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Abstract: Due to their substantial energy density and economical pricing, switching-mode power
supplies (SMPSs) often utilize electrolytic capacitors. However, their ability to function at low
temperatures is essential for dependable operation in several sectors, including telecommunications,
automotive, and aerospace. This study includes an experimental evaluation of how well standard
SMPS electrolytic capacitors operate at low temperatures. This paper investigates the suitability of
standard electrolytic capacitors used in switched-mode power supplies (SMPSs) for low-temperature
applications. The experimental evaluation exposed the capacitors to temperatures ranging from
−5 ◦C to −40 ◦C, assessing capacitance (Cp), impedance (Z), dissipation factor (DF), and equivalent
series resistance (ESR) at each temperature. The capacitor’s time-domain electrical signals were
analyzed using the Pearson correlation coefficient to extract discriminative features. These features
were input into an artificial neural network (ANN) for training and testing. The results indicated
a significant impact of low temperatures on capacitor performance. Capacitance decreased with
lower temperatures, while the ESR and leakage current increased, affecting stability and efficiency.
Impedance was a valuable diagnostic tool for identifying potential capacitor failure, showing a
98.44% accuracy drop at −5 ◦C and 88.75% at the peak temperature, indicating proximity to the
manufacturer’s specified limit. The study suggests further research and development to improve
the performance of electrolytic capacitors in SMPS systems under cold conditions, aiming to boost
efficiency and reliability.

Keywords: aluminum electrolytic capacitors; artificial neural networks; cold experiment; Pearson
correlation coefficient; switched mode power supply

1. Introduction

Aluminum electrolytic capacitors (AECs) are vital in efficiently operating switched-
mode power supplies (SMPSs) by regulating energy storage and voltage. These capacitors
are widely used due to their high capacitance and cost-effectiveness. However, their per-
formance at low temperatures is a critical aspect that demands a thorough investigation,
particularly in applications where SMPSs are subjected to sub-zero operating conditions.
Understanding the behavior of aluminum electrolytic capacitors in such environments is
essential for ensuring the reliable and stable performance of power supply systems across
a broad spectrum of operating conditions [1–4]. The low-temperature performance of
aluminum electrolytic capacitors can be significantly affected by various factors, including
temperature-dependent capacitance, leakage current, and the impact on overall power
supply efficiency. The capacitor’s characteristics can deviate from their nominal values at
low temperatures, leading to degraded performance and potential failure. It is imperative
in aerospace, automotive, and telecommunications applications, where SMPSs are exposed
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to extreme temperature variations [5,6]. Despite the significance of low-temperature per-
formance, more comprehensive experimental investigations need to focus specifically on
aluminum electrolytic capacitors in SMPSs. Most existing studies in the field have primarily
concentrated on the behavior of other capacitors or explored the impact of temperature on
capacitors without delving into the specific nuances of aluminum electrolytic capacitors in
SMPS applications [7].

Cold experiments have been conducted to study the impact of low temperatures
on aluminum electrolytic capacitors. It has been observed that cold environments can
significantly affect the performance and reliability of these capacitors. One prominent
effect is the decrease in capacitance at lower temperatures. The dielectric oxide layer on
the aluminum anode tends to thicken, reducing the effective surface area and decreasing
capacitance [8–11]. Additionally, the capacitors’ equivalent series resistance (ESR) tends to
increase in cold conditions, impacting their overall impedance characteristics. Furthermore,
the mechanical integrity of aluminum electrolytic capacitors can be compromised in cold
environments. The contraction and expansion of the aluminum can and sealing materials
due to temperature changes can induce mechanical stress, leading to potential damage and
reduced reliability. Long-term exposure to low temperatures can also degrade the perfor-
mance and reliability of aluminum electrolytic capacitors. Aging tests conducted under
cold conditions have shown a deterioration in their electrical properties and decreased
operational lifespan. Researchers have examined different approaches, like fine-tuning elec-
trolyte compositions, employing cold-temperature electrolytes, and enhancing packaging
designs to augment the efficiency and dependability of aluminum electrolytic capacitors in
chilly conditions. These efforts aim to mitigate the adverse effects of low temperatures and
ensure the reliable operation of these capacitors in cold applications. Understanding the
impact of cold temperatures on aluminum electrolytic capacitors is crucial for designing
and operating systems in cold environments [12].

This research paper aims to bridge this gap by presenting an in-depth experimental
investigation into the low-temperature performance of aluminum electrolytic capacitors in
SMPSs. The study will encompass various critical aspects, including capacitance variation,
leakage current behavior, equivalent series resistance (ESR), and the overall impact on
the efficiency of the power supply system. By systematically analyzing the performance
of aluminum electrolytic capacitors in different low-temperature scenarios, this research
will contribute to developing guidelines and design considerations for engineers and
researchers working on SMPS applications operating in extreme temperature environments.
The achievements of this research paper are outlined as follows:

• This research paper introduces a statistical-based approach for extracting meaningful
information from the dataset related to the aluminum electrolytic capacitor. This
approach allows for the identification and analysis of key parameters that affect the
capacitor’s reliability.

• This research paper proposes the utilization of an ANN-based machine learning
algorithm. The extracted meaningful information from the dataset is fed into the
ANN to develop a predictive model for assessing the reliability of the capacitor. This
algorithm enhances the accuracy of reliability predictions and aids in identifying
potential failure modes.

• This research paper describes an experimental process that employs a data-driven and
multiple-choice approach for collecting various parameters related to the aluminum
electrolytic capacitor. Parameters, such as equivalent series resistance (ESR), dissipa-
tion factor, capacitance, and impedance, are measured using the HIOKI LCR meter,
providing a comprehensive dataset for analysis.

• The multiple-choice approach implemented during the experimental process ensures
the collection of diverse data points for different capacitor parameters. This exten-
sive dataset enhances the accuracy and robustness of the subsequent analysis and
modeling.
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• The collected dataset is subjected to in-depth analysis to identify correlations, patterns,
and trends among the various parameters. This analysis helps uncover the key factors
influencing the reliability of the aluminum electrolytic capacitor.

• Leveraging the statistical-based approach and the ANN algorithm, a predictive model
is developed to assess the reliability of the capacitor. The model takes into account
the interrelationships among the collected parameters, enabling accurate reliability
predictions.

• The research paper’s contributions lead to an enhanced method for assessing the
reliability of aluminum electrolytic capacitors used in SMPSs. The combination of
comprehensive dataset collection, statistical analysis, and machine learning algorithms
results in more accurate and reliable predictions.

The rest of this research paper is as follows: Section 2 shows the literature and related
works on the reliability of aluminum electrolytic capacitors that are applicable to SMPSs.
Section 3 summarizes the theoretical background of the topics associated with the proposed
model. Section 4 shows the breakdown of the data acquisition process inclusive of the
parameters description of the whole experiment. Section 5 shows the deployed ANN-based
model for capacitor reliability. Section 6 encompasses the entire derived result from the
proposed model, while the research paper is concluded in Section 7.

2. Literature and Related Works

AECs are widely used in electrical and electronic applications due to their high
capacitance, low cost, and robustness. They consist of an anode and a cathode separated by
an electrolyte-soaked paper or polymer separator. The anode is formed by an aluminum foil
with a thin oxide layer, which acts as the dielectric. The electrolyte facilitates ion movement,
creating a stable oxide layer on the anode. Aluminum electrolytic capacitors offer high
capacitance values and can handle high voltage ratings. They find applications in power
supplies, audio equipment, motor drives, and many other electronic systems requiring
energy storage and filtering capabilities. AECs typically consist of several layers. A
protective sleeve or coating provides insulation and mechanical protection for the outermost
layer. Beneath that is an anode foil made of high-purity aluminum, forming one electrode.
The anode foil is covered with a dielectric layer, usually created by an aluminum oxide
film. The dielectric layer acts as the insulating material. Next, a paper or polymer separator
is soaked in an electrolyte, facilitating ion movement. Finally, a cathode foil, typically
aluminum, forms the second electrode. The tightly rolled or stacked layers ensure a
compact structure with a high capacitance-to-volume ratio.

The papers provide different methods for studying and monitoring the condition of
aluminum electrolytic capacitors. It presents a methodology for studying the impact of
thermal cycling on the wear-out of aluminum electrolytic capacitors used in automotive
cases [13]. It introduces an approach for investigating the influence of thermal cycling on the
deterioration of aluminum electrolytic capacitors utilized in automotive applications [14]. It
introduces a trial offline method for assessing the status of aluminum electrolytic capacitors
by estimating equivalent series resistance and capacitance parameters [15]. It suggests an
approach for determining the hotspot temperature of aluminum electrolytic capacitors us-
ing the linear relationship between capacitance and temperature [16]. This study presents a
fault diagnostics framework for aluminum electrolytic capacitors in power supplies. Long-
term frequency monitoring and statistical feature extraction were used to detect anomalies,
achieving improved performance with increased data capacity. The k-nearest neighbors
algorithm showed the highest accuracy (98.40%) and lowest computational cost [17]. This
study focuses on monitoring electrolytic capacitors using a parameter observer (PO) to
determine their equivalent capacity and serial resistance. The PO estimates the discharging
circuit’s time constant based on voltage measurements, enabling the calculation of the
capacitor’s parameters. Experimental results show that the proposed observer has faster
error tracking than other methods, with the potential for real-time implementation due to
its low computational requirements [18]. This paper introduces a data processing method
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using the box diagram technique to identify outliers in sensor data. Outliers are classified
based on their persistence over time and linkage to other sensors. A clustering algorithm
is employed for data reclassification. A risk coefficient is calculated using persistence
and linkage, and a threshold is defined to differentiate between risk-specific and non-risk
anomalies. A comprehensive evaluation model is established using quantitative scoring,
principal component analysis, and 0.1 planning. The proposed evaluation method is evalu-
ated objectively [19]. This research deals with the issue of identifying faults in squirrel cage
induction motors (SCIMs) when operating under conditions of low load. By employing
stator current information and an approach assisted by feature engineering, a technique
for fault categorization is formulated using the support vector classification (SVC) algo-
rithm. The method utilizes the Hilbert transform and filter-based feature selection for
precise fault categorization. The SVC exhibits remarkable diagnostic performance accuracy
(97.32%) and surpasses alternative classifiers in accuracy and computation speeds [20].
This research focuses on monitoring switch-mode AC/DC power supplies (SMPSs) to
identify switching device and capacitor issues. By utilizing dual sensing of current and
voltage signals and applying statistically derived characteristics, an integrated approach
is suggested for diagnosing system faults. The selection of features is carried out using
correlation-based methods, and machine learning-based classifiers are utilized for fault
detection and isolation (FDI). The outcomes demonstrate that random forest and gradient
boosting classifiers are highly dependable but computationally demanding, whereas the de-
cision tree classifier offers cost-effectiveness with reliable diagnostic results. The proposed
framework is effective for diagnosing switching device issues and categorizing various
states of the SMPSs [21]. This research focuses on the significance of sturdy power converter
designs and regulatory techniques in LED lighting setups. It introduces an innovative
health assessment system that employs the brief duration least square Prony’s method for
identifying capacitor issues in a resilient LED driver. The setup enables constant monitor-
ing of electrolytic capacitor status, preventing complete system breakdowns; it exhibits
remarkable efficiency despite a restricted amount of data instances [22]. This research
emphasizes the significance of preserving the robust functioning of capacitors in renewable
energy generation setups. It suggests a non-intrusive method for identifying faults, using
random forest classification to detect the critical level of aluminum electrolytic capacitors,
eliminating the necessity for extra sensors in the converter [23]. Precise capacity assessment
is vital for the secure and effective functioning of batteries. This research introduces an
innovative approach to gauge the capacity of extensive LiFePO4 batteries, utilizing actual
information obtained from electric vehicles. A comprehensive dataset from 85 cars is
compiled, and a capacity prediction method that involves classification and aggregation
is formulated. This technique combines a battery aging trial with extensive data analysis
to estimate even under diverse and authentic circumstances accurately. The suggested
models, encompassing linear regression and neural networks, demonstrate dependable
capacity prediction with minimal relative error. The effectiveness of these methodologies is
confirmed through an aging experiment, offering valuable insights for capacity estimation
based on real-world data [24]. This article focuses on temporal features and their impor-
tance in comprehending data patterns. The laborious manual extraction of features from
extensive time-based datasets is time-consuming and demanding automation. The article
introduces a correlation-dependent feature selection algorithm assessed on stress-predictive
data, attaining superior classification accuracy (98.6%) in contrast to conventional statistical
characteristics (67.4%). The research underscores the significance of analytical attributes
over traditional statistical features for precise stress categorization [25]. The swift expan-
sion in energy requirements compels the exploration of energy conservation. Demand
flexibility (DF) initiatives and live meters (LMs) offer crucial data for managing energy
consumption on the consumer side. This research suggests cluster algorithms that employ
discrete wavelet transformation (DWT) to partition consumers according to their daily load
patterns. The approach is deployed on the Manhattan dataset, demonstrating enhanced
cluster efficiency and easing the analysis of electricity usage patterns [26].
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With its abundant presence in the Vellore locality, sunlight energy can be tapped
using solar PV modules. A machine learning-based MPPT controller improves the PV
array’s effectiveness, ensuring ideal torque and steady speed for electric vehicles (EVs)
under different load circumstances. The research employs a solar cell, SVPWM inverter,
and DC-DC voltage booster to energize the EV, and the system’s performance is assessed
using MATLAB Simulink [27]. Microbe fuel cells (MFCs) transform organic substances into
electric energy utilizing microorganisms, yet their limited power constrains their feasible
use. This research utilizes machine learning techniques, encompassing support vector
regression, artificial neural networks, and Gaussian process regression, to establish ideal
data-informed models for MFCs. Fine-tuning hyperparameters through Bayesian, grid, and
random exploration yields models with 99% precision for forecasting power density and
output voltage, facilitating enhanced MFC optimization [28]. This paper introduces a syn-
thetic neural network-centered (SNN) energy management approach (SMA) for a hybrid
AC/DC microgrid. It employs a dual-phase technique to ascertain the operational state
and regulate the replenishment and release of the energy storage system. The microgrid
integrated diverse converters and effectively functioned and governed with the suggested
SNN-based EMA, as evidenced by empirical findings on a laboratory-scale setup [29].
Scientists have sought to enhance the effectiveness of photovoltaic systems (PVS) by fore-
casting weather conditions that influence PV module performance. This research suggests
employing artificial neural networks (ANNs) to anticipate the PV system’s temperature and
radiation, utilizing JAYA-SMC hybrid control to identify the peak power point and duty
cycle for a DC motor. The approach was proven exceptionally efficient, assessing maximum
power and stability for energy monitoring and control [30]. This article suggests a mixed
AC/DC microgrid (MG) utilizing solar and wind renewable resources. The management
of coordination and identification of faults are implemented to guarantee steadiness and
equilibrium between generation and consumption and facilitate rapid fault localization and
restoration. A proportional resonant (PR) current regulator lessens harmonics, while an arti-
ficial neural network (ANN) ensures precise fault detection. MATLAB simulation outcomes
exhibit the efficiency of the suggested control approach in preserving stability, fulfilling
load requirements, attaining energy equilibrium, and anticipating faults [31]. This research
presents a modeling framework for a hybrid electric vehicle setup, emphasizing bidirec-
tional DC-DC converters and coordinated regulation of energy sources. An artificial neural
network (ANN) is implemented to optimize feedback control within the converter circuit
to enhance traditional control techniques. The results indicate that the ANN controller
significantly improves performance compared to conventional methods, as demonstrated
through MATLAB/Simulink simulations. These simulations underscore the effectiveness
of the ANN controller in diminishing the steady-state error, peak overshoot, and settling
time during both vehicle powering and regenerative braking modes [32]. These papers,
as a whole, propose that the statistical feature engineering method and artificial neural
network implementation can be utilized to monitor the status of aluminum electrolytic
capacitors and forecast their lifespan and ensure their dependability.

3. Theoretical Backgrounds
3.1. Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) is a statistical metric that assesses the linear
association between two variables. It is extensively employed in feature engineering
and data analysis to comprehend the potency and orientation of the connection between
variables. Often referred to as ρ, the Pearson correlation coefficient (PCC) varies between
−1 and +1. A favourable value indicates a positive linear correlation, an adverse value
indicates a negative linear correlation, and a value of 0 indicates no linear correlation [33,34].
The PCC between two variables, X and Y, can be mathematically expressed as follows:

ρX,Y =
cov(X, Y)

σXσY
(1)
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where σX and σY are the standard deviations of X and Y, respectively, while cov(X, Y) is
the covariance.

The PCC is calculated by taking the covariance of X and Y (the numerator) and
dividing it by the product of the standard deviation (the denominator). The covariance
measures how much the variables vary together, while the standard deviations measure
the individual variability of each variable. The Pearson correlation coefficient has several
important properties:

1. It is symmetric;
2. It is bounded between −1 and +1: the correlation coefficient cannot exceed these

bounds;
3. It is sensitive to linear relationships: although it may not account for nonlinear correla-

tions, it quantifies the magnitude of the linear association between the two variables.

In feature engineering, the PCC can be used to identify highly correlated variables or
select features that are strongly correlated with the target variable in predictive modeling
tasks. A high correlation between two features may indicate redundancy, suggesting that
one can be dropped or combined with other features [35,36].

3.2. Artificial Neural Networks

The arrangement and operation of biological neural networks in the human brain
provide inspiration for artificial neural networks (ANNs). ANNs are composed of linked
artificial neurons, nodes, or units arranged in layers. Every neuron receives inputs, conducts
calculations, and generates an outcome. The links between neurons are linked to weights
that ascertain the potency or significance of the connections. The mathematical expression
of a single artificial neuron can be represented as follows:

y = f

(
n

∑
i=1

wi · xi + b

)
(2)

where:

• y is the output of the neuron;
• f (·) is the activation function that introduces non-linearity;
• wi are the weights associated with the inputs;
• and b is the bias term.

The function f (·) brings non-linearity to the neuron’s output, enabling the network
to represent intricate connections in the data. Typical activation functions comprise the
sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU). ANNs typically consist
of three types of layers:

• Input layer: The input data are acquired and transmitted to the subsequent layers.
Each input node represents a characteristic or attribute of the input information.

• Hidden layers: These intermediate neurons lie between the input and output layers.
They execute calculations and modify the input across the network. The quantity of
concealed neurons in the capacitor classifier algorithm and the number of neurons in
each covert layer represent design decisions subject to variation based on the specific
problem at hand.

• Output layer: This layer generates the outcome of the network, which may encompass
classification, regression, or any other preferred prognosis or result.

Training an ANN includes tuning the weights and biases of the neurons to diminish
the disparity between the forecasted outcome of the network and the anticipated result. It
is commonly accomplished through backpropagation, which employs optimization algo-
rithms, such as gradient descent, to modify the weights according to the computed error.
The mathematical expressions and theoretical foundations of ANNs extend beyond the
individual neuron and into the architecture, training algorithms, and optimization tech-
niques used to build and optimize neural networks. These concepts involve feedforward
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propagation, backpropagation, cost functions, gradient descent, regularization techniques,
and more.

4. Data Acquisition Process

LCR (inductance, capacitance, and resistance) meters are commonly used for the data
collection of electrical signals. These meters provide a convenient and accurate means
of measuring the impedance characteristics of electronic components, such as resistors,
capacitors, and inductors. LCR meters can accurately measure parameters like capacitance,
inductance, resistance, quality factor (Q-factor), and equivalent series resistance (ESR).
Connecting the electrical signal source or device under test to the LCR meter can measure
and record the impedance response across a range of frequencies. The data collection
process enables comprehensive analysis and characterization of the electrical properties
of components and circuits, facilitating design, troubleshooting, and quality control in
various electronic applications. The experimental setup for the SMPS output capacitor
is shown in Figure 1. Capacitor manufacturers specify nominal values based on IEC
standards, defining capacitance for electrolytic capacitors. The researchers have ensured
the measurement conditions align with the circuit’s operational frequency, as capacitance
fluctuates significantly with frequency. The experimental process conditions are described
in Table 1, showing the set parameters to acquire the selected electrical signals. The LCR
meter utilizes mathematical equations to measure the selected electrical signals, such as
capacitance, impedance, dissipation factor, and equivalent series resistance (ESR). The
equations are expressed in Table 2.

Figure 1. Experimental setup of the SMPS output capacitor’s data-driven process.

Table 1. AEC experimental setup conditions.

Functions Description

Electrical Parameters Cp–Z–D–Rs
Signal Level 0.5 Vrms

Total Frequency/Step 8 MHz/100 Hz
DC Bias ON 1.0 volts

LowZ mode ON
Measurement Range Auto

Speed SLOW2

Table 2. Electrical signal and its function.

Parameters Definition Functions

Cp Capacitance Cp = D
ωR

Z Impedance Z = |Xc |
Sinθ

D Loss coefficient/Dissipation Factor tanδ = ESR
Xc

Rs Equivalent Series Resistance ESR = |Z|Cosθ
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5. Proposed Artificial Neural Networks Model

This study offers a robust condition-monitoring framework for the aluminum elec-
trolytic capacitors found in SMPSs. These capacitors are smoothing devices used to achieve
the required voltages for SMPS applications. The primary goal of this research is to identify
defects among these capacitors with different capacities of 2200 uf, 1000 uf, and 470 uf,
utilizing a multi-parametric data acquisition method to gather information on capacitance
(Cp), impedance (Z), the dissipation factor (DF), and equivalent series resistance (ESR).

The datasheet for every capacitor contains the functional parameters that guaran-
tee their working conditions. We have examined the stability of the capacitors in cold
environments in line with the manufacturer’s recommendations. The expected working
environment for the capacitors is not meant to be below −40 ◦C. The primary sensitivity to
the temperature of the capacitors is the higher frequency and, hence, the deployment of
the LCR as the data acquisition tool. The frequency range for the LCR meter ranges from
4 Hz to 8 MHz, so we exposed the capacitors to the highest range (8 MHz). These have
assisted in exposing the capacitors for a longer period and ensuring the right amount of
data for further analysis. The data preprocessing steps and feature engineering will be
focused on next after the data collection process. Time domain features were extracted from
the 2200 uf, 1000 uf, and 470 uf capacitor datasets. Interestingly, we adopted the Pearson
correlation coefficient with a threshold of 0.9 to select the meaningful features across the
capacitors. The result is concatenated, normalized, scaled, and labeled before feeding to
the ANN classifier for training and testing. The overall architecture of the ANN proposed
model is shown in Figure 2. The adopted parameters for the ANN model are shown in
Table 3 comprising of the hidden layers, activation, learning rate, validation set, solver
function, random state value, and iteration value.

Figure 2. Proposed ANN-based fault diagnosis framework.
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Table 3. ANN-classifier model parameters.

Parameters Values

Hidden Layer Size 25
Max-iter 50

Activation ReLU
Solver Adam

Random state 1
Early stopping True

Validation fraction 0.2
Learning rate 0.001

Statistical Feature Engineering

Aluminum electrolytic capacitors generate time-dependent electrical signals. Pearson
correlation helps analyze the temporal relationship between signals, identifying lagged
correlations and dependencies. Time series analysis using Pearson correlation aids in antic-
ipating capacitor behavior, calculating remaining useful life, and understanding the impact
of age or temperature. The Pearson correlation is a mathematical measure to evaluate the
relationships in the context of electrical signals from aluminum electrolytic capacitors. It
evaluates the inter-dependencies between these features, separating significant connec-
tions from weak correlations. Understanding the properties and behavior of capacitors
is vital for studying their electrical signals, aiding in fault identification, quality control,
and anomaly detection. Table 4 shows the time-domain features extracted from the set of
aluminum electrolytic capacitors, which are 14 in number and namely, root mean square,
mean, kurtosis, interquartile range, median abs deviation, skewness, max, min, crest factor,
peak factor, wave factor, standard error mean, standard deviation, and variance.

The feature extraction visualization was not included due to the space constraint.
Figures 3–7 show the feature selection visualization plot for the set of capacitors using the
impedance parameter as a standalone under varying temperatures. The resulting features
are as follows: mean, variance, interquartile range, maximum, median absolute deviation,
kurtosis, skewness, crest factor, wave factor, and peak factor. It can be noted that the feature
selection plot for the −40 ◦C of the capacitors added wave factor to its result compared
to the other four temperature ranges, as shown in Figure 7. It can be deduced that, at
−20 ◦C, as shown in Figure 5, the selected features fall within the range of 0.25 to 0.75,
which signifies a turning point of the capacitor’s health before it stabilizes back at −30 ◦C.

Figure 3. Visualization of feature selection at −5 ◦C: Uncovering discriminant information for
enhanced data analysis.
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Table 4. The extracted definitions of the statistical features.

Feature Description Definitions

Root Mean Square Xrms =

√
∑n

i=1(xi)
2

n

Mean x̄ = 1
n (∑

n
i=1 xi)

Kurtosis Xkurt =
1
N Σ
(

(xi−µ)3

σ

)
Interquartile range upperquarterQ3 − lowerquarterQ1

Median abs deviation Xmad = 1
n ∑n

i=1|xi −m|

Skewness Xskew = E
[(

(xi−µ)3

σ

)]
Max Xmax = max(xi)

Min Xmax = min(xi)

Crest Factor XCF = xmax
xrms

Peak factor xPF = xmax√
xs

Wave Factor xWF =

√
1
n ∑n

i=1 |xi |2
1
n ∑n

i=1 |xi |

Standard error mean Xsem = standarddeviation√
n

Standard deviation SD =
√

1
N−1 ∑N

i=1(xi − x)2

Variance VAR =

√
1
N

N
∑

i=1
(xi − x̄)2

Figure 4. Visualization of feature selection at −10 ◦C: Uncovering discriminant information for
enhanced data analysis.
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Figure 5. Visualization of feature selection at −20 ◦C: Uncovering discriminant information for
enhanced data analysis.

Figure 6. Visualization of feature selection −30 ◦C: Uncovering discriminant information for en-
hanced data analysis.

Figure 7. Visualization of feature selection at −40 ◦C: Uncovering discriminant information for
enhanced data analysis.
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6. Results Analysis and Discussion

After identifying the distinguishing features through the utilization of the correlation
coefficient, the categorized dataset was divided for training and testing using the ratio
70/30 (70% for training and 30% for testing). However, 20% of the dataset was allocated
for model validation. Cross-validation was employed during the training of the artificial
neural network (ANN) classifiers to address overfitting and ensure precise performance
measurements. This process entails dividing the dataset into multiple subsets or folds.
The ANN model is then trained on a combination of these folds while being evaluated on
the remaining fold. This procedure is repeated several times, with each fold serving as a
training and validation set. By rotating the folds, cross-validation permits a comprehensive
evaluation of the model across the entire dataset, minimizing the risk of overfitting. Accu-
racy, precision, recall, and F1 score are performance metrics computed by aggregating the
outcomes from each iteration, providing a dependable estimate of the classifier’s perfor-
mance on unseen data [37–40]. Interestingly, we implemented the k-fold cross-validation
technique to prevent overfitting with the k set to five. ANN classification performance
metrics are utilized to evaluate the precision and efficiency of the network in predicting
class labels for a given dataset. The mathematical expressions are as follows:

Accuracy =
TP

TP + FP + TN + FN
(3)

Recall/Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 score =
2 ∗ Sensitivity ∗ Precision

Precision + sensitivity
(6)

where, TP = true positive, TN = true negative, FP = false positive, and FN = false negative.
Table 5 shows the performance metrics in evaluating the aluminum electrolytic capac-

itors under varying temperatures. We used a Pearson correlation coefficient in selecting
and quantifying the fault patterns between the electrical signals of the capacitors. The main
objective of this study is to select the best candidate among the electrical signals that can
show distinguishable diagnostics characteristics to classify the faults in the capacitor. The
impedance signal shows a better trend in terms of the features selected and performance
metrics among the candidate for electrical signals. Exposing the capacitors to a range of
cold temperatures shows a trend in the accuracy of the diagnostics results. At the lowest
cold region, the capacitors had an accuracy of 98.44% with a computational cost of 9.9200 s
compared to the highest cold region with an accuracy figure of 88.75% with a computa-
tional cost of 11.0133 s. On the one hand, the impedance signal is a better candidate for
the capacitor diagnostics tool at both lower and high cold regions compared to the other
signals.

Figure 8 shows the histogram plot to visualize the comprehensive analysis of the as-
sessment of the model put together. The plot legend shows the capacitance, impedance, dis-
sipation factor, and ESR in blue, orange, green, and red colors, respectively. The impedance
signal was able to provide diagnostic features across all the temperature variances com-
pared to the other electrical signals. However, the performance of the capacitor declined to
an average of 57.81% at −20 ◦C. In comparison, between −5 ◦C and −40 ◦C, the accuracy
of the impedance signal dropped by 9.69%. This result shows the capacitor declining in its
performance at the peak of the temperature compared to the lowest cold region (−5 ◦C).
Also, there was an above-average performance by the ESR signal at varying temperatures.
The ESR is a great contender as a diagnostic tool for AECs owing to different research
methodologies. However, it falls short under the influence of temperature in this study.
There is existing research that supports the decrease in the value of the capacitance under
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extremely low temperatures and an increase under extremely high temperatures. The
results from this study support the existing results in this regard, as it could not be picked
as a diagnostic tool for the capacitor based on its below-average accuracy result.

Table 5. Global performance under varying temperature and electrical parameters.

Fault
Classification

Electrical
Parameters Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

Capacitance 42.22 49.93 42.22 38.55 6.0333
−5 ◦C Impedance 98.44 100.00 100.00 100.00 9.9200

DF 40.69 40.00 40.69 38.18 5.3000
ESR 83.74 84.74 83.75 83.42 9.4333

Capacitance 49.44 56.03 49.44 49.28 8.3800
−10 ◦C Impedance 92.50 93.52 92.50 92.40 11.1000

DF 32.36 10.47 32.36 15.83 2.4733
ESR 76.52 78.65 76.53 76.51 5.4400

Capacitance 46.11 43.39 46.11 43.70 8.0933
−20 ◦C Impedance 69.72 73.65 69.72 67.94 9.4400

DF 57.64 64.35 57.64 58.16 9.3867
ESR 57.78 58.09 57.78 56.94 7.3867

Capacitance 69.30 69.48 69.31 68.57 7.5267
−30 ◦C Impedance 97.91 98.07 97.92 97.91 10.7333

DF 61.94 63.50 61.94 61.83 9.6067
ESR 76.52 77.34 76.53 76.17 8.4800

Capacitance 54.58 58.07 54.58 48.06 7.0200
−40 ◦C Impedance 88.75 90.96 88.75 88.84 11.0133

DF 59.58 62.04 59.58 59.73 6.4000
ESR 74.58 75.49 74.58 73.89 9.6000

Figure 8. ANN accuracy assessment under varying temperatures and electrical parameters.

Figure 9 shows the confusion matrix fault samples of −5 ◦C. The label 0, 1, and 2
on the confusion matrix corresponds to the capacitor sample 2200 uf, 1000 uf, and 470 uf,
respectively. Among the 245 samples labeled as 0, 244 were predicted accurately, and
1 sample was predicted as label 1. Out of 242 samples for label 1, it predicted 241 samples
correctly and 1 sample inaccurately as 0. Label 2 was predicted accurately by the model,
resulting in 233 samples. Figure 10 shows the confusion matrix fault samples of −40 ◦C.
Among the 245 samples for the 0 label, 229 were predicted correctly, while 14 and 2 samples
were predicted as labels 1 and 2, respectively. Among the 242 samples for the 1 label, 241
were predicted correctly, and 1 sample was predicted as label 2. Among the 232 samples
labeled as 2, 209 were predicted correctly, and 24 samples were predicted as label 1. Overall,
the outcome of this study is the accurate condition monitoring of the aluminum electrolytic
capacitors found in SMPSs using the Pearson correlation coefficient and the ANN model.
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Figure 9. Confusion matrix results of the artificial neural network (ANN) for −5 ◦C capacitor
classification fault diagnostics.

Figure 10. Confusion matrix results of the artificial neural network (ANN) for the −40 ◦C capacitor
classification fault diagnostics.

7. Conclusions

The behavior of an aluminum electrolytic capacitor was examined explicitly in this
experiment-based study with a focus on switched-mode power supplies (SMPSs). The
failure mode effect analysis of the capacitor revealed its vulnerability to defects, which
served as the driving force behind this investigation. The experiment exposed the capac-
itor to temperatures between −5 and −40 ◦C to evaluate how it would react in a cold
environment. The equivalent series resistance (ESR), impedance (Z), dissipation factor
(DF), and capacitance (Cp) were all measured using an LCR meter. These properties were
measured at various temperatures to capture the capacitor’s behavior over the cold range.
An artificial neural network (ANN) classifier was used for classification and analysis. The
gathered data were used to train and test the ANN model. After careful examination,
it was discovered that impedance (Z), among the measured characteristics for the three
output capacitors under inquiry, showed the most incredible accuracy (98.44% and 88.75%)
across the range of temperatures at −5 and −40 ◦C, respectively. The results underline that
impedance is vital as a reliable gauge of the capacitor’s performance, particularly in cold
conditions. These results can improve the reliability and efficiency of SMPS applications,
which can also help in fault detection and monitoring systems for such capacitors. The
effects of additional environmental conditions, such as high temperatures or humidity,
on capacitor behavior might be explored in more detail, and the relationship between
variations in impedance and certain capacitor failure types could be examined. In future
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works, we will explore the remaining helpful life approach by exceeding the temperature
benchmark set by the manufacturer of the capacitors.
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