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Abstract: Lithium-ion batteries, as a typical energy storage device, have broad application prospects.
However, developing lithium-ion batteries with high energy density, high power density, long lifes-
pan, and safety and reliability remains a huge challenge. Machine learning, as an emerging artificial
intelligence technology, has successfully solved many problems in academic research on business,
financial management, and high-dimensional complex problems. It has great potential for mining and
revealing valuable information from experimental and theoretical datasets. Therefore, quantitative
“structure function” correlations can be established to predict battery health status. Machine learning
also shows significant advantages in strategy optimization such as energy optimization management
strategy. For lithium-ion batteries, their performance and safety are closely related to the material
structure, battery health, fault analysis, and diagnosis. This article reviews the application of machine
learning in lithium-ion battery material research, battery health estimation, fault analysis, and diag-
nosis, and analyzes its application in aviation batteries in conjunction with the development of green
aviation technology. By exploring the practical applications of machine learning algorithms and the
advantages and disadvantages of different applications, this article summarizes and prospects the
application of machine learning in lithium batteries, which is conducive to further understanding
and development in this direction.

Keywords: machine learning; lithium-ion batteries; battery materials; estimation of SOH; fault
diagnosis; aviation

1. Introduction

In recent years, the energetic development of energy storage batteries has been driven
by national policies to achieve the goal of “dual carbon”. This has led to increased demand
for higher-performance energy storage batteries. As a typical and high-prospect energy
storage device, lithium-ion batteries (LIBs) have been widely used in mobile power, electric
vehicles (EVs), home appliances, and even in the aviation area [1]. In order to further
increase the percentage of renewable energy consumption, developing advanced batteries
with high energy density, high power density, long life, and reliable safety is considered
important and is the ultimate goal of the energy battery [2,3]. In addition to traditional LIBs,
lithium-metal batteries (LMBs) including lithium-sulfur batteries (Li-S) and solid-state
batteries (SSBs) has good research prospects because of the ultra-high energy density [4].

The energy density of LMBs has high expectations. However, its practical application
still has great challenges. Reasonably preparing a safe and high-performance LMB and
effectively surveying its working status remain huge challenges. The long-term cycling and
rate capability in experimental testing has been widely used to evaluate the electrochemical
performance of functional materials or formulations [5]. However, due to the plentiful
material and spatial structure, it is almost impossible to improve the battery performance in
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a short period of time by trying and looking for the incorrect way. Various characterization
techniques such as scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and X-ray photoelectron spectroscopy are often used to monitor the morphological
changes of chemical materials in solid-state LIBs during cycling [6,7]. In situ characteri-
zation at the atomic level of the LIBs is limited, which makes it extremely challenging for
the discovery of structure–function relationships and the basic understanding of working
mechanisms. Calculation methods in chemical materials, especially density functional the-
ory (DFT) calculations and molecular dynamics (MD) simulations, are widely used in LIBs
to predict the properties of the molecular structure, energy, reactivity, and so on. It com-
bines the theory of quantum mechanics with molecular dynamics simulation methods to
simulate and predict molecular systems at the atomic level. However, with the complexity
of system structures and the accuracy of the experimental results that we need, it has been
difficult for previous research methods to keep up. The gap between simplified theoretical
models and reality largely hinders the application of computational simulations to describe
complex interface problems in batteries. In the actual use of LIBs, LIBs will have different
degrees of attenuation and aging, which will lead to a decrease in cruising range, shorten
the service life, and also cause potential safety hazards. Therefore, accurately predicting
the health status of LIBs is critical to improving their performance and safety. For the esti-
mation of the health state of LIBs, there are several main methods: model-based methods,
data-driven methods, hybrid methods, etc. [8–11]. We mainly describe the estimation of
the health status of LIBs by the data-driven methods. For LIB applications, safety issues
are paramount. Currently, battery management systems (BMS) are mainly used to monitor
the performance and safety of battery systems. The BMS collects the current, voltage, and
temperature data from the battery system and estimates the battery’s state such as the
state of charge (SOC) and state of health (SOH) [12]. The BMS also performs diagnostic
functions based on measurements and estimates based on certain diagnostic methods and
undertakes a series of corresponding measures to ensure the safety of the battery system.
However, the failure problem is complex and diverse, so it needs to be further clarified as
to which approach should be used to effectively respond to each situation.

In recent years, the development of green aviation technology has been valued, and
many LIBs are used in the aviation field [5]. The aviation industry has shown that compared
to construction, oil, and natural gas, digitalization has matured and can offer advantages in
operational efficiency and cost reduction [13]. However, in the aviation industry, there is
still space to gain more benefits from the subset of artificial intelligence. In green aviation
technology, green means an environmentally friendly development model with the goal
of energy conservation and environmental protection. The combination of green aviation
and machine learning (ML) technology can optimize flight planning, save fuel, improve
maintenance efficiency, optimize airport operation. and improve aviation safety, realize
more efficient, safe and environmentally friendly air transport, and contribute to the
sustainable development of the aviation industry.

ML, as a rapidly developing and powerful data analysis technology, can process and
analyze a large amount of complex data and extract useful patterns and information from
it. It can handle complex problems in various fields such as natural language processing,
image recognition, recommendation systems, etc. ML algorithms can automatically learn
and make decisions through training data without human intervention. This gives ML
enormous advantages in real-time applications and large-scale data processing such as
autonomous driving and financial risk assessment. ML algorithms can accurately predict
and classify data by learning patterns [14]. It can discover hidden correlations in data,
thereby improving the accuracy and precision of prediction. For LIBs, ML has the advantage
of quickly capturing the complex relationships between the battery materials, structures,
and performance, helping us study and improve the performance and safety of LIBs. For
LIBs, its performance and safety are inseparable from the material structure, battery health,
fault analysis, and diagnosis. The emerging interdisciplinary field of ML is still rapidly
expanding and has been applied to many fields such as chemical materials, energy batteries,
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financial risk assessment, and even music education [6,15,16]. Although ML methods are
helpful in various applications of LIBs, there are limited comprehensive and in-depth
reviews on related topics. Therefore, this paper is an attempt to fill this gap. For the
convenience of readers, Table 1 lists the existing review articles related to ML in the fields
of battery materials, the estimation of SOH, fault diagnosis, and aviation batteries.

Table 1. Existing reviews related to ML in the fields of LIB materials, the estimation of SOH, fault
diagnosis, and aviation batteries.

Topic References Focus

Battery materials Chen et al. (2020) [17]
Reviewed the application of ML in
energy materials, outlined different
ML technologies and best practices.

Estimation of battery SOH Sui et al. (2023) [18]

Reviewed the types of ML algorithms
used for SOH estimation and

analyzed their advantages and
applicability.

Battery fault diagnosis Samanta et al. (2021) [19]
Reviewed the most advanced ML

based data-driven fault
detection/diagnosis technology.

Aviation batteries Raoofi et al. (2023) [13]

Reviewed the BMS strategy
supported by intelligent algorithms
in the propulsion system of electric

aircraft; reviewed artificial
intelligence security risk assessment

and learning assurance.

The rest of this article is organized as follows. Section 2 introduces the concept of
ML and several commonly used ML algorithms. Sections 3–5 introduce and discuss the
application methods of ML in battery materials, the estimation of battery health, and battery
fault diagnosis, respectively. Section 6 explores the application of ML in aviation batteries.
Then, in Section 7, the application of ML methods in batteries is discussed. In Section 8, a
summary is made and future directions are discussed.

2. Machine Learning Concepts, Algorithms, and Implementations

ML is an artificial intelligence technique that allows computers to automatically learn
from data and provide accurate results based on the data.

ML involves the following concepts: features, which are variables that describe sample
attributes such as height, weight, and age; training set, which is the dataset used to train the
model; test set, which is the independent dataset for testing the model performance; model
selection, which is the process of selecting the best algorithm or parameter configuration
based on the performance evaluation [20].

ML algorithms can be divided into the following types: supervised learning, where a
learning model is trained with a set of labeled data (data with known outputs), and then the
trained model is used to make estimations on the unknown data; unsupervised learning,
which solves various problems in pattern recognition based on training samples of the
unknown class (not labeled); reinforcement learning, which is a ML method that improves
behavior by simulating reward signals in the brain nerve cells. Self-adjusting through trial
and error in the environment, in reinforcement learning, the algorithm receives feedback
from its surroundings and makes the best decision based on the feedback.

ML implementations typically require the following steps. (a) Data cleansing and pre-
processing: raw data are processed to ensure its quality and integrity. (b) Feature extraction
and selection: identify a subset of features to use to train the model. (c) Model training and
optimization: use the training set to fit the model and adjust the hyperparameters to achieve
the best performance. (d) Model evaluation and testing: use test sets to evaluate the model
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performance and adjust the model or reselect features based on the results to improve
performance. (e) Estimation and deployment: use trained models to make estimations or
generate results.

In recent years, with the rapid development of data resources, ML has solved many
problems in business, financial management, and academic research on high-dimensional
and complex problems. In the following, we introduce several popular ML methods.

2.1. Linear Regression

Linear regression is a traditional supervised learning algorithm. Linear regression
assumes a linear relationship between the input variable (X) and the single output variable
(Y), as shown in Figure 1a.
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Figure 1. Several popular ML algorithms: (a) linear regression; (b) support vector machines;
(c) artificial neural networks; (d) decision trees.

Mathematically, the linear function can be expressed as

Y = WX + b (1)

where X = (X1, X2, . . . Xn) is the n-dimensional input variable, W = (W1, W2, . . . Wn) is
the linear coefficient, and b is the bias term. The goal is to find the best estimate of the
coefficient W so that the error of the predicted value Y is minimized. W and b are usually
estimated using the least squares method, represented by minimizing the sum of squares
of the difference between the Y value of the sample and the value predicted by (1). For
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simple problems, linear regression can provide fast, robust, and physically interpretable
fitting results. However, for complex material problems, linear regression sometimes does
not do a good job and may lead to some problems such as overfitting in the study of
battery materials.

2.2. Support Vector Machines

Support vector machines (SVM) are a popular and widely discussed ML classification
method and are linear classifiers. In two-dimensional space, a hyperplane can be treated as
a straight line, assuming that all input points can be completely separated by the line, and
the boundary between the two classes is determined by the hyperplane in Formula (2), as
shown in Figure 1b.

g(x) = wx− b = 0 (2)

where w is the normal vector and b is the threshold, based on the labeled data. The goal
of the SVM is to find a set of segmentation coefficients w, b so that a hyperplane can
optimally cut data x, that is, the two classes can be correctly separated with the largest
class interval. In three-dimensional and above space, the plane that separates the data
is called a hyperplane, which is the decision boundary for classification. It separates the
existing training dataset and, for new data, determines which side of the hyperplane the
data are located to obtain the classification of the new data. Therefore, the basic SVM
algorithm is a binary classification algorithm, and for multi classification tasks, using SVM
multiple times can solve the problem. SVM can solve high-dimensional problems, that
is, large feature spaces; it can solve ML problems with small samples and handle feature
interactions with strong generalization ability. However, when there are many observation
samples, its efficient operation has certain challenges, and there are few universal solutions
to nonlinear problems.

2.3. Gaussian Process Regression

Gaussian process regression (GPR) is a stochastic process (a collection of random
variables indexed by time or space), and each finite set of these random variables is subject
to multivariate normal distribution. GPR is a commonly used supervised learning method
that can be used to solve regression and classification problems. The advantages of GPR
model are mainly reflected in dealing with nonlinear and small data problems.

A Gaussian process is a set of random variables, and the joint probability distribution
formed by each finite subset of this set of random variables is subject to multivariate
Gaussian distribution, which is shown in Formula (3):

f ∼ GP(µ, k) (3)

where µ(x) and k(x, x′) are the mean function and covariance function of the random
variable x, respectively. Therefore, it can be seen that a Gaussian process is actually
determined by the mean and covariance function of random variables.

In the traditional regression model, it is defined as Y = f (x). In the GPR, let f (x) obey
the Gaussian distribution. Usually, assuming the mean is 0, which is Formula (4):

Y = f (x) ∼ N(0, ∑) (4)

where Σ is the covariance function. Using the kernel technique, let ∑ ij = K(xi, xj), then
the covariance function can be calculated by solving the kernel function K. Therefore,

the covariance function Σ can be decomposed into
(

K, K∗
KT
∗ , K∗∗

)
, where K is the training

kernel matrix, K∗ is the training test kernel matrix, and KT
∗ is the testing training kernel
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matrix. The conditional probability distribution of implicit function f can be expressed as
Formula (5).

f∗
∣∣∣ (Y1 = y1, . . . , Yn = yn, x1, . . . , xn, xt) ∼ N(KT

∗K−1y, K∗∗ − KT
∗K−1K∗) (5)

2.4. Artificial Neural Networks

An artificial neural network (ANN) is a mathematical model based on the principles
of biological neural networks. It can simulate the processing of information by the human
brain and nervous system [21]. Neural networks simulate the brain through the following
ways: neural networks gain knowledge by learning from external environments; synaptic
weights of internal neuronal connections store acquired knowledge. Neurons are connected
to each other in various patterns through links, which determines the strength of the effect
of one neuron on another. Neural networks mimic biological axon–synapse–dendritic
connections. A feedforward neural network ANN consists of an input layer Xi, hidden
layers Zi, and an output layer Yi, as shown in Figure 1c. The output of neurons in the
hidden layer can be calculated as the product of the input vector and the weight matrix of
the neurons in the layer. After adding the bias term, it can be obtained through nonlinear
transformation of the activation function. Mathematically, the output formula for neurons
in the hidden layer is Zi = σ

(
wTXi + w0

)
, where σ is an activation function that defines

whether the neuron can be activated by excitation. ANN is characterized by parallel
distributed processing ability, high fault tolerance, intelligence, and self-learning ability. It
combines information processing and storage together, and is actually a complex network
composed of a large number of simple components connected to each other, with a high
degree of nonlinearity, capable of performing complex logical operations and implementing
nonlinear relationships.

Battery data typically contain complex nonlinear relationships. ANN, as a nonlinear
model, can better fit and model nonlinear features in battery data. Battery data are usually
multidimensional including multiple parameters such as voltage, current, and temperature.
ANNs can process multidimensional data and learn and extract complex correlations be-
tween data through hidden layers. Due to the distributed computing nature of ANN, even
if some neurons fail, the overall performance of the network can remain relatively stable.

2.5. Variational Autoencoder

Variational autoencoder (VAE) is a generative model, which combines the concepts of
autoencoder and variational inference. Autoencoder is an unsupervised learning method
that encodes the input data into a low dimensional representation and attempts to recon-
struct the original input data from the low dimensional representation. The autoencoder
consists of an encoder and a decoder. The encoder maps the input data to the low di-
mensional potential space, and the decoder maps the potential representation back to the
reconstructed input data. VAE introduces the idea of variational inference on the basis
of the autoencoder, which enables the model to learn the potential distribution of data.
By introducing randomness into potential space, VAE enables the model to generate new
samples and interpolate and operate in potential space. The training process of VAE in-
volves maximizing the marginal likelihood of the observed data while minimizing the
Kullback–Leibler (KL) divergence between the potential representation and the prior dis-
tribution. In this way, VAE can learn the potential structure of the data and generate new
samples. VAE is widely used in the field of generative models including image generation,
feature learning, and data compression. KL divergence is used to measure the degree of
difference between these two distributions. Specifically, for each sample, we calculated the
KL divergence between the potential variable distribution and the prior distribution, and
summed the KL divergence of all samples as part of the loss function of VAE. Mathemati-
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cally, for two probability distributions P and Q, the KL divergence between them is defined
as Formula (6):

KL(P‖Q ) =
n

∑
i=1

P(x) log
P(x)
Q(x)

(6)

2.6. Decision Trees

Decision trees (DTs) are a commonly used classification and regression method, where
each node represents a feature classification test and can only store one category or value,
with each branch representing output or judgment conditions. Starting from the root node
of the decision tree, select a branch of the tree and follow the selected branch all the way
down to the leaves. The categories or values stored by the leaf nodes serve as the decision
result. DT can be used for binary classification, multivariate classification, continuous
variable prediction, and other problems, and are easy to explain and understand, as shown
in Figure 1d.

3. Machine Learning Is Applied to Battery Materials

The research on battery materials involves multiple scale levels, from atomic to macro-
scopic levels. Common theoretical methods include DFT calculation, MD simulation,
the phase field method (PFM), and finite element method (FEM) as well as experimen-
tal characterization techniques and electrochemical performance tests. These methods
can help us understand the structure, properties, and behavior of battery materials, and
provide guidance for designing more efficient batteries [6]. The research focus of battery
materials includes performance prediction and the optimization of liquid and solid elec-
trolyte materials. For liquid electrolyte materials, the main focus is on their conductivity,
electronic conductivity, viscosity, and other properties; For solid electrolyte materials,
the primary emphasis is on exploring their diffusion barrier, migration energy, and ion
conductivity [22–24]. Factors such as temperature, molecular concentration, and compo-
nent information are commonly used to describe electrolyte properties and can be used
to predict the performance of battery materials [25,26]. These research results can help us
design more efficient, stable, and safe battery materials.

ML plays an important role in many fields, not only in analyzing large datasets and
establishing quantitative relationships to design materials or methods reasonably, but also
by promoting the development of theoretical and experimental methods. For example, in
chemistry, physics, and materials science, ML models have been widely used to predict the
material properties and reaction kinetics including functional simulations and interatomic
potential simulations. The application of ML in the fields of materials and chemistry has
become one of the hot research fields. In addition to the above advantages, ML is also
widely used in fields such as material structure prediction, catalyst design, and crystal
discovery. The use of ML models can quickly screen out new materials with potential
application value, optimize the process flow, and reduce production costs [27]. With the
improvement of computing hardware performance and the increase in datasets, ML will
play an increasingly important role in the future.

The simulation of Kohn–Sham (KS) equations based on decryption-degree functional
theory has become an important part of modern materials and chemical science research
and development portfolios. The research process is shown in Figure 2.
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Despite its versatility, conventional DFT calculations are typically limited to a few
hundred atoms due to the computational bottleneck caused by the KS equation. In [28], the
author introduced a method based on ML to predict the electronic structure of materials
or molecules through a new rotational invariant representation, which avoids the use of
the traditional KS equation. This method uses neural networks to generate reference DFT
results on millions of grid points for training, which can achieve high fidelity simulation and
is several orders of magnitude faster than traditional methods. For DFT density, in [29], the
author used ML techniques to calculate the energy of coupling clusters from the DFT density
for the geometric optimization and molecular dynamics of DFT density. This method could
achieve a quantum chemistry accuracy lower than 1 kcal/mol and could obtain good results
even in the strain geometry and conformational changes that do not perform well with the
standard DFT method. This method can overcome the computational burden limitation of
the advanced ab initio quantum chemistry method and improve its applicability. In [30],
the author used supervised ML to develop a fast and accurate interatomic potential model
through three emerging methods such as the moment tensor potential, message passing
network, and symbolic regression. These models significantly improve the speed of atomic
scale simulations and are changing the way molecular and material research is conducted
with almost no loss of accuracy. In [31], the article proposed a machine-learning interatomic
potential (MLIP) based method to accelerate the estimation of lattice thermal conductivity.
This method used ML interatomic potentials trained on short ab initio molecular dynamics
trajectories to evaluate inconsistent interatomic force constants and confirm its significant
accuracy. This method can serve as a standard tool and can greatly accelerate and promote
the estimation of lattice thermal conductivity compared to all commonly used DFT solutions.
In [32], an E(3)-equivariant deep learning interatomic potential was introduced to accelerate
molecular dynamics simulations. The method obtained state-of-the-art accuracy and could
faithfully describe the dynamics of complex systems with remarkable sample efficiency.
The work introduced neural equivariant interatomic potentials (NequIP), which is an E(3)-
equivariant neural network approach for learning interatomic potentials from ab-initio
calculations for molecular dynamics simulations. While most contemporary symmetric
perceptual models use invariant convolution and act only on scalars, NequIP employs
E(3)-equivariant convolutions for interactions of geometric tensors, resulting in richer
and faithful representations of the atomic environment. The high data efficiency of this
method allows for accurate potential construction using a high-order quantum chemistry
theoretical level as a reference, with the ability to perform high-fidelity molecular dynamics
simulations on long-time scales.

ML can be used as a new method for DFT calculations, MD simulations, and solv-
ing multi-scale physical equations. It can perform high-precision atomic simulations on
large systems, making it possible to detect complex geometric shapes, charge distribution,
thermal and dynamic stability as well as ion diffusion in interfaces or amorphous phases.
This provides a deeper understanding of the working mechanism and material evolution
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schemes in electrochemical reactions, which helps to search for and design new materials
and battery formulations. Using ML methods such as SVM, random forest (RF), neural
networks, etc., a large number of candidate materials have been screened and optimized
to find battery materials with excellent performance. This can greatly improve the effi-
ciency of material research and reduce experimental costs. By training ML models, the
performance of new materials can be predicted such as conductivity, energy density, cycle
stability, etc. This helps researchers to have a general understanding of material properties
before conducting experiments, thus enabling more targeted experimental design and
optimization. ML methods such as graph neural network (GNN) and convolutional neural
network (CNN) are used to model and optimize the crystal structure and nanostructure of
materials [33]. This can help researchers discover new material structure design patterns
and improve material performance. ML methods can be utilized to achieve material model-
ing and simulation at different scales. This helps researchers comprehensively understand
the properties and behavior of materials, providing more information for material design.

4. Machine Learning Is Applied to Battery Health Estimation

The traditional research methods for battery health mainly rely on physical charac-
teristics (such as open circuit voltage, internal resistance, etc.) and stoichiometry (such as
coulomb counting) [34]. However, these methods have laboratory environmental limita-
tions and require advanced data processing and analytical techniques. Therefore, modern
battery health monitoring methods are based on advanced algorithms and models to
achieve non-invasive monitoring and can be carried out in actual operating environments.
These novel methods include the use of ML, artificial intelligence, and big data technologies
to accurately predict battery life and performance [1,35–37]. The lifespan and performance
of LIBs are influenced by aging stress factors such as the charging state, charging and
discharging rate, number of cycles, and temperature [38]. Many studies have investigated
the extension in the battery lifespan through derating methods, which are summarized in
detail in [39]. ML methods offer advantages in data learning and processing as adaptive
algorithms, and many businesses and academic organizations are collecting datasets to
study a range of battery models used to predict battery degradation and fault diagno-
sis [40–43]. For example, in [44], the authors achieved case studies from the laboratory
to the field by estimating the transmissible data transmission capacity of LIBs through
deep learning. Data acquisition is the committed step of battery condition assessment and
fault diagnosis. The voltage, current, temperature, capacity, and other parameters of the
battery can be obtained through sensors, testing equipment, and other methods. At the
same time, more comprehensive data information can also be obtained through recording
the battery usage and inspecting the battery appearance [45,46]. Generally, in practice,
it is not practical to collect all of the available data. Therefore, in practice, the amount
of data available and the accuracy of the algorithm need to be weighed to find the best
solution. At the same time, it is also necessary to pay attention to the quality and integrity
of the data to avoid incorrect input, leading to incorrect results [47]. In order to ensure the
accuracy and integrity of the data, data cleansing, data denoising, data alignment, etc. are
usually used to ensure the quality of the data. Due to the fact that the data for battery status
assessment and fault diagnosis are usually collected in real-time, there may be issues of
data loss and poor-quality during data collection and processing. To address these issues,
methods such as interpolation, extrapolation, and smoothing can be used to fill in missing
data, or methods such as anomaly detection and data correction can be used to process
poor quality data [48–50].

Despite the advantages of the high energy and power density of LIBs, maintaining
the SOH of LIBs remains a challenge due to the effects of various environmental operating
conditions such as temperature, humidity, charging and discharging rates, which can affect
the cycle life of LIBs [51]. In addition, LIBs also age naturally during long-term storage,
reducing their SOH. Therefore, appropriate measures need to be taken to extend the service
life of LIBs and improve their reliability [21]. In [52], the authors proposed a battery capacity
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estimation method based on charging data and data-driven algorithms. They estimated the
battery capacity by calculating variations in the ampere integral formula and used statistical
values as the labeled capacity. The sequence-to-sequence (Seq2Seq) model is used to predict
the future capacity change, and the estimation error is corrected by the residual model
of GPR. Experiments have shown that this method can accurately predict the remaining
capacity of batteries with an error of less than 1.6%. This study can effectively predict the
battery capacity. When the electrode system is disturbed by a sinusoidal voltage (current)
AC signal, a corresponding current (voltage) response signal is generated, from which
the impedance or admittance of the electrode can be obtained. The impedance spectrum
generated by a series of frequency sine wave signals is called electrochemical impedance
spectroscopy (EIS) [53]. For the study of equivalent circuits and EIS, the EIS in the ultra-high
frequency range can be described by inductor L. In particular, when the intersection of the
EIS and the real axis corresponds to the conduction process, the EIS can be represented
by a resistor R0. As the frequency decreases, the EIS exhibits two arcs related to the SEI
film (high-frequency part) and the charge transfer process (intermediate frequency part)
of the battery. In the low-frequency section, the EIS appears as a straight line related to
battery diffusion. In [54], the authors explored an approach that used a convolutional
autoencoder (CAE) for overcomplete feature extraction from the EIS data. CAE-DNN is
an end-to-end deep learning architecture that uses CAE to extract overcomplete features
from EIS data. This architecture extracts useful features in an unsupervised manner and
can be used for battery capacity maintenance and SOH estimation. Compared with other
baseline estimation methods, CAE-DNN can more accurately estimate the SOH of LIBs. The
proposed architecture based on end-to-end deep learning is called CAE-DNN. Compared
with other baseline estimation methods, the proposed architecture extracts useful features
in an unsupervised manner and estimates the SOH of LIBs more accurately. In [55], where
they also used encoders, the virtual SOH experiment developed was based on incremental
capacity measurement, using commonly recorded BMS signals to train digital battery cells.
The first dataset was used for the proof-of-concept including the load distribution under
the same old and new battery conditions. The second dataset was tested under more
complex load distribution conditions and successfully estimated the SOH. Compared to
continuous capacity testing, this framework does not impose restrictions on small currents
and can be applied to actual driving cycles. It is entirely independent of the prevailing
and unknown aging condition due to the application of battery models based on the novel
encoder–decoder architecture and thus provides the cornerstone for a scalable and robust
estimation of battery capacity on a pure data basis. In the research process, when the
number of samples is too small, we can use transfer learning (TL), incremental learning,
and semi-supervised learning combined with domain knowledge and experience and other
methods. These methods can effectively use existing data and knowledge, improve the
training efficiency and accuracy of the model, and provide more reliable support for battery
status assessment and fault diagnosis.

BMS is mainly used to monitor the performance and safety of battery systems. It
evaluates the health status of batteries by collecting data such as the current, voltage,
and temperature [56]. At the same time, BMS can also perform diagnostic functions,
use measurement data and specific diagnostic methods to determine the status of the
battery, and take corresponding measures to ensure the safety of the battery system. In [57],
the authors discussed digital twin technology and cloud collaboration for future battery
management systems. They proposed a four-layer networked architecture based on cloud
collaboration for battery management systems. The design of this architecture broke
through the limitations of traditional battery management in terms of computing power and
storage space, and achieved the application of high-performance algorithms. In addition,
they established a digital twin model for batteries, which enabled refined management and
safety control of the entire battery life cycle.

In [58], the authors used virtual experiments via transfer- and meta-learning to esti-
mate the SOH of EV and improve the training efficiency for the remaining battery capacity
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based on pure data, while also emphasizing the robustness of the experiment. In [59],
the authors used the battery early aging data to carry out DP identification and TL in the
research, which effectively improved the accuracy of the SOH estimation. In addition, they
also used the long short-term memory (LSTM) network to establish the SOH estimation
model, and compared the performance with other ML algorithms. The experimental results
indicate that LSTM performed best in estimation accuracy. In [60], the authors used a long
short-term memory neural network model based on incremental capacity to estimate the
SOH, which can predict the SOH of a single battery cycle for small sample data. Through
TL, we can estimate the SOH under different load modes with high accuracy. In [61], the
article proposed a health state estimation method based on collaborative feature selection
and ML methods that was applied to actual EV data from over 1200 charging processes.
After constraining the voltage range, they extracted and selected features from the capacity
curve to describe the battery degradation process and estimate the SOH. Recursive feature
elimination collaborates with linear regression models to prune unimportant features to
find the relevant SOH estimation features. Therefore, the SOH estimation is based on the
obtained features and the implementation of a low computational cost linear regression.
In [62], the authors proposed a new SOH estimation method, which was divided into two
stages. In the first stage, eight typical 300 s voltage distributions were used to describe the
entire charging process and multiple aging features were extracted. Then, a stacked ensem-
ble model with five basic models was introduced. In the second stage, the Shapley additive
interpretation method was used to obtain the contribution of features and understand
estimations, thereby reducing concerns about applying black box models. In summary,
this new method achieved flexible, fast, and robust SOH estimation. The performance of
the proposed model was verified using two different battery degradation datasets and the
results showed that the accuracy of the proposed model was better than conventional ML
models including light gradient boosting machine (GBM), eXtreme gradient boosting (XG
Boost), RF, SVM, and GPR. The frame diagram of the algorithm is shown in Figure 3.
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In the estimation of the LIB health status, ML methods such as CAE are used to extract
and select features from the battery charging and discharging data, internal resistance data,
temperature data, etc., in order to find key features related to the battery health status.
This helps to improve the accuracy and robustness of the estimation model. A battery
health estimation model can be established through ML algorithms such as SVM, RF, CNN,
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etc. [33]. This can help researchers monitor the health status of batteries in real-time and
predict their remaining lifespan and failure time.

5. Machine Learning Is Applied to LIBs Fault Diagnosis

Potential failures in the LIB system may cause serious failure of the battery system and
even induce serious safety accidents [63]. The faults of LIBs mainly include overcharging
and discharging, increased internal resistance, battery short circuit, high temperature, and
electrolyte leakage. These faults can lead to decreased battery performance and increased
safety risks. Internal and external short circuits in battery systems are one of the main
causes of thermal runaway of batteries, which may lead to serious consequences such as
overheating, fire, or explosion. Therefore, monitoring and diagnosing the faults of LIBs is
very important. In response to these issues, ML technology can utilize its powerful data
processing and pattern recognition capabilities to improve the accuracy and efficiency of
battery fault diagnosis through the real-time monitoring and analysis of batteries. For the
condition with few experimental fault data samples, ML can use feature selection, data
enhancement, TL, semi-supervised learning, and other methods to improve the accuracy
and reliability of diagnosis [64–66]. In addition, ML can also optimize battery management
strategies, thereby further improving the safety and reliability of battery systems. Therefore,
ML technology has broad application prospects in the field of battery systems [67–69].

When conducting fault diagnosis for LIBs, we encounter insufficient data collection
and too few samples, which can hinder the effectiveness of our prediction. Therefore,
seeking suitable algorithms to solve this problem is a challenge. In [70], in response to the
insufficient amount of collected internal short-circuit (ISC) fault data, the author proposed
a multi-ML fusion method. This method uses voltage normalization to input the ISC
faults into prediction, classifies fault warnings, trains simulation data through CNN, and
then uses TL to build a multi-ML model. The migrated ML model greatly improves the
prediction accuracy and can classify and warn of ISC faults at different levels.

In [71], the author used a symmetrical circuit topology structure to detect short circuit
faults within a parallel series hybrid battery pack. This theory can accurately locate faults
and provide necessary signals for detection and troubleshooting. By using an additional
ammeter to detect an unbalanced current, it is possible to determine whether there is
an internal short circuit. The recursive least squares algorithm is used to lock the faulty
unit online, and the effectiveness of the algorithm at the grouping level is demonstrated
through experimental verification by replacing the internal short circuits. This method
can effectively and accurately detect the internal short circuit fault of the battery, and has
great application potential in the fault diagnosis of battery packs in large-scale energy
storage systems. In [72], a data-driven method was proposed for battery charging capacity
diagnosis based on massive real-world EV operating data, as shown in Figure 4.
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Using the input of charging rate, temperature, charging state, and cumulative driving
distance, a tree model and polynomial feature combination were used to predict the charg-
ing rate, temperature, charging state, and cumulative driving distance. Statistical methods
were used to analyze the error distribution of large datasets to diagnose abnormal battery
charging capacity. Compared with other state-of-the-art methods, the proposed tree model
had the highest prediction accuracy. The overall diagnostic plan was validated using un-
known data. In [12], the authors established a principal component analysis (PCA) model
of the battery and used its contribution to detect abnormalities in the battery pack; after
the fault was detected, parallel nuclear principal component analysis (KPCA) was used
to reconstruct the fault waveform of the battery parameters including ohmic resistance,
termination voltage, and open-circuit voltage. The combination of these parameters as fault
indicators improved the reliability of the fault diagnosis. In [73], using neural networks
and grey wolf optimization algorithms, the author proposed a charging safety warning
model that adapted to the charging process of the EV. This model takes into account the po-
larization characteristics of LIBs and can dynamically monitor changes in battery charging
voltage with good timeliness. In addition, the author improved the grey wolf optimization
algorithm and adopted a search method based on clustering search results, which improved
the diversity of grey wolves and avoided falling into local optimization problems.

In [74–76], the author used ML technology to diagnose and analyze battery faults,
and proposed preventive measures. Considering the impact of inconsistent resistance and
charge states on the correlation coefficient, voltage sensor faults, connection faults, and
short circuit faults were detected and isolated by combining the correlation coefficient
and voltage difference changes. For the fault diagnosis of signals, methods such as signal
analysis, feature extraction, feature fusion, and dimensionality reduction were adopted to
eliminate the impact of inconsistent states on the time series features, and abnormal signal
features were identified through cluster based on anomaly detection. By supplementing
the correction, the problem of determining the fusion feature threshold could be effectively
solved, greatly reducing the number of false positives. In addition, the model-based system
identification algorithm could also be integrated into the outlier detection algorithm to
identify abnormal data more comprehensively and reduce the rate of missing reports. This
method improved the accuracy and reliability of the anomaly detection algorithm from
the perspective of the local outlier. Firstly, the identification model parameters are used
to represent the dynamics of the battery and indicate the fault status of the battery. In
this way, the fault detection problem can be transformed into abnormal parameters in
the detection model parameter set. Next, local anomaly factors were used to describe the
degree of parameter anomaly by evaluating the local bias of the observed data relative to
the neighbors. Finally, the outlier filter based on the Grubbs criterion can use the calculated
local outlier factor to detect the fault cell. The simulation and experimental results showed
that the proposed method can accurately detect faults.

In [77], the author proposed an interactive multiple model (IMM) algorithm combined
with an unscented Kalman filter (UKF) for the multi fault diagnosis of LIBs. This algorithm
utilized a Markov transition probability matrix (TPM) to achieve the real-time interaction of
the input information of various models and feeds back the updated probability information
of each model to the input of the filter based on TPM, thereby reducing the impact of noise
on the algorithm. In [78], the author proposed a real-time multi fault advanced diagnosis
method based on sparse data observer (SDO) that could diagnose and predict battery faults
including short circuit and open circuit faults. Among them, the outlier score was calculated
to identify the fault, the fault flag was used to determine the fault battery and fault time,
and the correction coefficient was introduced to detect the fault type. This method does
not require an accurate battery model, but only uses the voltage data measured from the
battery for diagnosis. Experimental results verified the feasibility and effectiveness of the
proposed method, which had strong robustness and high sensitivity.

In LIB fault diagnosis, suitable ML algorithms such as SVM, NN, DT, etc. are selected
for different fault diagnosis tasks to improve the accuracy and efficiency of fault diagnosis.
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KPCA can be used to reconstruct the fault waveform of battery parameters including
ohmic resistance, terminal voltage, and open circuit voltage. The combination of these
parameters as fault indicators improves the reliability of fault diagnosis. The original data
are preprocessed by data cleansing, feature extraction, feature selection, etc. to eliminate
noise and redundant information and improve the generalization ability of the model.
For example, considering the impact of inconsistent resistance and charge states on the
correlation coefficients, fault diagnosis is performed on the signal. Methods such as
signal analysis, feature extraction, feature fusion, and dimensionality reduction are used to
eliminate the impact of inconsistent states on time series features. On the basis of anomaly
detection, abnormal signal features are identified through clustering. When establishing
a fault diagnosis model, consider the time series characteristics of the battery parameters
and use recurrent neural network (RNN) and other algorithms for modeling to improve
the accuracy of prediction.

6. Machine Learning in Aviation Sector

Aviation batteries such as lithium-ion batteries, lead-acid batteries, and nickel-cadmium
batteries are widely used in many fields such as civil, military, and unmanned aerial vehi-
cles, as shown in Figure 5. Aviation batteries are one of the key components of an aircraft,
providing the necessary power to the aircraft [79]. However, due to the complexity and
high safety requirements of aviation batteries, the requirements for their performance and
reliability are very high. We can optimize the design and performance of aviation batteries
through the application of ML technology, improving their reliability and safety. ML can
predict the battery performance and lifespan by analyzing large amounts of the data in
aviation battery including parameters such as the voltage, current, and temperature [5].
The data collected through sensors and other monitoring devices can train and optimize ML
models, improve the battery prediction accuracy, monitoring and control capabilities, and
optimize design and manufacturing processes. ML models can analyze the battery structure
and materials to determine the optimal battery parameters; meanwhile, optimizing the
charging and discharging processes can improve the battery efficiency and lifespan.
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The luggage transportation system of unmanned EVs is an emerging research topic in
civil aviation airports. However, the battery capacity of electric delivery vehicles limits the
distance and load capacity during driving, thereby affecting the decision of vehicle schedul-
ing. In [80], the authors studied a dynamic scheduling model for unmanned electric luggage
carriers at airports that considered the load capacity and battery capacity constraints. In
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order to achieve real-time updates, they designed a dynamic scheduling algorithm based
on the GCN-CNN-GRU neural network framework to determine the real-time driving
status of vehicles. The performance of this method was verified through experiments in
simulation scenarios. To improve the overall performance of fuel cell distributed electric
propulsion unmanned aerial vehicles, in [81], the author proposed an energy optimiza-
tion management strategy based on a combination of deep neural networks and model
predictive control to address the issue of uncertain propulsion power requirements for
unmanned aerial vehicles under different flight conditions affecting the performance of
distributed electric propulsion systems. Digital simulation research was conducted using
real-world drone flight experimental data to evaluate the performance of the proposed
energy management system (EMS) and compare it with two benchmark schemes. Green
aviation technology is receiving increasing attention, and more and more LIBs are being
applied in the aviation field. In [82], in order to achieve the efficiency and long lifespan
of hybrid power unit (HPU) vehicles under various working conditions, effective energy
management is necessary. The author proposed an energy management strategy model
predictive control (PMPC)—M-2 based on power prediction, which utilized data-driven
methods to maintain the appropriate charging state of the battery and reduce the exhaust
temperature of the turboshaft engine. This strategy is suitable for HPU vehicles equipped
with turboshaft engines. Through verifying the simulation results, the effectiveness of the
proposed vehicle EMS was confirmed, and the impact of different objective function weight
coefficients on its performance can be further explored. ML methods can utilize a large
amount of data to evaluate and analyze problems. Therefore, the use of ML methods can
effectively optimize and improve vehicle energy management systems. In [83], the author
recorded events related to the initial reliability challenge of the Boeing 787 Dreamliner,
which was grounded due to safety problems related to a LIB fire. Its data can serve as input
data for ML to predict and prevent faults, and provide advice and lessons for engineers
and managers involved in future complex system development.

ML can help improve the performance and safety of LIBs, thereby promoting the
development of aviation applications. On the one hand, ML can extract the characteristics
and behavioral patterns of LIBs by analyzing a large amount of data. These modes can be
used to predict the battery life, capacity degradation, and fault warning. Through real-time
monitoring and prediction, airlines can better manage the use and maintenance of batteries,
improving their reliability and safety [84]. On the other hand, ML can also help optimize the
design and manufacturing process of LIBs. Through analysis and modeling, it is possible
to understand the impact of different materials and structures on the battery performance,
optimize key indicators such as energy density, charge discharge rate, and cycle life, and
improve the fault diagnosis ability of aviation batteries [85]. This helps to develop high-
performance batteries that meet the energy density and safety requirements of the aviation
industry. In summary, ML has broad application prospects in LIB aviation applications.
Through ML methods, the performance and safety of batteries can be improved, promoting
technological progress in the aviation field.

7. Discussion

In the field of ML, the estimation and fault diagnosis of battery materials and battery
health status is a hot research direction.

The first problem is that of feature selection. Although common methods include
correlation coefficient analysis and principal component analysis, the impact of different
features on the results may vary, so more detailed investigation and analysis are needed.
Secondly, the model selection problem involves selecting ML algorithms suitable for the
estimation of the battery SOH and fault diagnosis such as SVM, DT, NN, etc. However,
each algorithm has its advantages and disadvantages, and different algorithms are suitable
for different types of datasets and tasks. Therefore, several possible scenarios should
be considered, compared, and evaluated when selecting a model, and the most suitable
algorithm should be selected. Then there is the dataset problem. Dataset quality and
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quantity directly affect the accuracy and robustness of ML models. However, in the field of
battery state of health estimation and fault diagnosis, obtaining high-quality large-scale
datasets is a relatively difficult task. Therefore, it is worth exploring how to deal with
the dataset and use limited data to improve the robustness of the model. Finally, issues
related to practical applications also require attention. For example, in some scenarios,
battery health estimation and fault diagnosis need to meet certain real-time requirements.
Therefore, factors such as computational complexity and speed need to be considered when
designing the model. In addition, different types of batteries may produce different types
of failures, so different models and algorithms should be selected on a case-by-case basis.

For the contents discussed above, we can use hardware accelerators such as graphics
processing unit (GPU), field programmable gate array (FPGA), tensor processing unit
(TPU), etc., to carry out parallel computing and accelerate the model training and reasoning
process. These accelerators can significantly improve the computing speed and meet the
real-time requirements by selecting algorithms with lower computational complexity such
as linear regression, SVM, etc. to reduce the computational costs. At the same time, the
optimization speed can be improved through algorithm optimization techniques such as
gradient descent, Newton’s method, etc. Appropriate neural network architectures for
different types of batteries can also be designed. For example, CNN can be used to process
image data, RNN can be used to process time series data, and GNN can be used to process
graph structure data. Through end-to-end ML, the steps of data preprocessing, feature
extraction, model training, and inference are integrated into a unified framework, reducing
the computational and communication costs of intermediate processes and improving
the real-time performance. For example, unsupervised learning methods such as auto-
matic encoder (AE) or VAE can be used to automatically extract features in an end-to-end
framework. Using online learning methods, the model can be updated and optimized in
real-time based on newly collected data. This helps to improve the accuracy and real-time
performance of the model. The multi task learning method enables the model to simul-
taneously learn fault diagnosis tasks for multiple types of batteries during the learning
process, thereby improving the model’s generalization ability. By integrating multiple weak
classifiers such as RF and gradient lifting tree, a more powerful classifier is constructed to
improve the accuracy and robustness of the model. The advantages and disadvantages of
different ML methods applied in different applications are shown in Table 2.

Table 2. Comparison of the ML methods applied in different applications.

ML Methods Advantages Disadvantages

SVM
It can handle high-dimensional data;

has strong generalization ability; suitable for small
sample data.

Improper parameter selection can lead to poor
classification performance, requiring repeated

experimentation and adjustment;
its computational complexity is high and only
applicable to binary classification problems.

GPR

It can adapt to different data distributions and
nonlinear relationships;

able to provide an estimate of the uncertainty of the
predicted results;

provides explanations and inferences about the data,
which can help understand the distribution and

relationships of the data.

High computational complexity;
high memory consumption;

difficulty in parameter selection.
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Table 2. Cont.

ML Methods Advantages Disadvantages

ANN, CNN,
RNN

ANN can learn nonlinear functions and has the
ability to learn weights that map any input to output;
CNN will automatically learn filters to help extract

correct and relevant features from input data;
RNN can capture sequence information from input

data, share parameters at different time periods,
reduce training parameters, and reduce

computational costs.

ANN needs to determine the appropriate network
structure and rely on hardware;

CNN lacks the ability to keep the input data space
unchanged and needs big data training;

RNN has gradient vanishing and explosion problems.

DT
It can handle both nominal and data value problems
simultaneously; it is suitable for handling samples

with missing attributes.

It is easy to overfit and overlooks the correlation of
attributes in the dataset.

RF It can process big datasets, is not easy to overfit, and
can also obtain good results for missing values.

For situations with high real-time requirements, the
effect is poor.

KPCA It can effectively capture and represent nonlinear
structures and can be used for data denoising. Consumes a lot of time and computing resources.

VAE
It is an unsupervised learning algorithm, learning

potential variables in data, learning without labeling
data, and processing continuous and discrete data

Its generation process is random and cannot guarantee
the high quality of the sample.

In summary, ML has broad application prospects in the application field of LIBs. How-
ever, more in-depth discussion and analysis are needed to further advance related research.

8. Conclusions and Future Directions

With the acceleration in global energy consumption, research interest in energy storage
batteries has surged around the world. For lithium-ion energy storage batteries, the devel-
opment of advanced batteries with high energy density, high power density, long life, and
reliable safety is considered critical. Therefore, it is necessary to accelerate the progress of
LIB research and conduct research from three perspectives: the material characteristics and
internal structure, battery health status, battery fault diagnosis and preventive measures. In
addition, with the development of green aviation technology, the advancement of aviation
battery research also relies on ML. Compared with traditional methods, ML methods have
great advantages in data analysis and processing, and this article describes and discusses
the above four aspects in combination with ML methods.

ML can accelerate the development of powerful theoretical tools in battery materials
such as advanced function tools for DFT calculations and MD simulations as well as new
methods for solving multi-scale physical equations. Through ML, high-precision atomic
simulations of large-scale systems can be achieved, allowing for a deeper understanding
of the working mechanisms and material evolution schemes in electrochemical reactions,
providing assistance for the search and design of new materials and battery formulations.
In the estimation of battery SOH, we can extract different features from the battery dataset
and select appropriate algorithm models for prediction. Common features include the
current, voltage, internal resistance, environmental temperature, and charge discharge
ratio. In addition, magnetic testing equipment can be added to extract and predict the
magnetic field strength of battery materials as new features. For battery fault diagnosis,
ML algorithm models are used to predict the battery data. Usually, parameters such as
the current, voltage, and resistance are selected as prediction results and compared with
the ideal values to achieve an effective diagnosis. Fault diagnosis in different situations
requires the selection of suitable diagnostic models.

For the field of ML itself, the future of ML will present a trend of intelligence, autonomy,
and efficiency. Algorithms will become more intelligent and autonomous, with stronger
learning and prediction capabilities, capable of handling complex real-world problems.
At the same time, the ML model will more automatically select algorithms, models, and
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parameters, reduce human intervention, and improve efficiency and accuracy. In addition,
future ML algorithms will also focus on interpretability and credibility. The current black
box feature limits the use of ML in certain critical application areas as it is difficult to
explain and understand its decision-making process. Therefore, future algorithms will
strive to improve interpretability and credibility in order to better explain and understand
the decision-making process of the model. In addition, data privacy and security are also
the focus of future ML. With the widespread promotion of ML applications, people are
increasingly concerned about the impact of ML on data privacy and security. Therefore,
future ML algorithms will place greater emphasis on data privacy and security to better
protect the data privacy and security of the users. In the future, the application of ML in
LIBs can also develop toward more intelligent, autonomous, and efficient data analysis,
prediction, and fault diagnosis. The research on the materials and internal chemical reaction
mechanisms of LIBs can also rely on ML to better explain and develop in the future.

Although there has been extensive research on the application of ML algorithms in
LIBs with the continuous development of ML algorithms, there are still many challenges.

• With the increasing complexity of ML algorithms and computational requirements,
higher requirements have been placed on the performance and energy density of
batteries. There is still a need to research and develop new LIB technologies to
improve energy storage and release efficiency, extend the battery life, and reduce the
charging time.

• The BMS in ML applications is critical to ensure the safety and performance of batteries.
In order to further optimize the BMS, it will be necessary to develop an intelligent BMS
to improve the efficiency and reliability of the battery through the real-time monitoring
of battery status and the estimation of battery life.

• The application of ML in the aviation field is constantly expanding, and future research
will explore more application scenarios. For example, utilizing the energy provided
by LIBs to develop more intelligent flight control systems, thus improving the auton-
omy and safety of aircraft, and using ML algorithms to optimize the charging and
discharging strategies of batteries and improve their efficiency in aircraft use.

Generally speaking, the ML method requires us to find an algorithm to solve the
problem, and the choice of algorithm depends on the specific application.

• The data collection and annotation of LIBs are the foundation of ML applications, but
there are still some challenges at present. Further research on effective data collec-
tion methods is still needed while developing more accurate and reliable annotation
techniques to improve the data quality and availability.

• In the application of ML in LIBs, the selection of appropriate models and optimization
algorithms is crucial for the accuracy and efficiency of the results. We need to consider
comparing the performance of different models and algorithms, and propose more
effective model selection and optimization strategies.

• In order to further improve the generalization ability of ML models, it is necessary
to use different datasets for training and testing. Exploring how to build more com-
prehensive and diverse LIBs datasets and develop ML models that adapt to different
environments and application scenarios is needed.

• In the aviation industry, the security of LIBs is crucial. We need to explore how to
improve the security of LIBs through ML methods and develop interpretable models
to better understand and interpret the decision-making process of the model. For
example, using ML algorithms to analyze data in the aviation field and identify
potential safety hazards and anomalies. In addition, interpretable models can be
developed to better understand and explain the decision-making process of the model,
improving the credibility and reliability of LIBs.
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