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Abstract: Based on the magnetic gear effect, the field-modulated permanent-magnet machine
(FMPMM) can realize the unequal pole design of the rotor PM field and the stator armature mag-
netic field. With the advantages of high torque density and high efficiency, the FMPMM has been
widely studied in low-speed direct-drive applications. As a kind of machine excited by PMs, the
performance of the FMPMM was affected by the demagnetization state. However, the method for
establishing the FMPMM demagnetization model based on a finite element analysis (FEA) presented
some problems, including tedious repeated modeling work and long calculation time-consuming
under fine subdivision. Therefore, in this paper, a six-phase surface-mounted FMPMM was taken as
an example, and an equivalent magnetic network (EMN) model was proposed for evaluating the
machine performance under demagnetization. In order to realize the rapid establishing EMN models
under diverse demagnetization types, the variable coercivity of PM was introduced. Furthermore,
for the purpose of improving the calculation accuracy and shortening the calculation time, the least
square method was used in fitting and analyzing the discrete results. Then, in order to verify the
validity of the proposed EMN model, a prototype was fabricated and a testing platform was built.
The air-gap flux density and the no-load back EMF obtained by the FEA, the proposed EMN model,
and the experimental testing were compared. The results showed that the proposed EMN model can
realize the rapid modeling and accurate analysis of the six-phase surface-mounted FMPMM under
diverse demagnetization types.

Keywords: demagnetization modeling; equivalent magnetic network (EMN); field-modulated
permanent-magnet machine (FMPMM)

1. Introduction

In recent years, as a new type of machine, the field-modulated permanent-magnet ma-
chine (FMPMM) has received much attention [1,2]. Equipped with the advantages of high
torque density, high efficiency, and low torque ripple due to magnetic gearing effect [3], the
FMPMM has been studied extensively in the fields of low-speed direct-drive applications
such as wind power generation [4], tidal power generation [5], electric vehicle [6], and ship
propulsion [7,8]. However, the FMPMM is still excited by permanent magnet (PM), which
is prone to local or uniform demagnetization due to working temperature [9], armature
reaction [10], manufacturing defects, and service life [11]. Then, the FMPMM will face per-
formance degradation including an output torque decrease and a torque ripple increase [12].
These faults will in turn increase the risk of serious demagnetization or even damage to
machine performance [13–16]. Therefore, in order to ensure the stability of FMPMM, it
is necessary to diagnose and analyze its demagnetization state. For FMPMM diagnose
system, the electromagnetic characteristic data under demagnetization are essential. In
common, the electromagnetic data under demagnetization can be obtained with the help of
the machine demagnetization model. However, the existing methods used for establishing
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the FMPMM demagnetization model are insufficient in accuracy under shorter calculation
time [17–19].

Based on the research status, the methods for establishing the FMPMM model can
be divided into three categories: the analytical model method [20–22], the finite element
analysis (FEA) [17–19,23,24] and the equivalent magnetic network (EMN) [25,26]. In [27],
an analytical model of the FMPMM was established by the subdomain method. Although
this method is based on the principle of precise angle mapping, which can accurately reflect
the relationship between slotted air-gap and slot-less air-gap of the FMPMM and accurately
obtain the magnetic field distribution, there are some problems including complex modeling
process, slow calculation speed. In [23], a split-tooth concentrated-winding FMPMM using
ferrite magnets with low coercivity was analyzed by the FEA, and the influence of PM shape
and size on the machine under demagnetization was emphatically studied. Although the
FEA has a high accuracy, there are some problems including complicated modeling process
and long calculation time under large number of grids. In [28], an EMN model combining
the adaptive grid method has been proposed to efficiently analyze the characteristics of a
vehicular dual-PM FMPMM.

At present, although the EMN method has been used in establishing the FMPMM
model, there is little discussion on modeling the FMPMM demagnetization model based
on the EMN. Therefore, a method for establishing a six-phase surface-mounted FMPMM
demagnetization model based on the EMN is presented in this paper. By introducing the
variable coercivity and appropriate curve-fitting method, the proposed EMN model can
realize the rapid and accurate modeling. Compared with the FEA, the proposed EMN
model has a faster calculation speed. Furthermore, based on the proposed EMN model, the
no-load back electromotive force (EMF) and air-gap flux density under demagnetization
can be calculated flexibly. Then, in order to verify the accuracy of the proposed EMN model,
a prototype was fabricated. The no-load back EMF waveforms and air-gap flux density
waveforms obtained by the proposed EMN model, the FEA, and the experimental testing
were comparatively analyzed. The comparison results show that the proposed EMN model
is in good agreement with the FEA and experiments.

2. EMN Modeling of Six-Phase Surface-Mounted FMPMM under Demagnetization
2.1. Machine Topology

In this paper, the studied six-phase surface-mounted FMPMM adopts the conventional
topology type of outer stator and inner rotor. As shown in Figure 1, the machine topology
is relatively compact with a single-layer centralized armature winding. The stator teeth
are parallel without the pole shoe, the stator slot is slotted, and the PM is surface mounted.
Two windings in the same phase (e.g., A1 and A2) are connected in series. The six-phase
currents of the stator are shown in Figure 2. In addition, the main parameters of the
analyzed machine are shown in Table 1.
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Table 1. The main parameters of the analyzed six-phase surface-mounted FMPMM.

Parameters Value Unit

Rated speed 214 r/min
Rated power 250 W
Phase voltage 18 V
Phase current 2.3 A

PM pole number of rotor 28 -
Number of stator tooth 24 -

Pole-pair number of armature winding 10 -
Number of turns per armature coil 119 -

Stack length 60 mm
Air-gap length 1.5 mm

Material of iron core 35CS250 -
Material of PMs N38SH -
Thickness of PM 4 mm

Inner radius of rotor 25 mm
Outer radius of rotor 42 mm
Inner radius of stator 43.5 mm
Outer radius of stator 72 mm

Thickness of stator yoke 5 mm
Width of stator tooth 4 mm

2.2. Magnetic Field Distribution

In this paper, the FEA model of the six-phase surface-mounted FMPMM was estab-
lished, and the simulation in different demagnetization degrees was realized by changing
the coercive force HC of permanent magnets. The degree of uniform demagnetization of
single PM is T, which is determined as follows:

T = 1− HC
HC0

(1)

where HC0 is the coercivity of PM without demagnetization.
In order to establish an accurate EMN model, the magnetic circuit should be divided

reasonably according to the magnetic field distribution. The irreversible uniform demagne-
tization of the single permanent magnet is simulated by the FEA. As shown in Figure 3,
the magnetic flux density inside the demagnetized PM is obviously reduced but remains
uniform. The reduction proportion of the magnetic flux density increases when the PM
demagnetization worsens. However, in the demagnetized PM, the magnetic flux density
between the air-gap and the stator teeth not only decreases, but also becomes extremely
uneven, especially near the stator teeth tip, which makes it difficult to accurately calculate
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the air-gap permeance between the stator and the rotor. Therefore, in this paper, the subsec-
tion method is introduced to analyze the stator teeth under PM demagnetization, and the
calculation method of the air-gap permeance in the demagnetized PM is improved.
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2.3. Stator EMN Model

The principle of modeling based on EMN is dividing the magnetic circuit of the
machine into a certain number of grids. Then, based on the shape, the permeance of these
grids can be obtained. As shown in Figure 4, the stator of six-phase surface-mounted
FMPMM includes three parts: the stator yoke, the stator tooth, and the stator slot.
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Firstly, the entire stator of the six-phase surface-mounted FMPMM is evenly divided
into 24 parts, and each part includes one stator tooth, one stator yoke and one stator slot.
From the above analysis, the magnetic flux density is uniform in the stator yoke and uneven
in the stator tooth. At the same time, due to the obvious edge effect, the leakage flux of
the stator slot is larger at the teeth tip and smaller at the teeth root. Therefore, in order
to establish an accurate EMN demagnetization model, the stator yoke is divided into one
grid. The stator tooth is divided into two grids: one stator tooth tip grid and one stator
tooth root grid. Meanwhile, the stator slot near the stator tooth tip is divided into one grid,
and the part near the stator tooth root is ignored. In the magnetic circuit, the armature
winding does not directly conduct magnetic flux, but generates the MMF in the magnetic
circuit through the armature reaction. Therefore, the armature winding is only equivalent
to the stator MMF source Fa. The magnitude of the stator MMF source is determined by
the armature current, which can be ignored when the machine is unloaded. Then, the
permeance of each grid is calculated according to its shape, which is shown in Table 2,
where µsy is the permeability of stator yoke, ls is the machine shaft length, θsy is the angle
of the stator yoke, hst is the height of the stator tooth, Rrt is the inner radius of the stator,
µst is the permeability of the stator tooth, wst is the width of the stator tooth, hss1 and
hss2 is the height of the stator slot, and θss is the angle of the stator slot, In is current in
the n-th stator slot, and these parameters are shown in Figure 4. Finally, linking all the
grid permeance according to the magnetic circuit, the six-phase surface-mounted FMPMM
stator model based on EMN can be established as shown in Figure 5. In addition, the iron
core permeability makes changes in term of the saturation of the ferromagnetic material.
Therefore, it is necessary to update the iron core permeability in each iteration. In this
paper, the look-up table method introduced in the third chapter was used to update the
iron core permeability.

Table 2. The permeance calculation for stator grids.

Terms Symbol Equations

Permeance of stator yoke-1 Gsy1 Gsy1 = µsylsln
((

hsy + 2hst + Rst
)
/wsy

)
/θsy

Permeance of stator yoke-2 Gsy2 Gsy2 = µsylsθsy/ln
((

hsy + 2hst + Rst
)
/wsy

)
Permeance of stator tooth-1 Gst1 Gst1 = 1.538µstlswst/hst
Permeance of stator tooth-2 Gst2 Gst2 = 2.857µstlswst/hst

Permeance of Leakage flux-1 Gδ1 Gδ1 = µ0lsln((hss1 + hss2 + Rst)/hss2)/θss
Permeance of Leakage flux-2 Gδ2 Gδ2 = 2µ0lsθss/ln((hss1 + hss2 + Rst)/(hss1 + hss2))
Permeance of Leakage flux-3 Gδ3 Gδ3 = µ0lsln((hss1 + Rst)/hss1)/θss
MMF source of stator tooth Fa Fa = ∑23

n=1 (n− 24)In/24 + ∑a
n=1 In
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2.4. Rotor EMN Model

Unlike conventional permanent magnet synchronous motors, in which only one
working harmonic contributed to the torque transmission, multi-harmonics are used in
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field modulation motors to achieve a high torque density [29]. Therefore, in order to
improve the accuracy of the model, the PM and rotor iron core are divided into multiple
grids. However, the multiple grids also extend the calculation time of the model. Therefore,
in order to shorten the calculation time of the proposed EMN model under acceptable
accuracy, the number of the PM grids along the tangential direction should be determined
reasonably in the modeling. Firstly, the entire rotor iron core of the six-phase surface-
mounted FMPMM is evenly divided into 28 parts. In this paper, 1–6 are used as the grid
number of one PM and one rotor iron core part along the tangential direction. The six
EMN models are established in turn, and the air-gap flux density and calculation time are
compared with the FEA, respectively. The comparison results are shown in Table 3, where
the error is the percentage error between the FEA and the EMN model. It is easy to see
that the percentage error of the established EMN model is small and the calculation time is
short when one PM and one rotor iron core part is divided in four grids along the tangential
direction. And then, the rotor iron core is divided again along the radial direction. From
the analysis above, it is known that under the demagnetization the rotor iron core magnetic
field is stronger in the part close to the PM and weaker in the part close to the machine
shaft. Therefore, in this paper, the rotor iron core part was divided into two areas along
the radial direction: the effective area and the invalid area. With one-half of the rotor iron
core radius as the boundary, the area between the boundary and the rotor iron core outer
surface is the effective area, and the other part of rotor iron core is the invalid area. Finally,
the rotor is divided as shown in Figure 6. Taking 1# PM as an example, it is divided into
adjacent four grids along the tangential direction, denoted as PM1-1, PM1-2, PM1-3, and
PM1-4, and the correspondence rotor iron core is also divided into four grids in effective
area, denoted as RS1-1, RS1-2, RS1-3, and RS1-4.

Table 3. Comparison of the air-gap flux density and the calculation time of six EMN models.

Divided Grids Error Calculation Time

1 23.24% 10.26 s
2 16.28% 44.33 s
3 10.30% 74.04 s
4 3.02% 102.02 s
5 2.33% 282.45 s
6 2.14% 686.92 s
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Finally, as listed in Table 4, the permeance can be calculated according to the grid
shape, where wm is the width of PM, HC is the coercivity of PM, HC0 is the initial coercivity
of PM without demagnetization, hm is the radial thickness of PM, T is defined as the
demagnetization degree of PM (0 ≤ T ≤ 1, and T = 1 means the demagnetization degree
100%), θm is the angle of PM, hry is the radial thickness of the rotor iron core, Rry is the
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inner radius of the rotor, ury is the permeability of the rotor iron core, and these parameters
are shown in Figure 6. Also, in the iterative calculation, the iron core permeability also
needs to be updated by the look-up table method.

Table 4. The permeance calculation for rotor grids.

Terms Symbol Equations

Permeance of rotor yoke-1 Gh Gh = 4µrylsln
((

hry + Rry
)
/0.5hry

)
/θm

Permeance of rotor yoke-2 Gi Gi = 0.25µrylsθm/ln
((

hry + Rry
)
/hry

)
Permeance of rotor yoke-3 Gj Gj = 4µrylsln

((
0.5hry + Rry

)
/0.5hry

)
/θm

Permeance of PM Gm Gm = 0.25µ0lswm/hm
MMF source of PM Fm Fm = HChm = (1− T)H0hm

In order to reduce the calculation time of the proposed EMN model, the PM node
of the rotor EMN model can be simplified, and the MMF calculation of the PM under
the demagnetization can be improved. The method is introduced as follows: in case the
difference of T between the two adjacent PMs is relatively large, the two PM parallel
branches can be simplified to an equivalent PM branch. The PM branch with a smaller T
is replaced by the equivalent PM branch, and the PM branch with a lager T is removed.
Namely, the coercivity of the PM with a larger T is set as 0, and the corrected coercivity of
the equivalent PM branch is defined as

H′Ci =

{
(Ti+1−Ti)HC0Gi

Gi+Gi+1
+ (1− Ti+1)HC0 (|Ti − Ti+1| > DTHR)

(1− Ti)HC0 (|Ti − Ti+1| ≤ DTHR)
(2)

where H′Ci is the corrected coercivity of the equivalent i-th PM, Ti is the demagnetization
degree of the i-th PM, Gi is the air-gap permeance connected to the i-th PM, DTHR is the
threshold of the difference of T between the two adjacent PMs.

In order to determine the most suitable DTHR, the no-load back EMF error and the
calculation time of the proposed EMN model under different thresholds are compared, and
the results are shown in Table 5. It can be seen that the no-load back EMF error is acceptable
at DTHR ≥ 0.70, and the calculation time is reduced accordingly with the decrease in the
threshold value. In this paper, considering these two aspects, the DTHR is selected as 0.70.

Table 5. Comparison of the no-load back EMF and the calculation time of six EMN models employing
different thresholds.

Thresholds Error Calculation Time

0.25 9.87% 212.56 s
0.40 6.97% 238.48 s
0.55 3.26% 262.24 s
0.70 0.43% 282.45 s
0.85 0.14% 302.45 s
1.00 0% 322.65 s

In addition, as the rotor EMN model, the rotor iron core permeability needs to be
updated at each iteration step of the calculation. As shown in Figure 7, connecting all the
rotor permeance according to the magnetic circuit, the six-phase surface-mounted FMPMM
rotor EMN model can be finally established.
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2.5. Air-Gap EMN Model

In this paper, in terms of the six-phase surface-mounted FMPMM, the established
EMN model contains 24 stator teeth tip grids and 112 PM grids. One stator tooth tip grid
and one PM grid are both linked by an air-gap grid. The permeance of the air-gap grid
can be determined by the relative position of the stator and the rotor. For each position
of the rotor, the air-gap permeance can be calculated by the fitting curve summarized by
Ostovic [30–34]. As shown in Figure 8, the specific calculation process is as follows: the
angle between the stator tooth and the PM is x, and the equation between the air-gap
permeance and x can be expressed as shown in Table 6, where g is the air-gap length, and
xt and x′t can be expressed as

xt =
2wst1 + 0.5wm

Rst + Rsy + 0.5hry + hm
(3)

x′t =
2wst1 − 0.5wm

Rst + Rsy + 0.5hry + hm
(4)Energies 2023, 16, x FOR PEER REVIEW 9 of 20 
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Table 6. The equations for air-gap permeance calculation.

Value Interval of x Equations

[0, x′t] 0.25µ0lswm/g
[x′t, xt] 0.125µ0lswm(1 + cos(π(x− x′t)/(xt–xu)))/g

[xt, 2π − xt] 0.125µ0lswm(1 + cos(π(x− x′t − 2π)/(xt–x′t)))/g
[2π − xt, 2π − x′t] 0

[2π − x′t, 2π] 0.25µ0lswm/g
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After that, the complete EMN demagnetization model of the six-phase surface-mounted
FMPMM can be obtained by connecting the stator, rotor and air-gap EMN models estab-
lished above.

3. Calculation Process of the Proposed EMN Model
3.1. Iterative Calculation

In this paper, the proposed EMN model is composed of circuit branches and nodes, and
each permeance belongs to an independent circuit branch. The MMF source is contained in
these independent circuit branches, and the intersection of any two independent circuit
branches is a node. According to the connection of circuit branches, the following matrix is
defined. The incidence matrix of the proposed EMN model is A, reflecting the connection
of these circuit branches. The circuit branch permeance matrix is G, composed of all
permeances. The node magnetomotive force (MMF) matrix is Fn, and the circuit branch
MMF source matrix is Fs. The elements in Fn are the MMF of all nodes compared to the
reference node, which are unknown quantities. The element in Fs is the MMF source
obtained by PM, which is a known quantity, namely Fm in Table 4. The node MMF equation
of the proposed EMN model is established by imitating the circuit node voltage equation,
which is expressed as follows

f (Fn) = AG(ATFn + Fs) = 0 (5)

where AT is the transposition of A.
From the above analysis, G is a nonlinear matrix. Therefore, in order to solve the

nonlinear equation and improve the iteration speed, the Newton–Raphson method is
introduced. The iterative equation is as follows

Fn
k+1 = Fn

k − J−1(Fn
k) f (Fn

k) (6)

where J−1(Fn) is the Jacobian matrix of the function f (Fn).
In the iterative process, the iron core permeability makes changes in terms of the

saturation of the ferromagnetic material. Therefore, in order to obtain the accurate circuit
branch permeance matrix, the circuit branch magnetic field strength matrix should be
updated in real time. The equation of the circuit branch magnetic field strength matrix is
given as

Hk = (ATFn
k + Fs)L−1 (7)

where L is the effective magnetic path length matrix composed of the magnetic path length
along the magnetic flux conduction direction in all independent branches, and L−1 is the
inverse matrix of L.

Figure 9 shows the specific steps of the iterative calculation process, in which the
maximum error e is set as 10−5.

In this paper, the look-up table method is used to update the iron core permeability.
According to the B-H curve (35C250 iron core material), the magnetic flux density is
determined by the magnetic field strength of iron core grid calculated by Equation (7), and
the ratios between them are the permeability of each iron core gird.

3.2. Air-Gap Flux Density and Back-EMF Calculation

The solution of iterative calculation is the node MMF matrix Fn, and the magnetic flux
density B can be calculated as follows

B =
AGATFnL−1

ls
(8)
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Thus, the phase back EMF can be calculated as

Ep = −∂Ψ

∂t
(9)

where ψ is the phase flux linkage, which can be expressed as

Ψ = N(∆F1G1 + ∆F2G2) (10)

where N is the number of turns per phase winding, ∆F1 and ∆F2 are the MMF of the stator
tooth belonging to the one phase winding, respectively, and G1 and G2 are the permeance
of the stator tooth belonging to the one phase winding, respectively.
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3.3. Curve-Fitting Method

From the above iterative calculation, the back EMF (discrete data) of each grid can
be obtained. The back-EMF waveform is more continuous by dividing more grids in
establishing the six-phase surface-mounted FMPMM demagnetization model based on the
EMN. However, the calculation time of the proposed EMN model is extended with more
grids. Therefore, in order to reduce the calculation time and ensure the accuracy of the
proposed EMN model, the curve-fitting method is introduced. In numerical analysis, the
curve-fitting method is an effective method for fitting discrete data. Under the appropriate
criteria, a function closest to all data points is obtained with the least-square-based fitting
method. Table 7 shows a series of common curve-fitting functions. Eventually, in order
to obtain the completely continuous back EMF waveform, the flux linkage (discrete data)
should be fitted first. As shown in Figure 10, the phase flux-linkage waveform of the
six-phase surface-mounted FMPMM based on FEA is approximately sinusoidal. Therefore,
the Fourier function is introduced for its optimal fit. It can be seen from Figure 10 that
the phase flux-linkage waveform after the curve-fitting from the proposed EMN model
becomes continuous and well matches the waveform obtained by the FEA.
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Table 7. The common curve-fitting methods.

Methods Equations

Exponential aexp(bx) or {aexp(bx) + cexp(dx)}
Fourier a0 + a1cos(wx) + b1sin(wx)

Gaussian a1exp
(
−((x− b1)/c1)

2
)

Power axb or
{

axb + c
}

Rational a/(x + b)
Sum of Sin Functions a1sin(b1x + c1)

Weibull abxb−1exp
(
−axb

)
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4. Comparison Analysis with the FEA
4.1. Parameter Setting

In order to verify the accuracy of the six-phase surface-mounted FMPMM demag-
netization model based on the proposed EMN method, eight common demagnetization
types are presented in this paper. In addition, for these common demagnetization types,
the no-load back-EMF waveform and the air-gap flux density waveform obtained by the
proposed EMN model and FEA are compared at the rated speed. These eight common
PM demagnetization types are summarized in Table 8. The demagnetization in Table 8
is irreversible. Under the normal operation of the machine, the degree of irreversible
demagnetization is not affected by the stator phase current.
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Table 8. The analyzed demagnetization types in this paper.

Groups Types
Demagnetization Degree

PM1 PM2 PM3

Group 1

Type 1-1 100% 0% 0%
Type 1-2 100% 100% 0%
Type 1-3 100% 0% 100%
Type 1-4 100% 100% 100%

Group 2

Type 2-1 35% 0% 0%
Type 2-2 50% 0% 0%
Type 2-3 65% 0% 0%
Type 2-4 80% 0% 0%

Note: The demagnetization degree of other PMs is 0%, and the PM number is defined in Figure 11.
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4.2. Result Comparison Analysis

In order to more intuitively reflect the discrepancy of the no-load back EMF waveforms
obtained by the proposed EMN model and the FEA, the transient error of the no-load back
EMF between the EMN and FEA is δ1, which is defined as

δ1(t) =
vEMN(t)− vFEA(t)

Vpeak
× 100% (11)

where vEMN(t) is the no-load back EMF obtained by the proposed EMN model at time t;
vFEA(t) is the no-load back EMF obtained by the FEA at time t; Vpeak is the peak value of
the no-load back EMF obtained by the proposed EMN model.

That is, the transient error δ1 represents the instantaneous error between the back EMF
waveforms obtained by the proposed EMN model and the FEA. In addition, in order to
discuss the steady error between them, the Mean Absolute Error (MAE) of the transient
error δ1 is defined as follows

M1 =

∫ t2
t1
|δ1(t)|dt

t2 − t1
(12)

For demagnetization Group 1, the result comparison between the FEA and the pro-
posed EMN model in the condition of the constant rated rotating speed of the rotor is shown
in Figure 12. The air-gap flux density waveform obtained by the proposed EMN model
almost matches the FEA results. And it can be seen the absolute value of the transient
error δ1 is less than 8.1%, and M1 is between 1.99% and 2.49%, which means that there is a
good agreement.
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In addition, for demagnetization Group 2, the result comparison between the FEA
and the proposed EMN model in the condition of the constant rated rotating speed of
the rotor is shown in Figure 13. The air-gap flux density waveforms obtained by the
proposed EMN model also well matches with the FEA results. And the absolute value of
the transient error δ1 is less than 8.3%, and M1 is between 2.68% and 3.16%. From above
comparison, the proposed EMN model is highly identical to the FEA, thus evidencing
its validity for accurately analyzing the demagnetization characteristics of the six-phase
surface-mounted FMPMM.
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Furthermore, the calculation time of model is also concerned. The calculation time of
the FEA and the proposed EMN model is shown in Table 9. In this paper, the number of
grids in the FEA is 10,322, and its calculation time is 447 s. However, the number of grids in
the proposed EMN model is 352, and the calculation time is only 102 s. By comparison, it is
confirmed that the proposed EMN model needs less calculation time than the FEA under
the condition of ensuring proper accuracy.

Table 9. Calculation comparison between the proposed EMN model and the FEA.

Methods
Comparative Terms

The Number of Grids Calculation Time

FEA 10,322 447 s
Proposed EMN 352 102 s

5. Experimental Verification

In order to further verify the validity of the proposed EMN model, a prototype is
fabricated, and the main parameters of prototype are the same as Table 1. In order to
achieve the superiority in the aspect of the economy under the condition of meeting the
requirements of machine performance, the material of the iron core of the prototype is
35CS250 silicon steel, and the type of the material of the permanent magnet is N38SH. These
two materials are common in the market and low in price. As shown in Figure 14, the PMs of
the prototype are closely attached to the surface of the rotor iron core. In the manufacturing
process, the three PMs (PM1, PM7, PM8) of the prototype are removed and replaced by
stainless steel blocks with the same shape as the PMs to imitate demagnetization. The
testing platform based on the prototype is shown in Figure 15, in which the servo motor
controlled by dSPACE1103 drives the prototype operating in diverse speeds [35,36], and
the no-load back EMF of the prototype can be recorded by Oscilloscope.
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As shown in Figure 16, the no-load back-EMF waveforms obtained by the proposed
EMN model, the FEA, and the experimental testing at the rated speed 214 r/min are
compared. In order to reflect the no-load back EMF error more intuitively, the transient
error of the no-load back EMF between the EMN and the prototype is δ2, and the MAE of
the transient error δ2 is M2, which is expressed as

δ2(t) =
vEMN(t)− vpro(t)

Vpeak
× 100% (13)

M2 =

∫ t2
t1
|δ2(t)|dt

t2 − t1
(14)

where vpro(t) is the no-load back EMF obtained by the experimental testing at time t.
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In accordance with the above conclusion, the no-load back-EMF waveforms obtained
by the proposed EMN model almost match the FEA results. And the absolute value of
the transient error δ1 between them is less than 7%, and the M1 is 2.73%. Moreover, the
experimental no-load back-EMF waveforms also agree with the results obtained by the
proposed EMN model and the FEA. That is, the absolute value of the transient error δ2
between the proposed EMN model and experimental testing is not larger than 16%, and
M2 is about 4.63%, which is acceptable.

Furthermore, a series of no-load back-EMF waveforms at different speeds are exper-
imentally measured and compared with the proposed EMN model and the FEA results.
Figure 17a,b show the transient error δ1 and δ2, respectively. It can be seen from Figure 17a
that the absolute value of the transient δ1 at different speeds is always less than 12.5%, and
M1 is less than 4%. And it can be found that from 90 r/min to 300 r/min, M1 basically
fluctuates between 3% and 3.5%, which means there is a good consistence in the no-load
back EMF waveform between the proposed EMN model and the FEA in a wide range of
speeds. Similarly, it can be seen from Figure 17b that the absolute value of the transient
error δ2 at speeds below 240 r/min is about less than 15%, and M2 is less than 5.5%. Com-
pared with the transient error δ1, δ2 is a little larger, and it can be explained that the end
effects are not considered in the proposed EMN model and FEA, thus causing the no-load
back EMF discount in the prototype testing as shown in Figure 16. Anyway, the results
show that the proposed EMN model is an effective method for evaluating the demagnetiza-
tion characteristics of the analyzed six-phase surface-mounted FMPMM in a wide range
of speeds.
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6. Conclusions

In this paper, the six-phase surface-mounted FMPMM demagnetization model based
on the EMN method was established and evaluated. In order to realize a rapid EMN
modeling and accurate result analysis of the six-phase surface-mounted FMPMM under
different demagnetization types, the coercivity variable and the curve-fitting method were
introduced. Also, the air-gap flux density and the no-load back EMF waveforms were ob-
tained by the proposed EMN model, the FEA, and the prototype experiments, respectively.
By comparison, it was shown that the results obtained by the proposed EMN model are
consistent with the FEA and experimental testing. Also, the selected materials met the
economy and the performance of the machine operation. At the same time, the proposed
EMN model required a shorter calculation time than the FEA. In consequence, the proposed
EMN model not only enriched the method for modeling FMPMM demagnetization mode,
but also provided a reference for a demagnetization diagnosis of the machine.
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