FHPTRHs + 1
= G0

s + Z1

s2 + 2ξωn + ω2
n

(3)

where ωn and ξ represent the undamped natural frequency and damping ratio, respectively.
By converting (3) into a typical Type II transfer function and combining the parameters

listed in Table 1, the relationship between various time-domain performance indicators of
the system and the inertia coefficient H can be obtained, as shown in Figure 5; the specific
process can be found in [26].

Energies 2023, 16, x FOR PEER REVIEW 6 of 19 
 

 

Inertia

Ro
C

oF

0/ 0.15 / @ 5
t s

df dt Hz s H s
=

= =

0
/ 0.075 / @ 10

t s
df dt Hz s H s

=
= =

r
t=

0s
df

/d
t

(H
Z

/s
)

 

Fr
eq

ue
nc

y 
na

di
r

r_
pe

ak
f

(H
z)

Inertia

_ 49.88 / @ 10r peakf Hz s H s= =

_ 49.86 / @ 5r peakf Hz s H s= =

 
(a) (b) 

O
ve

rs
ho

ot

Inertia

0.11%@ 10H sσ = =

0.14%@ 5H sσ = =

(%
)

σ

 Inertia

t 20.2 @ 10s s H s= =

13 @ 5st s H s= =

Se
tti

ng
 ti

m
e

st
(

)s

 
(c) (d) 

Figure 5. Time-domain performance index of the system under a 5% load change (a) RoCoF, (b) 
frequency deviation, (c) overshoot, (d) adjustment time. 

3. Analysis of Quasi-Z-Source Power Converter 
The quasi-Z-source circuit is often used in photovoltaic grid-connected applications. 

In this paper, the quasi-Z-source power converter used to provide virtual inertia is called 
a Quasi-Z-Source Rectifier (QZSR). 

The three-phase QZSR topology diagram is shown in Figure 6. The topology consists 
of two capacitors, C1 and C2. A filter capacitor, Cpv, with a relatively large capacitance is 
connected to the DC side to generate virtual inertia. Two inductors, L1 and L2, and a diode, 
S7, are also included. The diode S7 acts as a switch and needs to be replaced by a switch 
tube in the QZSR circuit to ensure that it is off in the conducting state and on in the non-
conducting state. vabc is the three-phase input voltage of the grid, and Lf is the grid-side 
filter inductance. 

dcV

2C

1CpvV

1L 2L

1CV

2CV

ae
be

ce

fL gabci

o
abcv

+

+ +

+

pvC
R

7S

− 

−  
Figure 6. Three-phase QZSR topology. 

One of the main reasons for selecting the quasi-Z-source rectifier to provide the vir-
tual inertia required by the power system is that the DC-side capacitor bank in the quasi-
Z-source circuit can act as an energy storage device that comes with the circuit. Therefore, 
there is no need to install other redundant energy storage devices to provide energy sup-
port. It is called virtual inertia because the simulated inertia provided by the energy stored 
in the capacitor is different from the inertia of the real synchronous generator, in essence, 
but they have the same function. 

Figure 5. Time-domain performance index of the system under a 5% load change (a) RoCoF,
(b) frequency deviation, (c) overshoot, (d) adjustment time.
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The increase in H will reduce RoCoF|t = 0 s, but increase the frequency peak size, as
shown in Figure 5a,b. This shows the effectiveness of the inertia of the power system in
suppressing frequency deviation and reducing RoCoF. Nevertheless, a significant load
change will cause a more serious RoCoF and the lowest point of the frequency drop. Other
methods should be used to prevent such unfavorable load changes. A more considerable
H value can attenuate the frequency overshoot, as shown in Figure 5c. However, this will
also slow down the dynamic range of the frequency adjustment and prolong the frequency
recovery process, as shown in Figure 5d.

3. Analysis of Quasi-Z-Source Power Converter

The quasi-Z-source circuit is often used in photovoltaic grid-connected applications.
In this paper, the quasi-Z-source power converter used to provide virtual inertia is called a
Quasi-Z-Source Rectifier (QZSR).

The three-phase QZSR topology diagram is shown in Figure 6. The topology consists
of two capacitors, C1 and C2. A filter capacitor, Cpv, with a relatively large capacitance
is connected to the DC side to generate virtual inertia. Two inductors, L1 and L2, and a
diode, S7, are also included. The diode S7 acts as a switch and needs to be replaced by a
switch tube in the QZSR circuit to ensure that it is off in the conducting state and on in
the non-conducting state. vabc is the three-phase input voltage of the grid, and Lf is the
grid-side filter inductance.
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there is no need to install other redundant energy storage devices to provide energy sup-
port. It is called virtual inertia because the simulated inertia provided by the energy stored 
in the capacitor is different from the inertia of the real synchronous generator, in essence, 
but they have the same function. 

Figure 6. Three-phase QZSR topology.

One of the main reasons for selecting the quasi-Z-source rectifier to provide the virtual
inertia required by the power system is that the DC-side capacitor bank in the quasi-Z-
source circuit can act as an energy storage device that comes with the circuit. Therefore,
there is no need to install other redundant energy storage devices to provide energy support.
It is called virtual inertia because the simulated inertia provided by the energy stored in
the capacitor is different from the inertia of the real synchronous generator, in essence, but
they have the same function.

The QZSR circuit operates in two modes: a non-shoot-through state and a shoot-
through state. It is assumed that the QZSR has a continuous inductor current, lossless
inductance and capacitance of the passive components, and negligible turn-on time loss
when analyzing the quasi-Z-source circuit.

The circuit diagram of the two working modes of the QZSR is shown in Figure 7,
where Vpv is the output voltage of the DC bus; i0 is the current of the DC bus; VL1, VL2,
iL1, and iL2 are the voltage and current of the inductors L1 and L2, respectively; Vc1, Vc2,
ic1, and ic2 are the voltage and current of the capacitors C1 and C2, respectively; Vdiode and
idiode are the voltage and current of the quasi-Z-source diode, respectively; and the specific
reference directions are as shown in the figure.
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Figure 7. Equivalent circuit of QZSR in two working states: (a) shoot-through state, (b) non-shoot-
through state.

When the circuit works in the shoot-through state, the switch S7 is turned off by the
shutdown signal. The circuit is shown in Figure 7a. The network side is short-circuited and
the quasi-Z-source capacitor charges the inductor, so there is

VL1 = −VC2 −Vpv
VL2 = VC1
Vdc = 0
iC1 = −iL2
iC2 = −iL1
iin = −(iL1 + iL2)

(4)

The grid and the quasi-Z-source inductance charge the capacitor and the DC-side load,
as shown in Figure 7b, when the circuit works in non-shoot-through states. At this time,
the switch tube S7 is turned on. There is:

VL1 = VC1 −Vpv
VL2 = VC2
Vdc = VC1 + VC2
iC1 = iin − iL1
iC2 = iin − iL2

(5)

Assuming that the quasi-Z-source circuit operates in a steady state in a cycle TS, the
duration of the shoot-through state is Tsh, and the duration of the non-shoot-through state,
abbreviated as Tnsh, is (Ts − Tsh). The voltage formulas on the inductors L1 and L2 can be
obtained based on the circuit volt-second balance principle as follows: VL1 = vL1 =

Tsh(−VC2−Vpv)+Tnsh(VC1−Vpv)
Ts

= 0

VL2 = vL2 = TshVC1+TnshVC2
Ts

= 0
(6)

Similarly, the average current on the capacitor during one steady-state cycle is zero,
i.e., the circuit expression is: iC1 = iC1 = Tsh(−iL2)+Tnsh(iin−iL1)

Ts
= 0

iC2 = iC2 = Tsh(−iL1)+Tnsh(iin−iL2)
Ts

= 0
(7)

Combining (6) and (7) yields: 
VC1 = 1−D

1−2D Vpv

VC2 = D
1−2D Vpv

IL1 = IL2 =
Ppv
Vpv

(8)
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where D = Tsh/Ts is defined as the duty cycle, while VC1, VC2, Vpv, IL1, IL2, and Vpv refer
to the steady-state values of the voltage, current, and power of the respective components
in the circuit. According to (6)–(8), the following expressions can be obtained:{

v̂dc = VC1 + VC2 = 1
1−2D Vpv = BVpv

IC1 = IC2 = Iin − IL, Idiode = 2IL − Iin
(9)

where BVpv is the peak DC-side bus voltage of the QZSR circuit, B is the boost factor, and
Iin is the output DC bus current.

4. Virtual Inertia Control Strategy
4.1. Mapping of Capacitors to Motor Rotors

A schematic diagram of the inertia mapping between the DC-link capacitor of the quasi-
Z-source circuit and the synchronous generator is shown in Figure 8. The rotor mechanical
and electrical angular velocities of the synchronous generator with a pair of poles are equal
and denoted as ωr, where ωr = 2πf r and f r is the grid frequency. Their respective reference
values are indicated as ωref. As shown in Figure 8, the angular frequency ωr and the DC
bus voltage vdc play a similar role in determining the respective inertia time constants
H and Hcap, which are proportional to the square of ωref and Vcdc_ref, respectively. This
observation suggests that if the DC-link capacitor voltage Vcdc_ref is correlated with the
grid frequency fr, the DC-link capacitor can release or absorb energy in a similar way
to a synchronous generator. Therefore, by using this analogous mapping, the virtual
inertia required for a distributed power system can be obtained from a quasi-Z-source
grid-connected power converter.
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Figure 8. Inertia mapping from DC-link capacitors to a synchronous generator. Figure 8. Inertia mapping from DC-link capacitors to a synchronous generator.

Inertia is the kinetic energy per unit that synchronous generators have in their rotor
and turbine. DC-link capacitor banks have an energy storage capacity similar to that
of synchronous generators, so the capacitors also have the potential to perform inertia
simulation. Based on the previous definition of H, the inertia time factor Hcap of the DC-link
capacitor can be defined as

Hcap =
Ecap

VAbase
=

CcdcVcdc_re f
2

2VAbase
(10)

where Ccdc and Vcdc_ref denote the DC-link capacitance and DC-link voltage reference values.

4.2. Quasi-Z-Source Power Converter with Virtual Inertia Strategy

The overall control block diagram of a quasi-Z-source grid-connected power converter
with distributed virtual inertia is shown in Figure 9. The inner-loop current controller
on the AC side regulates the id and iq in the dq coordinate system based on the reference
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values id_ref and iq_ref of the grid current. An external voltage loop controller with capacitor
C1 stabilizes the inverter input bus voltage, which is the Z-source PWM modulated voltage
in the quasi-Z-source topology. This external voltage loop has a similar effect as the DC-
side voltage controller of the conventional PWM rectifier. However, due to the special
characteristics of the quasi-Z-source topology, the DC-link capacitor voltage on the DC
side of the quasi-Z source should also be regulated by a voltage closed-loop controller to
generate a shoot-through duty cycle D. The shoot-through ratio and the regulation system
of the circuit should be reasonably set to ensure the rectification of the AC side and the
voltage conversion on the network side of the quasi-Z source, and not to bring excessive
voltage stress to the semiconductor devices in the circuit, causing device damage. The
voltage controller on the AC side is implemented as a PI controller, which controls the
DC bus voltage Vc1 by changing the value of the d-axis current reference id_ref to track its
reference vc1_ref, while the q-axis current reference iq_ref depends on the reactive power
requirement of the system for reactive power compensation.
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capacitor voltage change Δvpv_ref through the transfer function Kfv(s). When a frequency 
event occurs in the power system, it changes the DC-link capacitor voltage so that the 
capacitor can release or absorb energy for inertia simulation. In addition, the control 
scheme proposed in this paper only uses the DC-link capacitor of the quasi-Z-source 
power converter without any extra energy storage unit. The DC-link capacitor supports 

Figure 9. Quasi-Z-source grid-connected power converter with virtual inertia.

The virtual inertia simulation is generated by the new voltage-frequency controller
Kfv(s), shown in Figure 9, which connects the grid frequency change ∆f with the DC-link
capacitor voltage change ∆vpv_ref through the transfer function Kfv(s). When a frequency
event occurs in the power system, it changes the DC-link capacitor voltage so that the
capacitor can release or absorb energy for inertia simulation. In addition, the control
scheme proposed in this paper only uses the DC-link capacitor of the quasi-Z-source power
converter without any extra energy storage unit. The DC-link capacitor supports the DC-
link voltage and filters harmonics in the grid-connected power converter, so the control
scheme does not add any burden to the hardware design. Figure 9 also shows that the
PLL detects the grid frequency f from the grid voltage vgabc. Other faster methods for grid
frequency detection, such as frequency-locked loop FLL, can also be used in experiments.
The PLL dynamic process is ignored in all of the above discussion sections.

When the voltage-frequency controller Kfv(s) is not working, the quasi-Z-source circuit
works in the photovoltaic grid-connected state, and the circuit plays the role of transmitting
power to the grid. At this point, a block diagram of a conventional three-closed-loop
controller can be obtained, as shown in Figure 10. The controller uses a proportional-integral
controller for voltage and current control while ignoring the coupling effect between the
d-axis and q-axis, which is not drawn in the figure. The magnitude range of the capacitor
voltage Vpv used to generate inertia must be limited between [Vpv_min and Vpv_max], where
the minimum voltage Vpv_min is to ensure linear modulation of the power converter. The
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maximum voltage Vpv_max is then determined with the voltage ratings of the active and
passive components. The transfer functions Gd related to vpv(s) and Gi related to vc(s) are
obtained according to the small-signal model [27].
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It is worth mentioning that the ZSVPWM in Figure 9 refers to the quasi-Z-source
space vector pulse-width-modulation algorithm, which differs from the conventional PWM
modulation algorithm. This paper adopts the ZSVM2 modulation algorithm, which in-
serts the shoot-through time in any two phases of the three-phase bridge arm and splits
each shoot-through time into Tsh/4. This modulation method divides the total required
shoot-through time interval into four parts, but only modifies two switching times in the
circuit, hence the name ZSVM2 modulation algorithm [28]. When using the ZSVM2 modu-
lation algorithm, the relationship between the circuit modulation ratio M and the shoot-
through duty cycle D is crucial for the virtual inertia generated, and the specific limits can
be expressed as:

Dmax = 1− 3
√

3
2π

M (11)

According to the (11), the relationship between the ZSVM2 direct duty cycle and the
modulation ratio can be obtained, as shown in Figure 11.
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With the proposed voltage-frequency controller applied, the frequency regulation
block diagram in Figure 3 changes to Figure 12. In this diagram, ∆vpv_pu is passed
through the transfer function of 2Hcaps to obtain ∆Ppv_pu, and Kfv_pu(s) is the per-unit
value of the virtual inertia controller. As a result, the equivalent inertia time-constant shifts
H to H + HcapKfv_pu, where the second term can be seen as the virtual inertia constant
Hp, given as:

Hp = Hc · K f v_pu (12)

Since the dynamic response of voltage loop control is much faster than frequency
regulation, Kfv_pu (s) can be designed as a proportional controller to generate virtual inertia.
The specific expression is:

K f v_pu = (
∆Vpv_max

Vpv
)

/
(

∆ fr_max

fre f
). (13)
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where ∆Vpv_max = (Vpv_max−Vpv_min)/2 and ∆f r_max denote the maximum allowable volt-
age deviation and frequency deviation, respectively. The system parameters shown in
Figure 12 refer to their per-unit value forms, so ∆Vpv_max and ∆f r_max should be divided
by the rated DC-link voltage Vpv and frequency f ref. Substituting (10) and (13) into (12),
the virtual inertia coefficient Hp can be redefined as:

Hp =
∆Vpv_max fre f

Vpv∆ fr_max
·

CpvV2
pv

2VArated
(14)

Equation (14) shows that the virtual inertia time constant at a given rated power
depends on the following factors: DC-link capacitor size Cpv, rated DC-link voltage
Vpv, maximum voltage variation rate ∆Vpv_max/Vpv, and maximum frequency variation
rate∆f r_max/f ref.
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For a 1 kW quasi-Z-source power converter with a maximum frequency deviation
∆f r_max = 0.2 Hz (f ref = 50 Hz), the relationship between its virtual inertial time constant
Hp and Cpv, Vpv, and ∆Vpv_max is shown in Figure 13. The figure indicates that Hp increases
with the increases in Cpv, Vpv, and ∆Vpv_max. Moreover, the power converter can generate
a virtual inertia larger than that of the synchronous generator (the H of different generator
sets is usually between 2 s and 10 s). However, this requires a larger Cpv and Vpv, which
will increase the capacitance value, DC-link voltage, or voltage deviation, posing challenges
to the power converter design in terms of cost, size, and control. Also, the higher ∆Vpv_max
may limit the overmodulation and shoot-through duty cycle. Therefore, it is advisable to
generate only the required inertia for the power system to improve frequency stability.
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5. Simulation and Experiment Verification
5.1. Simulation Results

The simulation of the proposed virtual inertia control strategy is first built in MAT-
LAB/Simulink. The VSG-controlled inverter and the quasi-Z-source grid-connected power
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converter circuits were built separately, where the VSG-controlled inverter was used
to simulate the AC grid to provide grid frequency support so that the virtual inertia
could be reflected.

Some system parameters used in the VSG circuit are as follows: three-phase filter
inductance Lf = 0.6 mH and moment of inertia J = 0.1 kg·m2, corresponding to the inertia
time of a 1 kW power system. The constant H = 5.0 s and the AC output phase voltage is
110 V; other parameters are given in Table 1. The circuit parameters of the quasi-Z-source
power converter are shown in Table 2.

Table 2. Parameters of quasi-Z-source power converter.

Description Parameter Value

Rated DC Chain Voltage Vdc 336 V
Max. DC Chain Voltage Vpv_max 390 V
Min. DC Chain Voltage Vpv_min 282 V
DC chain capacitance Cpv 2.2 mF

Virtual inertia time constant Hp 5.0 s
Rated frequency f ref 50 Hz

Max. frequency deviation ∆fr_max 0.2 Hz
Voltage-frequency controller Kfv 270/40.2

Rated power VArated 1 kVA

The three-phase output voltage and current of the VSG obtained via simulation
are shown in Figure 14, which indicates that the VSG can be used to simulate the AC
power grid.
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The quasi-Z-source power converter can operate in the grid-connected inverter mode
when the proposed voltage-frequency controller Kfv(s) is not working. This mode differs
from the QZSR circuit and is called the Quasi-Z-Source Inverter (QZSI) circuit. In this
mode, the switch on the DC side is closed, and the photovoltaic array delivers active
power to the grid. The output results of the circuit simulation in the inverter mode are
shown in Figure 15. Figure 15a shows the quasi-Z-source capacitor voltage C1, C2, and Cpv;
Figure 15b shows the input voltage of the QZSI; and Figure 15c shows the shoot-through
duty cycle D. In the steady state, the voltages of capacitors C1, C2, and Cpv in the quasi-Z-
source circuit and the input voltage to the inverter must satisfy the voltage relationship of
the quasi-Z-source circuit when D = 0.08.

The simulation results of the grid frequency response are shown in Figure 16 when
the load on the grid side increases by 5% and the voltage-frequency controller is active.
Figure 16a shows that the maximum deviation of the grid frequency is about 0.1 Hz
without the proposed voltage-frequency controller and about 0.08 Hz with the controller.
This means that the proposed virtual inertia method can reduce the frequency deviation by
20%. Moreover, the RoCoF parameter can also be reduced from 0.150 Hz/s to 0.075 Hz/s,
which indicates that the power system RoCoF can be decreased by 50% compared with
the case without the virtual inertia controller. The proposed voltage-frequency controller
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allows the power system RoCoF to be determined by both the virtual inertia of the power
converter and the power system inertia, and to be flexibly designed according to the virtual
inertia coefficient Hp. Figure 16b shows that the quasi-steady-state voltage deviation of
the power grid is about 13.5 V, which is proportional to the quasi-steady-state frequency
deviation. This voltage deviation is within the maximum allowable voltage deviation of
54 V during frequency events on the grid. Figure 16c shows the variation of the quasi-Z-
source direct duty cycle and the modulation ratio M, which satisfies (11).
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Similar results can also be observed in Figure 17, but this time, the power system
is subjected to a 5% load reduction change on the grid side, and the grid frequency also
exceeds 50 Hz during the dynamic adjustment process.
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Figure 17. The frequency response curve of the system under a 5% load reduction: (a) grid frequency,
(b) DC-link capacitor voltage, (c) shoot-through duty cycle D.

5.2. Experiment Verification

The experimental circuit built to verify the virtual inertia strategy is shown in Figure 18.
In this circuit, the synchronous generator is replaced by a VSG, and the control algorithm
of the VSG and quasi-Z-source grid-connected converter is implemented using the digital
controller dSPACE hardware-in-the-loop simulation control platform. The VSG DC-link
voltage vgdc is kept constant by using a constant voltage DC power supply, which then
converts this voltage to AC voltage to simulate the grid voltage and provide a three-phase
load bank with resistance RL.
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The experiment was set up with a power of 1 kW, an AC output phase voltage of
110 V, a DC power supply output voltage of 335 V in normal operation, a switching tube
operating frequency of 10 kHz, and a resistive load box. Sensors and AD acquisition
were used to measure the grid-side voltage and current of the experimental prototype in
real-time. Figure 19 shows the experimental waveform. vgabc in the figure represents the
three-phase output voltage waveform of the VSG, with a peak voltage of 155.5 V and an
effective voltage of 110 V. igabc is the three-phase output current, with a peak current of
4.28 A and an effective current of 3.03 A. The figure shows that the three-phase output
voltage and current are smooth sinusoidal curves, which verifies that the VSG can provide
stable three-phase AC power and simulate the power grid.
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quency support in the process. 

Figure 19. Three-phase output (a) voltage of VSG, (b) current of VSG.

The quasi-Z-source power converter works in the inverted state when the voltage-
frequency controller does not work, which is equivalent to the PV grid-connected experi-
ment, and the experimental results are shown in Figure 20. The PV array in the experiment
is simulated by using a DC power supply in series with a resistor, DC input voltage
Vin = 336 V, and duty cycle D = 0.08. It can be seen from the figure that when the system is
working stably, the voltage on capacitor C1 is VC1 = 368 V, while the voltage on capacitor
C2 is VC2 = 32 V. The input inverter voltage is VDC = 400 V, which is the modulating
waveform of the quasi-Z source, i.e., ZSVM2 modulated waveform. At this time, the
PV array inputs 1 kW of active power to the grid.
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The comparative experimental results of the two systems without and with virtual
inertia under a 5% load addition are shown in Figure 21 when the proposed voltage-
frequency controller is active. The quasi-Z-source power converter provides a virtual
inertia of 5 s. Figure 21a shows that the system with virtual inertia has a lower RoCoF,
changing from 0.15 Hz/s to 0.075 Hz/s under a 5% load change. This is a 50% improvement
with virtual inertia. The maximum frequency deviation is also reduced from 0.12 Hz to
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0.10 Hz, which is a 20% improvement. Figure 21b shows the voltage change on the capacitor
Cpv during the load change. The DC-link voltage Vpv stays constant at 336 V without the
proposed virtual inertia method. The voltage drops from 336 V to 323 V with the virtual
inertia controller, and part of the energy released from the capacitor provides virtual inertia
and buffers the frequency adjustment.
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control strategy for the inverters to simulate the AC grid and provide grid support. The 
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Figure 21. Experimental results under a 5% load addition. (a) Frequency response, (b) voltage response.

Similarly, the effect of virtual inertia under a different scenario of load reduction is
shown in Figure 22. The comparative experimental results of the system without and
with virtual inertia under a 5% load reduction are shown in the figure when the quasi-Z-
source power converter provides 5 s of virtual inertia. Figure 22a shows that the system
with virtual inertia has a lower RoCoF, changing from 0.15 Hz/s to 0.075 Hz/s. This is a
50% improvement with virtual inertia. The maximum frequency deviation is also reduced
from 0.12 Hz to 0.10 Hz, which is a 20% improvement. However, the system frequency
exceeds the nominal frequency of 50 Hz due to load reduction. Figure 22b shows the
voltage change on the capacitor Cpv during the load reduction. Without the proposed
method, the DC-link voltage Vpv stays constant at 336 V. With the virtual inertia controller,
the voltage increases from 336 V to 349 V. The increased voltage on the quasi-Z-source
capacitor is the energy absorbed from the grid, which reflects the same inertia boost and
frequency support in the process.
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The inertia analysis approach suggested in this study is substantiated by the ex-
perimental results, demonstrating its efficacy in accurately predicting key performance
indicators of distributed power systems. These indicators include the rate of change of
frequency (RoCoF), quasi-steady-state frequency, and DC-link voltage. It is important to
acknowledge that the discrepancies observed between the projected values, simulation
results, and experimental results may be attributed to model simplification and impre-
cise signal measurements. The virtual inertia model being presented is founded upon a
quasi-Z-source power converter, which has the capability to be interconnected with either
the low voltage grid or the medium voltage grid. The model has the capability to offer
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virtual inertia in both grid-connected and islanded operation modes, provided that the grid
frequency can be measured at the point of common coupling (PCC). Hence, this method
can be effectively employed in the context of the medium voltage grid, hence enhancing
the frequency stability of power systems that possess a substantial integration of renewable
energy sources.

6. Conclusions

This paper proposes and implements a novel virtual inertia scheme for distributed
power systems using quasi-Z-source power converters. The scheme can enhance the fre-
quency stability of the power system by utilizing the energy stored in the DC-link capacitors
of the power converters. This paper also develops a virtual synchronous generator control
strategy for the inverters to simulate the AC grid and provide grid support. The simulation
and experimental results demonstrate that the proposed scheme can effectively improve
the frequency response of the power system under different load scenarios, and the virtual
synchronous generator can output a stable three-phase AC voltage. This paper contributes
to the research and development of distributed power systems with high penetration of
renewable energy sources, and provides a feasible and flexible solution for grid integration
and grid support.
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