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Abstract: Frequency response analysis (FRA) is a standard technique for monitoring the integrity of
the mechanical structure of power transformer windings. To date, however, there remains no suitable
method for online testing using this technique. One of the main issues that persists is that any hardware
designed to measure the frequencies in the range of interest would filter out frequency bands used
for assessment by humans. The growth of pattern recognition capabilities in deep learning networks,
however, now offers the possibility of detecting different types of faults in a narrow frequency band,
which is simply not possible for human experts. This paper explores the ability of a selection of typical
networks to classify common faults within different bands. The results show that networks are able
to identify faults in bands where humans are unable to find them, which has implications for signal
processing and electronics design in developing a system for online monitoring.

Keywords: condition monitoring; deep learning; online fault diagnosis

1. Introduction

Frequency Response Analysis (FRA) is considered to be one of the most reliable
methods for assessing the mechanical integrity of power transformer windings [1]. The
most common approach, Sweep Frequency Response Analysis (SFRA), involves applying a
low-voltage reference signal Vin to one transformer terminal and measuring the response
signal Vout at another terminal for a range of frequencies [2]. The result of this is the
transformer’s frequency response (FR), which contains multiple resonances representing
the relative magnitudes and couplings between the internal RLC components. Changes or
faults in a transformer winding change the balance of R, L, and C components, causing the
frequency response to change [3]. Typically, magnitude and phase measurements are taken
during SFRA, and interpretation relies on experts who visually inspect FRs to determine
the type and severity of any winding fault. However, this method is time-consuming,
inconsistent, and dependent on experts who assess damage to the core, windings, and leads
of the transformer by visually examining the frequency response, which ranges between
2 Hz and 2 MHz.

Usually, experts consider core issues to manifest in low frequency, windings in the
mid-band range, and leads and bushing issues in the upper range. Tests are exclusively
carried out with the transformer offline, and there has been little progress in advancing the
field to online monitoring beyond the lab.

One of the major issues to contend with is the wide frequency range required. While
studies [4,5] have found methods to inject high-frequency signals into transformers online,
a usable measurement technique remains elusive. This is because the low frequency band
typically extends power frequency below the 60 Hz, making it impossible or prohibitively
expensive to extract readings in this range.

Deep learning (DL) is a subset of machine learning that involves the use of artificial
neural networks with multiple layers to analyze and learn from complex data [6]. In recent
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years, there has been growing interest in the use of deep learning techniques in the field of
transformer frequency response analysis (FRA), as these techniques can help to improve
the accuracy and efficiency of analysis. One of the main applications of deep learning in
transformer FRA is fault detection and diagnosis. This is where neural networks are trained
on large datasets of transformer frequency response data to identify patterns and anomalies
that may indicate the presence of faults or defects in the transformer. By analyzing the
frequency response data in this way, deep learning models can help to identify faults much
more quickly and accurately than traditional methods.

One common technique in Series Data Classification (SDC) is to convert series data into
images, as seen in previous studies such as [7]. This approach is motivated by the impressive
performance of 2D Convolutional Neural Networks (CNN) for image classification [8].
In this study, both image and series data representations were used to analyze different
frequency ranges, allowing for a comparison of NN performance between the two formats.
The aim was to identify differences in performance and ultimately determine which format
is better to use for a given task.

Previous studies on transformer frequency response ranges have primarily focused on
determining the impact of transformer model parameter variations on frequency response.
For example, studies such as [9,10] have reported sensitivity studies to determine the effect
of various model parameters on FRA signatures.

In this study, we first aimed to determine whether deep learning networks are able to
identify faults using narrow frequency bands in the mid- and high-frequency regions of the
SFRA response, and second to determine whether there is a particular range in which the
distinguishing features of the plots are strongest. These studies are necessary precursors to
the design and optimization of hardware capable of measuring online SFRA response bands
with sufficient information to function effectively as monitoring devices. Additionally,
different data representations such as image and series data and the magnitude, and
phase of sweep frequency response analysis (SFRA) measurements were examined in
order to gain insights into how deep learning techniques can be optimized for different
frequency response ranges of transformers as a means of improving the accuracy of FRA
and fault diagnosis.

The remainder of this paper is organized as follows: Section 2 outlines the overview of
the system design and explains the proposed methodology; Section 3 presents performance
metrics and the results of the designed models; finally, Section 4 summarises the main
findings and suggests avenues for future work.

2. Methods
2.1. SFRA Data Generation

Deep neural networks rely on large datasets to perform well [6]. However, creating
models of faults on an actual transformer can be costly and destructive. Hence, simulation
studies must be conducted for exploration purposes. Transformer modelling involves
creating mathematical models that simulate the behaviour of a physical transformer. The
transformer model typically includes representations of the transformer winding as well
as other components such as the insulation and tank. While various models have been
developed to preserve geometric representation, in this we study utilize the well-established
lumped ladder model with ten segments (as shown in Figure 1), as it has been demonstrated
to produce good agreement with measured responses [11].

To calculate the parameters of the ladder model, the dimensions of a 33/11 kV 30 MVA
power transformer were used, as presented in [9]. The spatial measurements can be found
in Table 1, while a detailed cross-sectional view of the transformer winding is shown in
Figure 2.
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Figure 1. Ten-segment ladder model.

Figure 2. Cross-sectional view of transformer geometry.

Table 1. Transformer winding measurements.

Measurement Symbol HV (mm) LV (mm)

Conductor width w 2.4 7.2

Conductor height h 11.5 27.3

Insulation thickness tp 0.5 0.5

Distance between layers ts 5.0 5.0

Outer winding radius Ro 466.5 355.5

Inner winding radius Ri 374.5 275.5

Dist. between HV and LV winding DHV−LV 20.0

Dist. between LV and core DLV−Core 15.0

Dist. between HV and Tank DHV−Tank 92.0
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2.1.1. Calculating the Series Capacitance

According to the theory presented in [12], the total series capacitance of a continu-
ous winding is determined by adding the inter-turn capacitance Ctt and the inter-disk
capacitance Cdd as provided by Equations (1) and (2), respectively.

Ctt =
εpε0Dmπ(h + tp)

tp
(1)

Cdd = ε0

 k
tp
εp

+ ts
εoil

+
1− k

tp
εp

+ ts
εs

πDm(R + ts) (2)

where Dm represents the mean diameter of the winding, h is the height of the conductor, R
is the radial depth of the winding, tp denotes the thickness of the paper insulation on both
sides, εp represents the relative permittivity of the insulating paper, ε0 is the permittivity of
free space, εs is the permittivity of the disk spacer, εoil is the permittivity of the transformer
oil, and k indicates the proportion of circumferential space occupied by oil.

The calculation of the inter-turn capacitance and inter-disk capacitance follows the
sum of energy principle as described in [12]. According to this principle, the total energy of
the disk coil is equal to the sum of the individual capacitances within the disk. For a pair of
disks with N conductor turns, there will be 2N − 2 inter-turn capacitors. The total resultant
inter-turn capacitance between conductors is provided by Equation (3), and the resultant
inter-disk capacitance is provided by Equation (4).

CT =
1
2

Ctt

(
N − 1

N2

)
(3)

CD =
Cdd
3

l (4)

The series capacitance between a disk pair Cs is a sum of the resultant inter-turn
capacitance CT , and the resultant inter-disc capacitance CD as shown in Equation (5).

Cs = CT + CD (5)

2.1.2. Calculating Ground Capacitance

To calculate the ground capacitance, the formula for capacitance between concentric
cylinders was used. Referring to Figure 3, the ground capacitance between the HV winding
can be calculated using (6), while the ground capacitance between the LV winding and the
core can be calculated using (7), considering that the tank and the core are both grounded.

Figure 3. Top view of transformer showing ground capacitance and ground conductance.
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CHVg =
2πεrε0H

ln RHVo
RTank

(6)

CLVg =
2πεrε0H

ln RLVi
RCore

(7)

2.1.3. Calculating Conductance

To calculate the ground conductance for the HV and LV windings, the ground capaci-
tance was first determined and then used in Equations (8) and (9). The values for tan δ (the
insulation dissipation factor) and f (the frequency) were taken into consideration.

GHVg = 2π f CHVg tan δ (8)

GLVg = 2π f CLVg tan δ (9)

Similarly, the HV and LV series conductance were calculated using Equations (10)
and (11).

GHVs = 2π f CHVs tan δ (10)

GLVs = 2π f CLVs tan δ (11)

2.1.4. Calculating Series Resistance

The series resistance was calculated using Equations (12) and (13), which take the
frequency and conductor permeability into consideration [9]:

R′s1 =
1

2(h + w)
√

π f µ
σ

(12)

Rs1 = R′s1 × lCir (13)

where lCir is the total circumference of the winding conductor, h is the conductor height, µ
is the conductor permeability, and σ is the conductivity.

2.1.5. Calculating Self and Mutual Inductance

Figure 4a depicts a cross-sectional view of a single conductor loop. The self-inductance
can be calculated using the formula provided in [13], as shown in (14), where a is the radial
depth of the conductor, b is the axial length of the conductor, and R is the average radius of
the winding. Additionally, the Geometric Mean Distance (GMD) can be determined using
Equation (15).

(a)

(b)

Figure 4. (a) Top view of transformer, showing the ground capacitance and ground conductance and
(b) cross-section of a single conductor loop.
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Ls = µ0R(ln
8R

GMD
− 2) (14)

GMD =
√

a2 − b2e

[
2b
3a tan−1( a

b )+
2a
3b tan−1( b

a )−
b2

12a2 ln(1+ a2

b2 )

]
(15)

Figure 4b depicts two conductor loops with radii ra and rb separated by a distance of d.
The mutual inductance between the winding disks was calculated using (17). This equation
involves the complete elliptic integrals of the first and second kind, denoted as K(k) and
E(k), respectively. The formula used to calculate the mutual inductance is derived from the
expression for mutual inductance between two thin wire coaxial loops, as explained in [12].

Mab =
2µ0
√

rarb√
k

(E(k)− (K(k)) (16)

k =

√
4rarb

(ra + rb)2 + d2 (17)

The ladder model was simulated using a custom written Frequency Domain Nodal
Analysis Solution coded in MATLAB. This was preferred to using existing circuit simulation
software to make it easier to automate the workflow of changing the model parameters,
simulating, labelling, and then storing data for further processing.

2.2. Fault Modeling

Winding faults occur due to changes in a winding’s physical, structural, or material
properties. Therefore, to simulate these faults, it is possible to change the base properties of
the winding on the ladder model to mimic faulted conditions [14,15]. This change in the
winding properties would result in a change in the winding parameters, and consequently
the frequency response (FR). The simulation process was carried out for six different fault
cases, including dielectric leakage current faults (DLFs), inter-disk displacement faults
(IDFs), radial displacement faults (RDFs), short-circuit faults (SCFs), loss of clamping
pressure faults (LCFs), and non-faults (NFs). This section describes the simulation process
for each of the fault cases.

Radial displacement faults (RDFs) refer to cases in which parts of a winding are shifted
in the radial direction. To simulate this type of fault, the mean radius of the disks in the HV
winding, denoted as Rm, was varied by ±10%. The original value of Rm was 420 mm; thus,
the maximum expansion or contraction was ±42 mm. This range was considered practical
in light of the transformer’s surrounding geometry.

An IDF happens when there is an increase in the space between winding sections. In
this study, these fault were simulated by adjusting the inter-disk distance dpb by 0–100%.
Although previous studies [16,17] have simulated IDFs with disk spaces increasing beyond
300%, the range used in this study was limited to 0–100% (3 mm–6 mm) to account for less
severe IDFs.

LCFs are caused by mechanical hysteresis in the pressboard, which increases the
conductivity between the winding disks. To simulate this fault, the insulation dissipation
factor tan δ was increased, thereby increasing the series conductance Gs.

Similarly, DLFs occur due to an increase in leakage current to the earth. This fault
was simulated by increasing the ground conductance Gg by increasing the tan δ. In this
study, tan δ was increased up to 80% for both LCFs and DLFs, as previous studies [18] have
shown that tan δ can reach up to 80% when the winding paper insulation becomes moist.

To simulate SCFs, short-circuit connections were inserted between the affected disks.
These faults can occur with different short circuit impedance. To simulate this, the value of
Rsc was varied between 10–1000 Ω.
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To train the NNs, data for non-fault (NF) cases were required. The frequency response
(FR) for these cases needed to be sufficiently different to avoid generating duplicate sweep
frequency response analysis (SFRA) data while remaining within an acceptable range
of the base FR. The statistical index known as the correlation coefficient (CC), which is
recommended in the IEEE standard C57.149 [2], was used to achieve this. The calculated
parameters were varied until the CC values for the low, middle, and high frequency bands
of all the NF fault cases were above the specified threshold value of 0.9998.

To simulate the fault location, each possible disk on the winding was iterated through
while changing the number of affected surrounding disks. The frequency response for
each case had a resolution of 5000 points between the frequency range of 1 KHz–2 MHZ,
which is in accordance with IEEE standard C57.149 [2]. The entire fault simulation process
generated 24,000 fault cases. For a summary of this process, refer to Table 2.

Table 2. Summary of fault simulation.

Fault Case Changed Property Symbol Variation No. Cases

RDF Mean radius Rs ±10% 4400

IDF Inter-disk distance d 100% 9000

LCF Insulation dissipation factor tan δ 0–80% 4400

DLF Insulation dissipation factor tan δ 0–80% 4400

SCF Short circuit impedance Rsc 10–1000 Ω 5500

NF - - 0.0005% 4400

2.3. Data Preprocessing

To investigate the performance of the neural networks over different frequency ranges,
each frequency response (FR) was divided into 200 kHz intervals, as illustrated in Figure 5.
After segmentation, the FRs were split randomly, with 80% used for training, 10% for
validation, and 10% for testing. Because the datasets were sufficiently large, this random
split resulted in an even class distribution. This study explored both series and image data
representations of the FRA data. For the series data, only z-normalization was applied,
which is a typical preprocessing step. Two types of image representations were used:
Original Plot (OP) and Difference Plot (DP) images. The OPs were a reconstruction of the
FRA bode plot with only a single plot on the axes. This type of analysis would be virtually
impossible for humans, as there is no baseline plot for comparison on the graph. Neural
networks, however, are able to use the axis limits themselves as a frame of reference, and do
not need to “see” the reference plot on the same axes. The DPs were produced by plotting
both the reference trace and the faulted trace, then shading the difference between them to
be closer to what a human expert is able to analyze. The image data had a resolution of
256 × 256 in Portable Network Graphics (PNG) format, as lossless compression was used.
The preprocessing and NN training were implemented in Python 3.8 and TensorFlow 2.5.

2.4. NN Training

In this study, we investigated three neural network architectures: Xception was trained
with image FRA data, while ResNet and FCN were both trained using series FRA data. At
its core, fault classification using SFRA data is a Series Data Classification (SDC) task. There
have been many NNs proposed over the years for SDC. In [19], nine NNs were compared
for SDC, and it was concluded that the Residual Neural Network (ResNet) performed the
best, followed by the Fully Convolutional Neural Network (FCN). However, these findings
contradicted earlier research in [20] which suggested that FCN outperformed ResNet. For
this reason, this study tested ResNet and FCN using series FRA data. This section briefly
describes the architecture of each NN.
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Figure 5. Flowchart of frequency range analysis procedure.

2.4.1. FCN

FCN stands for Fully Convolutional Network, which is a type of neural network designed
specifically for semantic segmentation tasks. The architecture of FCN is based on a modified
VGG-16 architecture. However, instead of using fully connected layers at the end of the
network to produce a single output, FCN replaces those layers with convolutional layers.
This architecture contains three convolution blocks, each followed by batch normalization to
enhance generalization and speed up convergence. We used a global average pooling layer
before the final SoftMax layer to reduce the number of weights [20].

2.4.2. ResNet

ResNet is a deep neural network architecture that was introduced by Microsoft Re-
search Asia in 2015. It is designed to address the vanishing gradient problem that occurs
in very deep neural networks. ResNet uses skip connections to allow information to flow
directly from the input to the output, bypassing intermediate layers. This helps to mitigate
the problem of gradients becoming very small and allows for the training of very deep net-
works. The version we used contained three residual blocks followed by a global average
pooling layer and a SoftMax classifier [20]. Each residual block contains three convolutions,
after which the output is added to the residual bock’s input and fed to the next layer,
followed by a ReLU activation function and a batch normalization operation [19].

2.4.3. Xception

Xception is a deep convolutional neural network proposed in [21] as an extension of
the Inception architecture. It comprises 36 hidden layers and up to 22.6 M parameters. The
Xception architecture employs depthwise separable convolution layers that separate the
spatial and channel-wise filtering, reducing the number of parameters needed to train the
model and improving efficiency [22]. This architecture includes skip and residual connec-
tions to mitigate the vanishing gradient problem and improve performance. Xception is
modular and flexible, making it adaptable to different tasks and datasets, and has achieved
state-of-the-art results in computer vision tasks such as image classification, object detec-
tion, and semantic segmentation. In this study, we used a version of Xception pretrained
on the ImageNet dataset [23].
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The hyperparameters of each NN were tuned using the Hyperband tuning algorithm
from the Keras Tuner library [24]. The Hyperband tuning algorithm uses a principled
early-stopping strategy that allocates more resources to promising hyperparameter configu-
rations while eliminating poor ones. This makes Hyperband more efficient than alternative
approaches such as Random Search and Bayesian optimization. The search space for the
tuner included the learning rate, dropout rate, and batch size, as well as the hidden layers
for Xception. The Hyperband operation ran on each model for a total of 75 trials, allow-
ing a sufficient number of hyperparameter combinations to be tested. Table 3 shows the
tuned hyperparameter values for each model. All models evaluated in this study used the
adaptive learning rate through the adaptive moment estimation (Adam) optimizer.

Table 3. Tuned NN Hyperparameters.

Architecture FRA
Measurement Learning Rate Dropout Rate Batch Size No. of Hidden

Layers
Layer1 Node

No.
Layer2 Node

No.
Layer3 Node

No.

Xception-DP
Mag. 0.005 0.7 32 2 288 480 NA
Phase 0.003 0.5 48 2 480 352 NA

Xception-OP
Mag. 0.05 0.45 48 3 160 96 416
Phase 0.003 0.65 48 3 449 160 384

FCN
Mag. 0.001 0.75 32 NA NA NA NA
Phase 0.001 0.8 32 NA NA NA NA

ResNet
Mag. 0.007 0.8 32 NA NA NA NA
Phase 0.009 0.55 32 NA NA NA NA

2.5. Performance Metrics

To assess the performance of the networks, Precision and Recall were calculated
as follows (Figure 6):

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

where P and R are the Precision and Recall, respectively, TP is the number of True Positives,
FP is the number of False Positives, and FN is the number of False Negatives. These
categories were all known a priori for the entire data set, as it was generated via simulation.

A low Precision indicates that the network is detecting instances of faults where there
are none (false alarms), while a low Recall indicates that the network is not detecting faults
as it should (missed detections).

Typically, both metrics are combined. However, because missed detections have more
severe consequences than false alarms when dealing with faults, it is preferable to keep the
metrics separate, using Recall as the primary measure and examining the Precision after-
wards. Additionally, when assessing the performance of a neural network all classes are usu-
ally given equal importance. However, in this case, certain winding faults are more critical
than others. For instance, an SCF is considered the most severe winding fault, and can have
catastrophic consequences if not addressed; on the other hand, a DLF is not considered as se-
vere an occurrence. To compensate for this disparity between the severity of different faults,
the average weighted Precision and Recall scores (Equations (20) and (21)) were calculated
as follows:

Pw,avg =
1
N

N

∑
F=0

PF IF (20)

Rw,avg =
1
N

N

∑
F=0

RF IF (21)



Energies 2023, 16, 6347 10 of 14

where Pw,avg and Rw,avg are the average weighted Precision and Recall values, N is the
number of faults, F is the fault number from Table 4, PF is the precision of fault F, and IF is
the importance of fault F from Table 4.

The importance value ascribed to each fault is subjective, and was determined through
consultation with testing personnel in the field. The values of Pw,avg and Rw,avg were
calculated for each network in each frequency band.

Figure 6. Average Weighted Precision example.

Table 4. Assigned importance values.

Fault Number Fault Type Abbreviation Importance

1 Short Circuit Fault SCF 1

2 Inter-Disk displacement Fault IDF 0.8

3 Radial displacement Fault RDF 0.7

4 Dielectric leakage current Fault DLF 0.6

5 Loss of Clamping Pressure LCF 0.5

6 No-Fault NF 0.4

3. Results

When a new FR band is input to any of the networks, the network classifies it into one
of the fault (or no fault) categories.

The performance of the neural networks across different frequency response ranges is
illustrated in Figure 7. Surprisingly, the networks achieved relatively high performance
even when trained on significantly reduced frequency response range data. The precision
and recall values for some frequency response ranges were almost as high as those obtained
when using the entire frequency response (100 KHz–2 MHz).
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(a) (b)

(c) (d)

Figure 7. Overall neural network performance for varying frequency band ranges: (a) precision with
magnitude data, (b) recall with magnitude data, (c) precision with phase data, (d) recall with phase data.

These findings indicate that although faults are typically looked at in particular fre-
quency ranges by humans, their effects result in distinguishable features throughout the
frequency spectrum of the impedance plots. This is a significant finding, as a robust online
monitoring technique would be required to filter out power, harmonic, and noise frequen-
cies. If the fault features were not distinguishable throughout the spectrum, this would
render online techniques blind to faults which manifest predominantly in those ranges.
The ability of deep learning classifiers to distinguish features in ranges where they may not
be most prominent allows the use of band-limited measurement devices without sacrificing
the ability to detect any faults, as opposed requiring to the wide ranges recommended by
various expert bodies such as the IEC [25] and CIGRE [26].

Our results indicate that the neural networks (NNs) trained using images (Xception OP
and Xception DP) performed better than those trained using series data (FCN and Resnet)
for all frequency response ranges, achieving higher precision and recall values. This aligns
with the findings of a previous study [7], which suggested that 2D CNN architectures
trained using image-encoded series data outperformed 1D CNN architectures trained
using traditional series data. Nonetheless, there may be other factors that influenced this
difference in performance.

One possible reason why the neural networks trained with images (Xception OP and
Xception DP) outperformed those trained with series data (FCN and Resnet) is because of
the architecture depth. Xception has a significantly deeper architecture compared to FCN
and ResNet, which can be an advantage when dealing with complex learning problems,
as shown in [22]. This is because deeper neural networks have more layers, making them
capable of learning more complex features and representations of the input data. In contrast,
shallow networks with fewer layers may not have enough capacity to learn these complex
features, and can be limited in their ability to accurately model the input-output mapping.

Furthermore, among the three models analyzed in the study only Xception employed
pretrained weights. These Pretrained weights may have allowed Xception to learn pertinent
features from the vast number of images in the ImageNet database, improving the model’s
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generalization and performance. This finding is consistent with the research conducted in [27],
which emphasized the advantages of transfer learning in deep neural networks.

Another notable observation is that the neural networks achieved the highest precision
and recall scores in the 100 kHz–200 kHz and 1.8 MHz–2 MHz ranges, which correspond to the
lowest and highest regions of the frequency response, respectively. This is interesting because it
suggests that although artefacts may show up visually in different frequency bands, there are
features across the entire range of frequencies that can be extracted.

Figure 8 displays the results obtained after the application of the weighted importance
transformation procedure. In this transformed scenario, Xception-DP continued to have the
highest precision and recall values in the 100 kHz–200 kHz and 1.8 MHz–2 MHz regions,
while the 400 kHz–600 KHz region produced the best precision and recall scores for both
ResNet and FCN. The higher recall value in this region makes it a more practical option.
Recall is generally more important than precision in fault classification studies. This is
because while a false positive may lead to additional time spent manually double-checking
FRs for faults or transformer inspection, a false negative may result in serious damage if
left unchecked, compromising the security of the system [28].

(a) (b)

(c) (d)

Figure 8. Weighted neural network performance for varying frequency band ranges: (a) Xception OP,
(b) Xception DP, (c) ResNet, (d) FCN.

There was no clear pattern suggesting whether phase or magnitude data performed
better for the neural networks. However, an interesting finding emerged in the
100 kHz–200 kHz range, where the phase measurements led to significantly higher preci-
sion and recall values for all models. While the cause of this difference is unclear, it suggests
that the models were better at extracting relevant features from the phase measurements in
this specific frequency range than from the magnitude measurements.
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It should be noted that phase measurements are typically not used in practical FRA
due to the sensitivity of real-world phase measurements, which can introduce noise into
the measured response [2]. This is a limitation of this study, as we only used simulated
frequency responses, which do not have this issue. Therefore, further research is required
into whether the performance of these neural networks on phase measurements translates
to real-world frequency responses.

Additionally, several simplifications in modeling were made due to the high compu-
tational load, such as the number of ladder segments and the choice of a circuit model as
opposed to a Finite Element Model. These were necessary simplifications due to available
computational resources, and it is expected that higher-fidelity models could be used as dig-
ital twins to generate synthetic data specific to their physical counterparts as computational
power and simulation methods continue to improve.

4. Conclusions

Deep learning holds tremendous promise as an enabler of online transformer monitor-
ing in cases where measurable frequency bands may be limited. The findings of this study
show that neural networks can achieve promising precision and recall scores even with just
200 kHz fractions of the frequency response. It is expected that as networks become larger
and more advanced and as more data become available, their classification performance
will continue to improve.

This study takes the first steps in exploring this research area, and proposes an ap-
proach for evaluating the performance of neural networks trained for FRA fault classifi-
cation while taking into account the varying importance of each fault type. Future work
should include testing on a physical transformer in order to determine the minimum data
requirements for developing a training set as well as the utility of high fidelity simulation
models, particularly 3D Finite element models, as digital twins for generating synthetic
data to use in network training.
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