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Abstract: The global objective of achieving net-zero emissions drives a significant electrified trend
by replacing fuel-mechanical systems with onboard microgrid (OBMG) systems for transportation
applications. Energy management strategies (EMS) for OBMG systems require complicated optimiza-
tion algorithms and high computation capabilities, while traditional control techniques may not meet
these requirements. Driven by the ability to achieve intelligent decision-making by exploring data,
artificial intelligence (AI) and digital twins (DT) have gained much interest within the transportation
sector. Currently, research on EMS for OBMGs primarily focuses on AI technology, while overlooking
the DT. This article provides a comprehensive overview of both information technology, particularly
elucidating the role of DT technology. The evaluation and analysis of those emerging information
technologies are explicitly summarized. Moreover, this article explores potential challenges in the
implementation of AI and DT technologies and subsequently offers insights into future trends.

Keywords: artificial intelligence; digital twin; energy management; intelligent transportation;
machine learning; onboard microgrid; reinforcement learning

1. Introduction

In the transportation sector, the greenhouse effect and the shortage of fossil fuels have
been major global concerns over the past few decades [1]. Replacing traditional fuels with
electricity, known as electrification, is considered an effective approach to mitigating energy
problems by reducing the consumption of natural resources [2–4]. In addition, this initiative
offers great potential for improving energy efficiency [5,6]. The undergoing electrification
trend in the transportation sector involves the gradual electrification on planes, cars,
trains, and ships, transitioning onboard fossil fuel-powered systems to electrical power
systems [7–9].

In this transition, a conventional mechanical structure within the transportation vehicle
is substituted with an electrical structure. The onboard microgrid (OBMG) is a crucial
part of the power system in electrified transportation because it directly determines the
onboard power distribution and the vehicle operational performance [10,11]. A typical
OBMG on a hybrid-electric vehicle is shown in Figure 1. Figure 1 depicts a hybrid electric
vehicle that combines electricity derived from fuel conversion with electricity stored in a
DC charging battery. The allocation of energy in this OBMG represents a primary research
focus and the central objective of energy management strategies (EMS). The OBMG usually
comprises various electric power sources and power buses feeding different loads, where
the allocation of electrical energy and fuel usage can be a big challenge [3]. Therefore, EMS
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plays a crucial role in achieving optimal energy utilization in OBMGs [10,12]. For example,
the energy efficiency can be enhanced by capturing excess energy from regenerative braking,
and then storing energy into the battery during braking or inertial motion [13,14].
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Figure 1. The architecture of the OBMG in hybrid electric vehicles. 
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sources still suffers from limited pre-knowledge or substantial computational resources 
[22]. Traditional methods lacked advanced algorithms and necessitated substantial com-
putational capabilities for managing large-scale energy systems. Consequently, these 
methods encountered difficulties in achieving optimal energy utilization, often leading to 
avoidable energy wastage. This motivates researchers to explore advanced control tech-
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the future [26,30]. 

The transportation sector is undergoing a digital transformation due to the rapid de-
velopment of information technology. This shift lays the foundation for the recent devel-
opment of DT technology and the enhancement of AI techniques on OBMGs. In this con-
text, the AI could primarily become an optimization-oriented algorithm within the energy 
management system of OBMG [31], while the DT acts as a platform for data acquisition 
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Conventional EMS can be classified into rule-based and optimization-based
approaches [15,16]. Rule-based EMS, known for its flexibility and adjustability, is widely
used in controlling the OBMGs. However, this strategy requires developing a complex
set of rules in advance, which would be difficult when considering all potential driving
scenarios, and it may also result in a suboptimal EMS [2,17]. Optimization-based EMS aims
to improve energy utilization efficiency and reduce emissions by dynamically adjusting
energy conversion and distribution [18,19]. However, this approach typically demands sub-
stantial computational resources and time. Thus, real-time feasibility is a challenge [20,21].
In summary, traditional EMS covering the rule-based and optimization-based resources
still suffers from limited pre-knowledge or substantial computational resources [22]. Tradi-
tional methods lacked advanced algorithms and necessitated substantial computational
capabilities for managing large-scale energy systems. Consequently, these methods encoun-
tered difficulties in achieving optimal energy utilization, often leading to avoidable energy
wastage. This motivates researchers to explore advanced control techniques for the OBMGs
in transportation applications [23–25].

With the development of information technology, emerging technologies, such as
artificial intelligence (AI) technology and digital twin (DT) technology, are being ex-
tensively integrated into EMS, resulting in the improved performance and efficiency of
OBMGs [26,27]. Different from traditional strategies, combining AI and DT enables the
system to make decisions using real-time data, which can leverage prediction and opti-
mization capabilities, and harness the advantages of intelligent decision-making, control,
adaptive learning, and multi-objective optimization [27–29]. Based on case studies, this
approach has been proven to be more cost-effective than traditional EMS in terms of energy
efficiency, costs, and superior decision support for drivers, rendering it a promising path
for the future [26,30].

The transportation sector is undergoing a digital transformation due to the rapid
development of information technology. This shift lays the foundation for the recent de-
velopment of DT technology and the enhancement of AI techniques on OBMGs. In this
context, the AI could primarily become an optimization-oriented algorithm within the
energy management system of OBMG [31], while the DT acts as a platform for data acquisi-
tion [26,32]. Despite being initiated in the last century, the recent rapid advancements of
these two technologies are attributable to the remarkable progress achieved in computing
technology and data science. AI and DT technologies have been already implemented the
intelligent transportation systems. For instance, Singapore has proposed the implemen-
tation of an intelligent transportation system aimed at enhancing traffic management in
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practical scenarios [33]. Oslo, in Norway, utilizes DT technology to simulate and optimize
their urban transportation system [34].

However, the use of AI and DT in energy management is often regarded as a black box,
hard to explain the decision-making process and reasoning behind their data. Therefore,
there is an urgent need to review these emerging techniques in the operation of transporta-
tion OBMG. While a few papers reported the EMS using AI or DT technologies, there is
limited literature available that provides comprehensive summaries of these studies on the
state-of-art information technologies. Table 1 provides an overview of recent reviews on AI
and DT technologies in EMS. Reference [35] classified practical EMS and developed simpli-
fied multifunctional EMS based on a re-simplification of this classification. The simplified
EMS provided a valuable framework for future energy management that deal with complex
information. The application of AI in energy management was discussed in [27,29,36].
Among these studies, the researchers in [36] proposed an intelligent energy management
system and compared different AI techniques for energy management; Reference [27] com-
pared traditional techniques with AI-based techniques and summarized the application of
machine-learning (ML) techniques to energy-management systems; Reference [29] focused
on the application of deep-reinforcement learning (DRL) in ML to energy management and
proposed a learning-based classification of EMS. Reference [37] also explored the utilization
of AI in energy management. However, it predominantly focuses on topics such as electric
vehicles charging in the transportation grid, providing limited coverage of energy manage-
ment within OBMG. Additionally, Reference [26] provided a comprehensive examination
of the application of DT in smart electric vehicles, including a brief discussion of each
vehicle subsystem, but no in-depth discussion of energy management application. Based
on the findings in Table 1, the recent review predominantly emphasizes RL techniques
and optimization strategies, neglecting the presentation of another digital twin technology.
Therefore, a comprehensive introduction to energy management in OBMG is necessary.

Table 1. Review on the information technologies for OBMG in literature.

Ref.
Traditional Strategy Artificial Intelligence

Digital Twin
Rule-Based Optimization-Based Unsupervised

Learning
Supervised

Learning
Reinforcement

Learning

[26] 4 4 4

[27] 4 4 4 4 4

[29] 4 4 4

[35] 4 4 4

[36] 4 4

[37] 4 4

this review 4 4 4 4

Differing from the above review literature, this review analyses the integration of both
AI and DT in the EMS of an OBMG, suggesting the future advancements which utilize DT
as a data platform and AI as an algorithm to optimize the EMS. To summarise, the main
contributions of this review include:

1. Provide an overview of recent EMS research, focusing on the applications of
two emerging information technologies—AI and DT;

2. In the AI domain, classify reinforcement learning-based EMS into model-based versus
model-free approaches based on the utilization of models;

3. Assess the current state of DT-based EMS research and elucidate the application
scenarios of DT in the intelligent transportation environment.

4. Provide the future trends of AI and DT technology in OBMG energy management,
exploring current challenges and future directions.

The paper follows the organization below. Section 2 outlines the detailed description of
two emerging technologies, AI and DT, followed by the description of energy-management
systems in Section 3. Following the description of AI and DT applications in energy
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management is discussed in Sections 4 and 5, respectively. The future trends in AI and DT
at OBMG energy management are discussed in Section 6, and Section 7 draws conclusions.

2. Emerging Information Technologies

This section will introduce the fundamentals of two typical emerging techniques: AI
and DT. Based on that, the AI and DT applications in vehicle operation and control will be
separately presented later this paper.

2.1. AI Technology

AI pertains to the capacity of machines to exhibit or mimic intelligence, which is
essentially different from that demonstrated by humans or other animals. Although AI
can be implemented using pre-set rules, most of the time, specific AI tasks are performed
by ML algorithms based on a model training process. ML algorithms can learn rules and
relations from training data efficiently. During training, models improve automatically
by incorporating data and gaining valuable experiences. ML is the most prominent form
of AI used in electrical power systems. Other commonly utilized AI methods are expert
systems, fuzzy logic, and meta-heuristic methods [38]. ML algorithms are divided into
three categories: supervised learning (SL), unsupervised learning (UL), and reinforcement
learning (RL) [39].

2.1.1. Three Groups in ML

SL algorithms produce outputs (also referred to as responses or targets) that match the
training data. These targets can either be integers or continuous numbers. When the output
data features are continuous numbers, the learning is called regression. In contrast, when
the response data contains multiple labels or integer values, it is known as classification.
Therefore, regression learning requires no specific sampled data; However, classification
typically needs categories, classes, or even 0 or 1 outputs tailored to particular problems.
Statistics described in [31] show that SL is the most popular technique across the three ML
categories (From 1990 to 2020, 444 journal articles reporting on the use of ML in power
electronics-related sectors identified SL as comprising roughly 91% of all uses).

Unlike SL, UL lacks a predefined output in the training data. The responsibility of
UL is to learn how to recognize patterns or acquire information from a dataset without
predefined response or features. The utilization of such methods also enables the reduction
of a dataset’s dimensionality without the loss of relevant information [40]. Therefore, UL
can discover essential information with minimal training data which comprises only a
few elements. Besides, clustering and association problems can further characterize UL.
Clustering focuses primarily on identifying patterns or structures in an uncategorized
or unlabelled dataset: determining the flower categories is a typical example. Moreover,
association rules can uncover relationships or associations between elements in large
databases.

The third category of ML, RL, learns how intelligent agents perform tasks by interact-
ing with their environment. Based on receiving the rewards via interacting, these agents
must take actions (namely, updating the policy) in their environment to maximize overall
rewards [41]. Initially, these agents do not know how to operate in the environment (i.e.,
what the best policy is). Therefore, they must adopt various actions in the environment to
obtain corresponding rewards. Their multiple cumulative rewards allow for the formula-
tion of a suitable policy within the environment. Unlike SL or UL, RL is a form of online
learning that doesn’t require input/output data as a starting point.

2.1.2. RL

Since RL has recently attracted significant attention, in the following contents, RL will
be further introduced regarding its concept, preliminaries, and classification.

RL is a technique for learning a controller or decision-maker by interacting with the
initially unknown environment. Figure 2 illustrates an RL framework utilized in the OBMG
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of a vehicle. RL can be likened to a robot engaging in game playing, acquiring the ability
to navigate complex environments by trial and error, and responding to rewards and
punishments, as indicated in Figure 2. The optimal solution is determined based on the
reward scores obtained in each iteration. The four fundamental elements of the RL system
include strategy, reward, value, and environment. The strategy defines the behavior of the
agent for a particular state. Specifically, it is a mapping from the state to the appropriate
behavior. The reward signal defines the objective of the RL problem. At each step, the
environment issues a scalar value to the RL, which serves as the updated reward. The
objective of RL is captured by the value, which measures the long-term returns. Typically, it
is measured as cumulative rewards. The environment consists of information both internal
and external to the learning object. Usually, a sensor is required to measure it and pass it to
the agent.
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The trained agents operate based on the current environmental state (or observation
value) automatically to select and execute their response actions. These joint actions impact
how the environment is updated and the reward feedback for following steps. As shown in
Figure 2, S represents the status collection, and Ai and Ri respectively represent the agent’s
action collection and reward collection. Each state Si will execute the new At+1 according to
the current Rt+1 and At and get the new Rt+2. The training process is iterative to maximize
the reward value, which results in a series of actions (namely policy) for the defined agents
in the environment.

RL’s mathematics basis is the Markov decision process (MDP). MDP is usually com-
posed of state space (S), an action space (A), a state conversion function (P), a reward
function (R), and a discount factor (γ). The use of MDP has the following require-
ments/assumptions: the ideal state can be detected; it can be tried multiple times; the next
state of the system is only related to the current status information, and it has nothing to
do with the earlier state. According to Figure 2, Agent observes the environmental status,
and the action is made to change the environment. The environment feedback to Agent
a reward rt and a new state St+1. This process continues until the end of the incident and
then sends out a trajectory.

τ = s1, a1, r1, s2, a2, r2, s3, a3, r3, · · ·sT , aT , rT . (1)

where T is the time horizon of the episode. The objective of RL is to optimize a policy
to maximize the expected return based on all possible trajectories. First, the value of the
current state needs to be defined, and the Formula (2) is the current state value calculation
method.
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vπ(s) = ∑a∈A π(a|s)(Rs
a + γ∑s′∈S Pss′

avπ(s′)) (2)

Based on the Bellman equation [42], the current value function can be decomposed into
two parts: the current reward and the next reward. In the above trajectory, the action space
A and the status space S are both limited collections, so we can calculate the expectations
in an accumulated way. In the formula, π(α|s) represents the probability distribution
of action A under the case of a given state S; RS

α represents the current instant reward;
γ represents the discount factor; PSS’

α represents the probability matrix transferred to the
next states; and νπ(s’) represents the value function of the next state. Among them, the
equation is as described below.

Pss′
a = P(St+1 = s′

∣∣St = s, At = a) (3)

This means the probability of reaching status St+1 when the current state is St and
executes the action At. Then, calculate the expectations of the future return that can be
obtained in this state, and calculate the status value function; the formula is as follows.

v(s) = E[Ut|St = s] (4)

This formula shows that there is a state S at the time of T. The value function is used
to measure the advantages and disadvantages of a certain state or state-action pair. It
calculates the expectations of cumulative rewards because it will be counted as the current
state and the current expected value that has been accumulated in the future.

For RL training, select the best strategy, and find the best strategy through the best
value function below. When the maximum value of the target function is converged, the
best strategy is trained.

v∗(s) = argπmaxvπ(s) (5)

2.2. DT Technology

DTs are developed to replicate real-life physical entities in a virtual space. Typically, a
DT digitally represents a physical product, system, or process, initially aimed at introducing
the product. DT technology aims to digitize and model physical entities to reduce the cost
and complexity of eliminating uncertainty in complex systems. This enables the effective
management of the entire physical entity throughout its life cycle. As a virtual “mirror,”
instruments, tools, and parts can be conveniently maintained or adjusted. However, the
implementation process in the digital space should be modelled with a careful selection of
data or knowledge.

The development of modern sensor technology and edge computing has significantly
improved the accuracy and speed of data acquisition, enabling real-time operation. The
conjunction of the Internet of Things (IoT) and big data has significantly increased the feasi-
bility of collecting and processing data for practical applications. Thus, the development of
DT technology has become an inevitable outcome of the development of these technologies
beyond a certain level, as their application forms the foundation for the construction of
data twins. Furthermore, the development of DT technology can facilitate the advancement
of associated technologies. DT is commonly integrated with digital technologies including
the IoT, cloud computing, blockchain, and 5G/6G to create a network twin.

2.2.1. Development and Evolution of DT

The development of DT technology can be categorized into four stages: the pre-DT
stage, the DT stage, the adaptive DT stage, and the smart DT stage [43]. Figure 3 presents
an overview of the evolutionary history of DTs.
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To begin with, before the real-time transfer of technology into digital space, it relied
on physical model simulations. The critical difference between DT and simulation is
that DTs have real-time synchronization with physical entities. Simulations, on the other
hand, are purely digital and lack real-time synchronization. During the DT stage, experts
developed data twins using their knowledge of DT output parameters, constantly refining
the twins through professional expertise. Nonetheless, the technology was still relatively
non-intuitive and heavily relied on professionalism. To cope with the lack of intuition,
an adaptive graphical user interface (GUI) was introduced in the new stage of DT. This
GUI provides a visual window that allows operators to 0intuitively monitor twin changes.
Operators can use the feedback obtained from the interface to have comprehensive control
over and assessment of the physical entity.

The rapid development of AI led to the gradual replacement of human decision-
making processes with AI-trained models. By collecting, analyzing, and evaluating infor-
mation from the DT, new intelligence can be incorporated, thereby achieving autonomous
operation. In some cases, well-trained AI models can even outperform humans and enable
physical entities to perform optimally based on data transmitted through the DT.

In 2003, Professor Michael Grieves introduced the concept of DT in his product life
cycle management course. However, the term DT, depicted in Figure 3, was not coined by
Grieves. Michael introduced a 3D model of DT, which is now a recognizable and widely
used method. DT comprises three elements: physical entities, digital model, and data
interaction between the two [44]. Subsequently, in 2010, NASA published a technical report
with a physical twin of the aircraft, defining the “twin” as a future development trend [45].
A 2012 joint paper by NASA and the US air force identified DTs as a critical technology
for future aircraft [46]. The first white paper for DTs appeared in 2014, demonstrating the
gradual standardization and increasing popularity of DT technology across industries [47].
In 2015, GE used DT technology to achieve real-time monitoring and predictive mainte-
nance of its engines. Moreover, in 2018, Gartner recognized DT as one of the pioneering
innovations in the future industry [32].

2.2.2. Composition of DT

Figure 4 shows a typical technical structure of DT comprising four layers: the device,
network and data, platform, and application layers [48]. Within the device layer, edge
agents combine local support with advanced sensor technologies to gather and transfer
local device information. The data–layer information correlation is managed via smart
terminal services. The network and data layers implement data collection, processing,
storage, and transmission functions. The platform layer constructs DT models, which can be
mechanism-driven, data-driven, or mechanism/data-driven. Once models are established,
they perform functions like describing physical entities, predicting and diagnosing failures,
and facilitating decision-making. The application layer encompasses design, control, and
maintenance, representing the three stages of a complete product lifecycle.
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Data form the foundation of building a twin. It involves storing system parameters
information, sensor data collection, real-time operation systems, and historical data in a
storage space, which provides adequate data support for DT. The DT model can be either a
mechanical model based on known physical objects or a data-driven one. In both cases, the
model’s key feature is its dynamic nature, which allows it to update and learn autonomously.
The mapping layer involves creating a model that reflects the internal physical entity via
a digital “mirror” in real time. For instance, the vehicle’s internal electrical system has
different mapping relationships for various components. Battery mapping mainly focuses
on monitoring the State of Charge (SoC) and battery charging/discharging states, whereas
fuel cell (FC) mapping primarily monitors fuel consumption and energy release. In the
end, interaction is essential in achieving synchronous virtual reality. With communication
technology, DTs facilitate real-time information collection and control of physical entities,
providing prompt diagnosis and analysis.

Leveraging the four elements, network twins can analyze, diagnose, simulate, and
control the physical entity through AI technology, expert knowledge, and more. This leads
to efficient system operation at lower costs.

2.3. Other Information Technologies

Blockchain technology can be leveraged within microgrids to attain secure, transparent,
and reliable energy trading and management systems [49]. In addition, the integration of
blockchain and DT is seamless, as blockchain can be combined with DT models’ creation,
access, and control to safeguard data and record events, thereby ensuring the security of DT.
For instance, the researchers [50] employed blockchain communication to facilitate data
exchange and transaction execution across microgrids, resulting in secure data exchange
and dependable electricity trading. Moreover, blockchain technology can be utilized for
the development of smarter contracts within microgrids [51,52].

3. Onboard Microgrid Energy Management System

Before reviewing the specific AI and DT applications in Sections 4 and 5, in this section,
the general energy management studies within the transportation OBMG systems will be
first introduced. After that, traditional EMSs in this field will be summarized.

3.1. The Energy Management System of OBMG Overview

An efficient energy management system can reduce fuel consumption and improve
the overall efficiency of a power system architecture [14]. Optimized fuel economy can be
achieved by efficiently allocating power from different energy sources to loads [15]. At
the same time, energy management systems should guarantee the stable operation of the
system under all constraints [14,53].
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Figure 5 depicts the energy management system diagram of a typical OBMG in
transportation applications. The system interacts with the information from internal and
external sources. Engines and generators, the primary power sources, have the optimal
working point in terms of fuel conversion efficiency. Typically, the battery pack compensates
for differences between demand power from loads and generated power supplied by the
primary power sources; however, its power dynamics are relatively slow. Supercapacitors
are introduced to meet rapid power demands, producing power within a short period.
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As shown in Figure 5, the system can be divided into four levels, namely, the constraint
layer, the data layer, the prediction layer, and the strategy layer. Energy management
involves balancing energy flows between devices while adhering to specific constraints.
These constraints include battery pack SoC and maximum charging/discharging power,
as well as torque and speed limitations for generators, as illustrated in Figure 5. Battery
pack SoC is typically maintained between 20% and 80% to extend battery life and optimize
efficiency [54].

The system data depicted in Figure 5 can be utilized to construct a DT model, which
can optimize, train, or verify the EMS. The three stages of energy-management data
handling are data transmission, storage, and processing. Data transmission is the core
function that enables seamless real-time data transmission among various devices. Data
storage aims to accumulate system data and operational information to facilitate future
upgrading and optimization of the system. Lastly, data processing reduces EMS complexity
by compressing and extracting feature values from data.

The system predicts future states by analysing historical and real-time data, as shown
in Figure 5. Speed prediction involves projecting the speed and acceleration of the vehicle
and adjusting the output of energy resources accordingly. Load prediction evaluates the
load power requirements of the vehicle and redistributes power accordingly. Battery health
prediction is critical to maintaining system stability and is a crucial factor in advanced
energy management approaches. The strategy in Figure 5 lies at the core and can be
classified as rule-based, optimization-based, and learning-based strategies, which are
discussed in detail in the following.

3.2. Traditional Energy Management Strategies

The OBMG energy-management system is typically accomplished by regulating the
distribution of energy between the engine and onboard battery while driving, as illus-
trated in Figure 1. The crucial distinction between traditional and contemporary energy-
management systems lies in their EMS approaches. Traditional EMS can be categorized
into two types: rule-based (deterministic and fuzzy) and optimization-based (global and
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real-time) [17]. This is depicted in the strategy layer of Figure 5, excluding the incorporation
of learning-based strategies. These two traditional control methods are briefly described
below.

3.2.1. Rule-Based Control Strategies

Deterministic rule-based control: it is generally implemented via lookup tables, splitting
the demand power among power converters. There are four types, including thermostat
control, power tracking control, modified power tracking control, and state machine
strategy control [17]. The thermostat control strategy is simple, easy to build, and of low
cost, but the system power demand under the whole working conditions cannot be met
using this method. The idea of the power-tracking control strategy is to take the engine as
the main power source while the battery is the reserve energy. The modified power-tracking
strategy considers the optimization of the overall system efficiency, but it is time-consuming
in terms of the candidate operation point derivations [55].

Among them, the state machine strategy is the most representative one, which enables
it to adjust to external factors [56]. The working mode changes with various external
changes, such as changes in driver demand, changes in vehicle working conditions, or
system/subsystem failures. This adaptability allows for effective monitoring of the entire
system’s performance. However, challenges arise in achieving economical fuel consump-
tion and reducing emissions.

Fuzzy rule-based control: The fuzzy control rules are essentially summarized the op-
erator’s control experience in obtaining the collection of fuzzy sets. Compared with the
deterministic rule-based methods, the fuzzy method has a faster response under sudden
load changes and has a stronger tolerance ability for measurement errors. For example,
an adaptive fuzzy control strategy is proposed to optimize fuel efficiency and emission
standards by dynamically adjusting controller parameters in different situations [57].

3.2.2. Optimization-Based Control Strategies

Global optimization: it uses future and past power demand data to determine the best
instruction. This method can be utilized to design online implementation rules or assess
the efficacy of other control strategies, but it is unsuitable for real-time energy management.
Global optimization methods include linear programming, the control theory approach,
dynamic programming (DP), stochastic DP, and genetic algorithms (GA) [17]. Noteworthy,
the DP is frequently used as the benchmark for comparing other control strategies among
them.

Real-time optimization: Its cost functions will involve various factors, such as fuel
consumption, self-sustainability, and optimal driving performance [58]. There are two
commonly used strategies, i.e., the equivalent consumption minimization strategy (ECMS)
and frequency decoupling control. ECMS aims to reduce fuel battery consumption while
also maintaining the SoC [59]. In contrast, the frequency decoupling control utilizes the FC
system to meet the low-frequency load demand while other energy sources fulfilling the
high-frequency load demands [18,60].

It is noteworthy that, as the transportation electrification and information technologies
continue to develop, energy management approaches and technologies are also progressing
and enhancing. Advanced EMSs are employed to optimize energy utilization within the
OBMG for enhanced energy efficiency. The subsequent section delves into the utilization of
emerging information technologies in energy management.

It is important to note that the optimization method introduced in this context differs
from the optimization algorithms used in power systems. In contrast, the optimization
algorithms used in power systems concentrate on optimizing the operation of large-scale
centralized power generation and transmission systems, while the OBMG primarily em-
phasizes the coordination and control of energy and load within its own system [61]. These
optimization algorithms in power systems are specifically designed to address diverse opti-
mization challenges encountered in the operation and planning of power systems [62,63].
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A summary of optimization algorithms for energy scheduling in microgrids is provided
in [64], offering an evaluation and comparison of optimization strategies specifically devel-
oped for managing energy scheduling in such systems.

In terms of power system operations, the diagnosis and prognostic of microgrids play
a crucial role in ensuring their stability and reliability, optimizing energy management,
and improving energy utilization efficiency [65,66]. For the power transformers commonly
employed in microgrids, researchers in [67] proposed a method that utilizes AI algorithms
to collect real-time information and compute an overall health index score. In addition to
the overall score calculation method, researchers have also proposed more specific fault
identification schemes [68,69]. While this article primarily focuses on energy-management
control in microgrids, it will not delve extensively into it in this section. However, it is
crucial to acknowledge the significance of diagnosis and prediction.

4. AI Technology for Energy Management
4.1. Overview of AI in Energy Management

In recent years, AI is emerging as one of the most popular technologies in the EMS.
AI has significant potential in the field of energy management.AI can deliver intelligent
optimization, energy demand prediction, real-time monitoring and control, and energy
planning to facilitate efficient energy use, decrease costs, and minimize carbon footprint.
The implementation of AI in energy management can enhance its intelligence, sustainability,
and environmental friendliness. In contrast to traditional EMS, AI-enhanced EMS exhibits
advantages such as improved response time, heightened prediction accuracy, adaptability,
and versatility [29].

Among them, neural networks (NN), serving as potent tools in energy management,
are extensively employed in EMS due to their exceptional nonlinear modeling, adaptive
learning, and multi-objective optimization capabilities [70,71]. For example, Reference [71]
trains a NN controller in solar aircraft by using the RL technique to optimize the flight
trajectory, which can improve energy management capabilities and operation time. It was
found that the ultimate energy using the RL controller-guided aircraft was 3.53% higher
than using the rules-based state machine. In addition, SoC was increased by 8.84%, and
solar energy absorption was 3.15% higher. Similarly, in [70], an NN is applied to build a
shift controller for power distribution. The NN training data are from different driving
cycles with DP. This NN model is very close to DP at fuel consumption with less than a
2.6% increase but is better for calculating efficiency and real-time control capabilities.

Furthermore, the researchers in [72] utilize the nonlinear modeling capability of NN
to recalibrate the components of energy management while constructing a novel set of
control torque models. Unlike traditional approaches, this method does not require the
extraction of driving cycle characteristics and outperforms them in terms of fuel economy
and accuracy. The utilization of NN in energy management represents just one facet of AI.
Specifically, NN falls within the domain of ML, which will be the primary focus of this
discussion.

For instance, in the context of electric vehicles, model-free sliding mode control-based
ML approaches are employed to optimize battery energy management. This applica-
tion aims to enhance both battery life and overall system efficiency [73]. By considering
battery state and power conditions, these approaches determine the most favorable charg-
ing operation mode. As discussed in Section II, ML can be divided into UL, SL, and RL.
However, RL is much more commonly used for energy-management control, especially
with DRL. The main two functions of UL are clustering and compression, they apply
more during data processing and have fewer applications in energy management control
strategies. Unlike UL, the applications of SL and RL in control are widely used [74]. Since
the previous research has a sufficient introduction to SL in control applications [31], this
article will spend more space discussing RL technology.
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4.2. RL for Energy Management

In EMS applications, the factors (discussed in Section 2.1) usually considered in the
general reward function are the economy of fuel and the range of the battery SoC. The
reward function of different RL learning methods can be uniformly summarized as the
Formula (6).

r = −
[

a× f uel + ∆SoC2
]

(6)

where a is to describe the linear weight of the fuel consumption rate and SoC maintenance
relationship, fuel is the fuel consumption rate, ∆SoC is the deviation of the current SoC and
the target. The negative sign in front of the function will transform the minimum problem
to maximize the problem.

Generally, this application can be categorized into two distinct approaches: model-
free and model-based, as depicted in Figure 6. For model-free RL algorithms, there are
two types, value-based and policy-based. The value-based set can be divided into on-
policy and off-policy based on whether algorithms use policy. For the on-policy algorithm,
state-action-reward-status-action (SARSA) [75] is a typical representative of it; For the
off-policy algorithm, Q-Learning [76] is a classic RL algorithm which can be matched with
NN technology to form deep Q-network (DQN) [77]. In another set of policy-based, Under
the idea of policy gradients, the Actor-Critic algorithms can be divided into four types:
proximal policy optimization (PPO) [78], soft actor–critic (SAC) [79], and deep deterministic
policy gradient (DDPG) [80], and twin delayed DDPG (TD3) [81]. Among them, SARSA,
Q-learning, PPO, and SAC belong to the RL algorithm and DQN, DDPG, and TD3 are all
DRL algorithms. However, the classification above is not static. Some of the RL algorithms
using deep neural networks (DNN) as the function approximators can be regarded as DRL
algorithms, such as PPO and SAC [82].
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For the model-based RL algorithms, it can be divided into the policy-based method
and model predictive control (MPC). Thus, the categorization of model-based RL is much
simpler than model-free RL. For the policy-based method, a policy model is used for
decision-making during the training. For MPCs, they are based on the current state and
also need to gradually predict simulation and selection based on dynamics models.

4.2.1. Model-Free RL

Traditional RL Algorithms: As shown in Figure 6 (marked by blue), there are various
examples of traditional RL algorithms without taking the system model into account. They
are purely math algorithms for learning no matter what the studied system is about. In the
last century, RL was widely used at first, as a mainstream plan for modeless models [31].
Reference [83] proposed an integrated RL strategy to improve fuel economy. The integrated
RL strategies were used on parallel hybrid electric vehicles (HEV) models to minimize the
two common EMS: constant temperature strategy and equivalent consumption strategy.
It is found that the fuel economy proposed by the integrated strategy is 3.2% higher than
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the best single strategy. For RL’s training security constraints, the researchers in [13]
proposed an RL framework called “Coach-Action-Dual Critic” for the optimization of
energy management. This control method includes a NN online EMS executor and a rules-
based strategic coach. Once the output of the participants exceeds the scope of the feasible
solution, the coach will take control of energy management to ensure safety. The method
is better than existing RL-based strategies and has reached above 95% energy-saving rate
of the offline global optimum. However, original RL cannot cope with large-scale, high-
dimensional state action space in actual applications. Therefore, deep learning is introduced
in RL, namely the DRL.

DRL Algorithms: The yellow part of Figure 6 shows the DRL of modeless algorithms.
DRL inherits the ability to reinforce good learning and has excellent perception and expres-
sion ability, which can effectively solve complex control problems and applies to energy
management problems [30]. As a specialized variant of RL, the DRL leverages DNN to
address challenging problems that traditional RL methods struggle to solve. The line
distinguishing them is often blurred, with various intermediate forms and variant tech-
niques existing. In this paper, we aim to classify these approaches, depicting the transition
techniques between traditional RL and DRL, as showcased in Figure 6.

DRL is widely used as an algorithm in EMS to manage the energy within the OBMG.
For example, a self-adaptive EMS for HEV based on DRL and transfer learning (TL) was
proposed to address the drawbacks of DRL, such as its prolonged training time [84]. A
double-layer control framework is built to derive the EMS. The upper layer uses a DDPG
algorithm to train EMS. The lower layer uses the TL method to convert pre-trained NNs.
This control strategy can improve energy efficiency and improve system performance. The
researchers in [85] propose an inspirational DRL control strategy for energy management
for a series of HEVs. In the control framework, a heuristic experience replay is proposed
to achieve more reasonable experience sampling and improve training efficiency. In the
optimization strategy, a self-adaptive torque optimization method based on Nesterov
accelerates gradient is proposed. This control strategy can achieve faster training speed
and higher fuel economy and is close to global optimal.

Moreover, reference [86] proposed a combination of DRL-based EMS with a rule engine
start-stop strategy that uses the DDPG to control the opening of the engine thermal valve.
DRL-based EMS achieves multi-target synchronization control through different types of
learning algorithms. Compared with deterministic DP, this method can ensure optimization
and real-time efficiency. An EMS that leverages DRL in the context of a cyber-physical
system is proposed [87]. The EMS is trained using DRL algorithms, incorporating input
from experts and multi-state traffic information. Notably, the system not only considers
internal physical system information but also harnesses external information at the network
layer to optimize performance. Moreover, the proposed method employs TL to transfer
previously trained knowledge to a different type of vehicle. Ultimately, this approach leads
to an improvement of over 5% in fuel economy compared to the DP method.

Furthermore, in response to the impact of battery health in EMS, the researchers in [88]
put forward an energy management framework based on battery health and DRL. The
proposed strategies can reduce the severity factor with low fuel economy cost, thereby
slowing the aging of the battery. To further reduce fuel consumption and improve the
adaptability of the algorithm, the researchers in [89] proposed an online update EMS based
on DRL and accelerated training. The online framework continuously updates the NN
parameters. Combining DDPG with the priority experience of the release, the fuel economy
and SoC performance can be both improved, and the training time is also decreased. The
EMS fuel economy based on the method reached 93.9% of the benchmark DP.

With the development of technology, vehicle autonomous driving technology is be-
coming more mature in recent years, and there are more EMS studies for autonomous
driving. A layered control structure was proposed to facilitate energy management in
autonomous vehicles through the use of visual technology [90]. It combines one-time object
detection with intelligent control based on deep-enhanced learning. This layered control
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structure can achieve quite high computing efficiency on the embedded device and has the
potential of actual vehicle control. Unlike, the researchers in [91] studied the EMS under
the car-following scenario. A new ecological driver strategy, a DDPG-based ecological
driving strategy is proposed, and the weights of multiple goals are analyzed to optimize the
training results. Under the conditions of ensuring the performance of the car, the proposed
strategy’s fuel economy can reach more than 90% of the DP method.

4.2.2. Model-Based RL

Policy-Based Method: For the policy-based method, we need to build a policy model for
the training in RL. When building such a new model, it is usually combined with traditional
methods. Using new models for planning, RL can be transformed into an optimal control
problem, and the optimal strategy is obtained through the planning algorithm. The RL
method has strong adaptability to different working conditions and has strong application.
In terms of the optimal control of energy management, the control method based on RL [92]
is compared with the control method of using deterministic DP or stochastic DP. The control
problem obtains the global optimality, and the convergence characteristics of RL-based
control strategies are verified. The researchers in [93] propose a DRL-based EMS method
to use historically accumulated stroke information to build a dynamic model for NN
construction. Figure 7 is the principle of this method. It is found that the fuel economy and
calculation speed of this method is better than that of EMS based on MPC.
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Differently, the researchers in [94] propose a control method by establishing a dy-
namic model of the vehicle, and then using an online EMS based on heuristic DP. In that
article, considering the uncertain non-linear dynamic process of vehicles in the actual
transportation environment, the backpropagation NN is used to build a dynamic model.
The torque distributed by this strategy can effectively track the vehicle speed, and the
speed tracking accuracy is higher than 98%. The proposed strategy can further reduce the
fuel consumption and emissions of the HEV when compared with the existing online EMS.
In [95], the internal power system model of the vehicle is used for enhanced learning. The
learning process is stable and convergent, and the power assembly model is well-learned.
Compared with rules-based strategies, the algorithm proposed was reduced by 5.7% of the
fuel consumption.
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In addition, reference [96] put forward a hybrid electric tracked vehicle based on DP
and enhanced RL for online corrections to predict energy management, which is applying
a DP algorithm to obtain a local control strategy based on the short-term future driving
cycle. It combines the RL algorithm with the fuzzy logic controller to optimize the control
strategy by eliminating the impact of inaccurate prediction. Compared with the original
predictive energy management, the fuel economy of the proposed method has increased
by 4% and reached 90.51% of the DP benchmark. To adjust the parameters of ECMS in a
dynamic environment, the researchers in [97,98] propose to use RL to evaluate performance
and determine the best control parameters which can automatically generate the equivalent
factors in EMCS based on the interaction between the learning subject and the driving
environment.

For example, the proposed method in [97] can obtain a global solution that is close to
the optimal solution, and close to the DP method (an average increase from the DP results
of 96.7%). It improves by 4.3% compared with the existing adaptive ECMS. The researchers
in [99] propose an online update framework for the EMS for multi-mode hybrid systems.
This method can generate close optimal strategies for any type of unknown driving cycle
at a short time, only 6–12% of fuel than global optimal EMS. To adjust the constraint
setting of SoC according to the requirements of EMS future industrial tasks, the researchers
in [100] proposed an adaptive layered EMS combining knowledge and DDPG. The fuel
consumption after SoC correction is very close to DP-based control, and the training of this
method is an effective, efficient, and secure exploration for real-world applications.

Model Predictive Control: For MPC, the other model-based RL is based on the current
state, and the dynamics model is built to predict and select the potential actions. In the MPC
of energy management, it is important to predict some data of the system. A non-linear
MPC system based on random power prediction methods was proposed to achieve the best
performance in heavy HEV that lack navigation support [101]. The data-driven prediction
method is used to obtain high-precision ultra-short-term power prediction, and then find
the optimal numerical solution through nonlinear MPC in real-time. This online real-time
method is much better than the rules-based control strategy; In addition, compared with
the offline global optimization strategy, the results are quite similar.

The researchers in [102] proposed an uncertain-based HEV EMS, which combines
convolutional NN with long-term memory NN and uses tube-MPC to solve the optimiza-
tion control problem in a receding horizon manner. Compared with traditional rule-based
and MPC methods, the tube-MPC method could achieve 10.7% and 3.0% energy-saving
performance improvement on average. Reference [103] developed a new learning MPC
strategy and proposed an MPC solution based on reference tracking with strong and instant
application capabilities. This method can optimize the energy flow in the power supply of
the vehicle in real-time, highlighting its anticipated preferable performance.

This model-based RL has a high sample efficiency, but the training process of environ-
mental models is often large in time. How to improve the learning efficiency of models is
the direction of future research.

As mentioned above, a popular way of applying RL is coupled with transfer learning
(TL). TL aims to apply the knowledge skills learned from a previous domain to a different
but related domain. References [84,87] uses TL to improve the training efficiency of RL. In
addition to TL, federal learning (FL) could also be used to protect user data privacy [104].
For example, in vehicle-to-vehicle energy management, DRL is applied [105] to learn the
long-term returns of matching action and an FL framework is proposed to achieve different
electric vehicle cooperation without sharing sensitive information. This method could
benefit electric car owners to save costs with low hedge trading risks and reduce the
burden of reducing the power grid. In summary, each type of EMS applied with RL entails
its own unique set of advantages and disadvantages. These drawbacks and benefits are
comprehensively presented in Table 2.
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Table 2. Comparison of the EMS using Different Types of RL.

EMS Advantages Disadvantage

Model-free RL

Traditional
reinforcement

learning [13,31,83]

Less memory usage; Continuous
learning of the decision maker;

Robustness against unprecedented
situation

Lack of explanability in the
decision-making process;

Inconvergence issues are prone to occur
during training

Deep-reinforcement
learning [30,84–91]

Handle complex energy management
systems at high latitudes;Near global

optimal controller

Higher demand for data; More difficult
to design and train

Model-based RL

Policy-Based
Method [92–100]

Effectively utilizing trained models to
achieve optimal control; Decision can

be interpretability

Performance depends on trained model
and prediction accuracy; Difficulties in

building accuratel models.

Model Predictive
Control [101–103]

Inherent ability to tackle con-straints on
input, output, andstates; Real-time

optimization

Depends on prediction
accuracy;Seldom achieves

globaloptimal solution

4.3. Other AI Methods for Energy Management

In addition to the above ML methods, metaheuristic methods and fuzzy logic control
have also been considered for EMSs. The metaheuristic method is generally developed
by biological evolution, e.g., GA by process of natural selection, and particle swarm
optimization algorithm (PSO) by simulating birds in finding an efficient path for foods [31].
The metaheuristic method in EMS can give feasible solutions at an acceptable price (such
as calculation time). Researchers in [106] proposed a self-adaptive layered EMS suitable for
plug-in HEV, which combines DL and GA to derive power distribution control between
batteries and internal combustion engines. This technology can greatly improve fuel
economy with strong adaptability and real-time characteristics. According to the concept
of metaheuristics, researchers in [107] proposed a new coyote optimization algorithm to
reduce the hydrogen consumption of hybrid systems and improve the durability of the
power supply. Compared with the ECMS method, this algorithm can reduce 38.8% of
hydrogen consumption.

Regarding the fuzzy logic control, reference [108] proposes an intelligent DC micro-
grid energy management controller based on the combination of fuzzy logic and fractional-
order proportional-integral-derivative (PID) controller. The source-side converters are
controlled by the new intelligent fractional order PID strategy to extract the maximum
power from renewable energy sources and improve the power quality supplied to the DC
microgrid. Therefore, the fuzzy logic control in [108] is not applied in rules-based strategies
but for PID.

Although AI offers numerous advantages in energy management, it faces certain
challenging drawbacks. These include its heavy reliance on large quantities of high-quality
data for effective training and learning, as well as its opaque decision-making process,
making it difficult to provide explanations for its reasoning. Additionally, AI applications
in energy management require substantial data collection and processing, which raises
concerns related to privacy and security. Consequently, to address these challenges, another
information technology, specifically the concept of DT, will be introduced in the subsequent
chapter.

5. DT Technology for Energy Management

DT technology provides a platform for the design, control, and maintenance of energy
management. In addition, it can be regarded as advanced modelling, whose core is
maintaining the consistency of the digital world with the physical world. For this goal, AI
techniques are widely used in the creation of digital models to ensure their accuracy [109].
On the other side, the implementation of DT presents an economical and efficient platform
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for AI addressing complex high-dimensional problems [54]. Thus, combining AI techniques
with DT technology is a popular trend nowadays.

The utilization of DT enables the real-time monitoring and collection of diverse data
from energy systems [26]. This facilitates the prompt identification of issues and oppor-
tunities for optimization, as well as the provision of instantaneous feedback and decision
support. Additionally, DT technology possesses strong collaborative capabilities. Through
the sharing of DT models and data, the realization of real-time information sharing and
collaborative decision-making is attainable, consequently enhancing the efficiency and
coordination of energy management as a whole [110,111].

This section categorizes the energy management applications of DT into two distinct
parts based on their specific applications. The first part focuses on energy management
applied to the OBMG system within vehicles, while the second part addresses energy
management applied to the broader transportation grid.

5.1. DT Applied in OBMG

When applying the DT technology in an OBMG, its power utilization may increase.
As shown in Figure 8, DT achieves data fusion by combining data sources acquired from
the physical body and the digital model. The blue rounded rectangle represents the OBMG
inside the actual vehicle, and the green prototype rectangle represents the DT platform built
in virtual space. The physical entity transmits real-time data to the DT system, permitting
the DT mapping layer to synchronize with the data model of the physical entity. Meanwhile,
instructions and actions issued by the driver can be transmitted to the DT model via the
IoT platform. The mapping layer of the IoT platform reflects the real state of the physical
entity, which will be analyzed, simulated, and evaluated by the AI layer. The AI layer then
makes a comprehensive decision based on the results, which is then transmitted to the
control layer. The control layer relays the control signal to the EMS on the physical entity,
allowing it to perform energy scheduling by managing power sources such as battery packs,
supercapacitors, FC, engines, etc.
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The battery-management system (BMS) is the key part of the power systems in all-
electric vehicles [26,112,113]. The health status of the battery is associated with both its
charging state and lifespan, affecting the accuracy of the overall digital model. Refer-
ence [112] offers a battery-based DT model structure for vehicles, which enhances the
ability of the BMS to perceive and enables the battery storage unit to operate at peak
efficacy. Besides, developing predictive models based on the DT technology can potentially
improve the BMS’s safety, reliability, and performance. For instance, DT can be used for
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monitoring the status of the battery and providing additional real-time information to the
BMS for informed decision-making [114].

Moreover, DT is also utilized to explore the engine’s potential for fuel conservation.
For example, a high-performance Atkinson cycle gasoline engine is developed by multi-
objective evolutionary optimization using the DT technology [115]. The approach leverages
DT data as input and then uses the evolutionary non-dominating sorting GA to identify
the optimal input parameter values. To optimize energy utilization efficiency, regenerative
braking using the DT technique is proposed [116]. The suggested approach analyzes the
characteristics of each component in the traction-powered AC-DC hybrid grid using a DT
platform, on which the recovery and reuse of traction braking energy are realized, taking
into account more safety factors than conventional methods.

Apart from optimizing subsystems in energy distribution, DT is also beneficial for the
overall OBMG design and optimization process. By using DT, an embedded control system
can be integrated into the initial ship power system design to optimize cost, availability,
safety, and emission levels at the top layer [117]. The optimized design tool created using
DT is compatible with the actual ship control design bandwidth during operation. An
adaptive PSO algorithm is introduced enhancing the optimality and trustworthiness of
the DT-based optimization of a parallel HEV [118]. The proposed method optimizes
the algorithm’s performance by implementing an adaptive swarm control strategy. The
objective function of this strategy minimizes fuel consumption while evaluating battery
SoC. The method has been verified to have better performance in controlling the final SoC
while saving fuel consumption as well as calculation time.

Although the advantages of DT for energy management in OBMG have been men-
tioned above, there are still limitations that need to be addressed. Firstly, DT necessitates
real-time data collection from multiple sensors and devices within the vehicle. However, if
the sensor data collection is inaccurate or delayed, it may result in erroneous or outdated
energy management control signals [26]. Another limitation is that the energy management
system of OBMG is typically composed of components and subsystems sourced from varied
suppliers. These suppliers may adopt different communication protocols and data formats,
presenting a challenge in constructing the DT. Lastly, building DT models necessitates the
use of user data, including vehicle performance and driving behavior, giving rise to security
and privacy concerns [111]. In many cases, these concerns are neglected in transportation
due to cost considerations. However, they become critical aspects to be addressed in larger
systems like the transportation grid. The following section will elucidate the application of
energy management in the context of the transportation grid.

5.2. DT Applied in the Transportation Grid

The DT technology can help realize the smart transportation system by effectively
managing the road network traffic, as shown in Figure 9 [110,119]. The data obtained from
the vehicle information (road traffic conditions, charging station status, and power plant
information, etc.) are transmitted to the DT of the transportation system in real time. After
processing the data by ML, DRL, and other AI algorithms, the results can be used to predict
driver behavior, manage the energy, and evaluate the overall system. Moreover, results are
presented to the users in real-time on a visual interface that aids in decision-making.

The concept of the Internet of Vehicles (IoV) is introduced by combining it with
DT. In a smart transportation system, IoV provides wireless connectivity and computing
services, while the DT is used to digitize smart transportation for prediction, management,
maintenance, and evaluation [120], as shown in Figure 9. Considering that transportation
power systems are time-varying and unpredictable, it is crucial of developing a dynamic
DT model for power distribution. For example, an aerial-assisted IoV is established to
capture the time-varying energy supply and demands, thereby facilitating unified power
scheduling and allocation [121]. This approach improves user satisfaction and energy
efficiency simultaneously.
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Moreover, DT technology can be used to improve the performance of electric railway
power systems. In [122], a model is developed for a future 9 kV electric railway system
(ERS), which integrates distributed energy sources and electric vehicle charging infrastruc-
tures. The algorithm in ERS is modified to accept real data from a physical railway system
and simulate a DT-based model. The proposed architecture has the potential in terms of
enhancing the ERS capacity and efficiency.

6. Future Trends

There is a significant correlation between DT technology and AI technology. Within
the context of the DT, AI technologies can be utilized for data analysis, pattern recognition,
and decision support. By incorporating AI technologies, a DT can automatically analyze
and interpret data, extract crucial information, and make decisions through deep learning
and pattern recognition techniques using vast amounts of real-time data. AI algorithms and
models are instrumental in helping DT systems identify patterns, anticipate trends, make
intelligent decisions based on intricate data, optimize system performance, and provide
intelligent operations and maintenance. Furthermore, DT and AI have the potential to
mutually reinforce and enhance one another. DT technology provides a wealth of real data
and scenarios that serve as the foundation for AI training and validation. The simulation
data generated by DT can be utilized to train AI models to simulate diverse situations
and changes within real environments, thus elevating the robustness and generalization
capabilities of the models.

The application areas of DT and AI in the electrical industry encompass smart grid and
energy management, smart manufacturing and industrial automation, smart appliances,
and smart home, as well as data-driven decision support. Among these, the smart grid and
energy management domain presents extensive prospects for application. By establishing
DT models of power systems and integrating real-time monitoring data with AI algo-
rithms, intelligent monitoring, fault diagnosis, and optimal scheduling of power networks
can be achieved, thus enhancing power systems’ reliability, efficiency, and sustainability.
These applications find widespread use in transportation-based electrical infrastructures.
Additionally, data-driven decision support, when combined with DT and AI algorithms,
facilitates the analysis and mining of large-scale data, real-time monitoring of electrical
equipment status, performance, and efficiency, identification of potential issues, and provi-
sion of intelligent decision suggestions. Such capabilities contribute to the optimization of
operation and management strategies.

Although DT and AI offer a plethora of promising applications in the electrical indus-
try, several issues still need to be resolved. These include concerns regarding data quality
and reliability, model accuracy and precision, privacy and security protection, as well as
standards and interoperability.
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• Data quality and reliability are crucial for the effective utilization of DT and AI.
Nevertheless, in the electrical industry, data quality and reliability often encounter
challenges caused by factors like sensor noise and data collection errors. Consequently,
the need to address how to enhance data quality and reliability to mitigate the impact
of data uncertainty remains an unresolved issue.

• Model accuracy and precision are crucial aspects in the development of DT models
and AI algorithms. Due to the inherent complexity of electrical systems, building
accurate models and designing precise algorithms becomes increasingly challenging.
Therefore, further research and improvement are necessary to enhance the accuracy of
models and algorithms in this domain.

• Privacy and security protection are of paramount importance in the utilization of DT
and AI. Due to the substantial amount of data and information collected and processed
in these applications, it is crucial to address the protection of sensitive business and
personal privacy information within the electrical industry. Ensuring the security and
privacy of such information remains a significant concern that requires attention and
resolution.

• Standards and interoperability are vital for promoting the widespread adoption of DT
and AI. To accomplish this, it is essential to develop common standards and specifica-
tions, as well as enhance interoperability among diverse systems. The establishment of
such measures will facilitate the seamless cross-platform and cross-system integration
and application of DT and AI technologies.

Addressing the computational power required for implementing these two informa-
tion technologies (AI and DT) constitutes a primary concern in response to these appeals.
Presently, efficient data processing technologies, including parallel computing, distributed
computing, and data stream processing, are employed. Computing platforms effectively
utilize hardware acceleration and cloud computing resources to enhance computing power.
Furthermore, the widespread adoption of integrating AI and DT technologies at the sys-
tem architecture level effectively mitigates data transmission and processing issues by
amalgamating algorithms with DT models, thereby decreasing the computing power re-
quirements. These technologies offer the potential to resolve computing power issues
and, as they continue to advance, also address concerns about data privacy, security, and
standardization.

7. Conclusions

The paper commences by providing a background on transportation electrification
and transportation informatization, subsequently introducing OBMG. The emphasis is
particularly on their internal energy management. Subsequently, the paper provides an
overview of AI and DT technologies, encompassing their key frameworks and classifi-
cations. The paper offers an overview of AI techniques applied in energy management,
with a specific emphasis on the implementation of RL. Furthermore, the paper discusses
the application of DT technology in energy management, highlighting its utility beyond
OBMG to encompass larger transportation grids. In contrast to AI techniques, DT does not
offer specific algorithms but rather provides a platform that aligns with the physical object.
Lastly, the study explores the future trends of these two emerging information technologies
(AI and DT) in the realm of transportation power systems.

The future trend of transportation systems is towards electrification and information
technology. AI and DT technologies are advanced forms of information technology and
can contribute significantly to the development of this transportation and power system.
This study aims to consolidate recent research on the application of these technologies
in transportation power systems, providing a robust foundation for future exploration
in this field. In the future, the use of AI and DT technologies will be more prevalent
in transportation power systems, resulting in increased energy efficiency in OBMG. An
all-encompassing theme for future research would be to merge AI technology with DT
technology to train AI algorithms by data generated from DT platforms, that enhance the
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design, control, and maintenance of transportation power systems. This technique may
either be data-based or model-based. While it may be too computationally complicated for
real-time control, it can substantially optimize the transportation power system overall.
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Nomenclature

AI Artificial intelligence
BMS Battery management system
DDPG Deep deterministic policy gradient
DNN Deep neural network
DP Dynamic programming
DQN Deep Q-network
DRL Deep reinforcement learning
DT Digital twin
ECMS Equivalent consumption minimization strategy
EMS Energy management strategies
ERS electric railway system
FC Fuel cell
GA Genetic algorithms
GUI graphical user interface
HEV Hybrid electric vehicle
IoT Internet of Things
IoV Internet of vehicles
MDP Markov decision process
ML Machine learning
MPC Model predictive control
NN Neural network
OBMG Onboard microgrid
PID Proportional-integral-derivative
PPO Proximal policy optimization
PSO particle swarm optimization
RL Reinforcement learning
SAC Soft actor–critic
SARSA state-action-reward-status-action
SL Supervised learning
SoC State of charge
TD3 Twin delayed DDPG
UL Unsupervised learning
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