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Abstract: The growing interest in deploying photovoltaic systems and achieving their benefits as
sustainable energy supplier raises the need to seek reliable medium-term and long-term operations
with optimal performance and efficient use of economic resources. Cleaning scheduling is one of the
activities that can positively impact performance. This work proposes a methodological framework
to define the optimal scheduling of the cleaning activities of photovoltaic systems. The framework
integrates a forecast model of the performance ratio, including the environmental variables’ effect. In
addition, an economic analysis involving the economic losses and maintenance costs of cleaning is
used. This framework is applied to a case study of a photovoltaic system located in Yumbo, Colombia.
Based on the historical data on irradiance, active energy, temperature, rainfall, and wind speed, the
obtained forecast model of the photovoltaic system’s performance ratio in a 60-day horizon has a
mean absolute percentage error lesser of than 11%. The next cleaning date is forecasted to be beyond
the horizon in a 19-day range, which will decrease as time goes by. This framework was applied to
historical data and compared to actual cleaning dates performed by the utility company. The results
show a loss of USD 33.616 due to unnecessary, early, or late cleaning activities.

Keywords: cleaning schedule; economic losses; forecast model; performance ratio (PR); photovoltaic
systems (PV)

1. Introduction

In recent years, interest in distributed generation technologies has increased, mainly
in those based on renewable energy resources, with photovoltaic solar power one of the
most prominent alternatives in the supply of sustainable energy [1,2]. This growing in-
terest is due in part to current government policies, the level of maturity of technology,
the reduction of costs, and the benefits that this type of technology promises to the en-
ergy sector by facilitating remote access to energy with the use of local energy potential,
avoiding/postponing centralized network updates, and stimulating new business models,
among others [3]. However, adequate operation, reliability, optimal performance, and
efficient use of economic resources must be ensured to achieve the benefits offered by
photovoltaic (PV) systems [4].

In the search for optimal performance, it is important to highlight that the accumu-
lation of dust on the surface of the PV modules is one of the main factors limiting the
photoelectricity conversion of PV energy. Dust sedimentation is influenced by various envi-
ronmental factors, such as relative humidity, wind speed, rainfall, and the concentration
of atmospheric particles [5], depending on the conditions of the area where PV modules
are installed. For this reason, if the surface of the PV modules is not cleaned from time

Energies 2023, 16, 6091. https://doi.org/10.3390/en16166091 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16166091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2277-0578
https://orcid.org/0000-0003-0727-2917
https://doi.org/10.3390/en16166091
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16166091?type=check_update&version=1


Energies 2023, 16, 6091 2 of 18

to time, the efficiency in the generation of the PV system can decrease drastically and the
corrosion of the modules can accelerate, which would also be reflected in a reduction of
financial income.

Some research papers have analyzed the various effects of the accumulation of dirt on
its surface on PV systems’ performance. The work presented in [6] exposes three factors
of the effects of dust in the generation of PV energy: the loss of efficiency, an increase
in temperature, and the acceleration of corrosion. These factors were analyzed with I-V
and P-V characteristic curves, indicating that as the dust density increased, the short-
circuit current, the open-circuit voltage, and the system’s output power were reduced. The
results showed that dust with a density of 10 g/m2 can reduce the maximum power by
approximately 34%. In [7], an investigation quantified the impact of dust accumulation on
power generation and the bifacial gain of a PV system. The daily rate of dust deposition
and its correlation with relative humidity, wind speed, particle concentration, and ambient
temperature were determined based on experiments. The results showed how a clean
bifacial PV system registered a higher performance ratio (0.83) compared to the performance
ratio (0.78) of a dirty bifacial PV system.

In [8], the authors developed an experiment to estimate the energy loss due to dirt
in a newly installed 6.3 kWp PV system in Burydah, Saudi Arabia. The experiment’s
conclusions indicate that about 3% of the power was reduced after the first month of system
installation. This power reduction went up to 18% within four months of installation. The
work presented in [9] analyzed the performance of PV modules installed near rice farms
in Thailand. Dust deposition was analyzed for periods of two weeks by microscopy and
spectrometry. According to the results, it was found that the dust particles’ sizes were from
10 to 20 µm during the dry season period, which implies energy losses of around 3–4% per
month. Since open-pit coal mining activities occur in South Sumatra, the effects of these
activities on the formation of coal dust and fouling on PV panels installed near a mine were
investigated in [10]. The last month of the six months of data collection showed that a clean
panel had a 1.57% higher efficiency than a dirty panel.

Other works that analyze the effect of dust sedimentation on PV systems’ performance
are presented in [11,12]. The conclusions presented agree on how dust accumulation can
significantly reduce the efficiency of PV systems. However, they do not offer a way to
set a maintenance schedule for cleaning. In [13], a cleaning cycle optimization model
was developed for a 12 MW PV plant with 46,200 panels in the western province of Jilin,
China. With constant efficiency reduction, they established the maximum output power
and the minimum economic loss as objectives. The authors proposed an optimization
method based on adaptive dynamic programming (ADP), whose results indicate that the
minimum economic loss was achieved by cleaning the system every 17 days. In [14], the
performance ratio (PR) of an industrial solar roof plant located in Bangladesh was analyzed
based on cleaning frequencies, and the economic benefits of increasing the frequency of
panel cleaning were estimated. The study revealed that the system performance increased
by up to 12% after cleaning, with a cleaning frequency of three times per month. The
study conducted by [15] investigated the impact of soiling on the power generation of an
85 kW solar plant in Tulkarm, Palestine. The effect of different cleaning periods on the
system’s efficiency was analyzed. Over a year, the plant’s production data were compared
to evaluate the cleaning effectiveness in six groups of solar panels, each with a different
cleaning period, including one group that was not cleaned throughout the year. The results
revealed that not cleaning the panels throughout the year resulted in a power loss of 13.1%.
In contrast, cleaning every six months caused an average loss of 9.1%, and cleaning every
two months caused an average loss of 4.4%.

Analyses based on constant efficiency loss due to dirt accumulation in PV systems do
not properly correspond to the conditions of a real installation, which is why [16] analyzed
the introduction of change points in historical performance trends of a 1 MW commercial
PV system in southern Spain. Fouling data were analyzed using a piecewise regression
method and three change point detection algorithms. The results show that taking change
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points into account is important for soil modeling, particularly in studies aiming to optimize
cleaning schedules. The urban areas in Dhaka, Bangladesh, have high construction activity,
generating an artificial increase in dust. Therefore, to efficiently operate the PV system
installed there, in [17], the soiling rates were experimentally analyzed for horizontal single-
sided PV, single-sided PV with a 24◦ inclination, and vertical two-sided PV. These rates
were used to numerically estimate the performance of each of the three configurations for
different cleaning intervals. The results show that performance was maximized at cleaning
cycles of 5, 6, and 28 days, respectively. Single-sided PV with a 24◦ inclination can produce
5.3% more revenue than vertical two-sided PV under these cleaning conditions. A different
study conducted in [18] showed the application of a soiling model in five grid-connected
PV plants in Spain. Based on the environmental conditions, this model considers dust
accumulation and the natural cleaning produced by rain. Model outputs were compared
with data collected over two years by dirt sensors installed on each grid. The results
revealed a difference of 0.71% between the values obtained by the sensors and the values
predicted by the model.

On the other hand, some investigations based their analyses on image processing
techniques to determine the soiling level and its effect on the efficiency of PV systems.
In [19], a model was proposed to optimize the cleaning cycle of a PV system in Northeast
China using a dust deposition monitoring method with image recognition. In addition, the
maintenance cost of two cleaning technologies was evaluated in dry and wet conditions.
The results showed that the power conversion efficiency was reduced linearly while the
dust deposition density increased. According to the proposed model, the optimal cleaning
cycles for the PV system are approximately 10.1 and 22.8 days when its efficiency is reduced
by 4.5% and 10.2%, respectively. In [20], an artificial light source was used in a laboratory
environment, and the output power values of a 60 W PV module were compared among
three artificially deposited dust accumulation densities. At each level of soiling, images
of the module were captured, and the features were obtained using the gray-level co-
occurrence matrix (GLCM). Then, the data were classified by an artificial neural network to
determine the level of dust as low, medium, or high. Based on this classification and the
effect on the PV module PR, criteria were established to define the cleaning cycle.

According to the various studies in which the negative effects of soiling in PV mod-
ules have been analyzed, it is clear that the effective scheduling of PV system cleaning
activities can positively impact the PV system’s operational and economic performance.
However, most studies have established a cleaning schedule that resorts to human expe-
rience, which can cause efficiency and financial losses. On the other hand, since some
research [7,13,16,17,19] assumes that the soiling rate is constant within each cleaning period,
the performance profiles exhibit a sawtooth shape. This assumption may not correspond to
reality by not considering the change points in soiling rates, which are related to sudden
variations in environmental conditions, for example, dust storms or prolonged periods
of rain.

This paper proposes a methodological framework based on a PR forecast model of PV
systems to maximize energy production efficiency and reduce possible economic losses
associated with soiling. Together with an economic analysis involving the economic losses
and maintenance costs of cleaning, this model helps the decision maker to define the
optimal schedule for the cleaning activities of PV systems in a planning period. In this
model, exogenous variables are integrated, including environmental variables, to identify
seasonal effects or the impact of dry and rainy periods on the PR. The proposed analysis is
convenient for defining the maintenance operations and the economic performance of PV
systems in the medium and long terms.

The different methodological steps were applied to a case study of a PV system
located in Yumbo, Colombia. Based on the historical data on the irradiance, active energy,
temperature, rainfall, and wind speed, the forecast of the performance profile of the plant
in a 60-day horizon, including the next cleaning date, was defined.
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The results show that the forecast model could predict the behavior of the PR with a
mean absolute percentage error (MAPE) of less than 11% for a 60-day horizon. Forecasts
beyond this horizon increased the uncertainty of the predicted PR value; however, as time
passed and new PR values entered the model, this uncertainty decreased. An analysis per-
formed on previous cleaning activities showed a total loss of close to USD 31.616 generated
by performing unnecessary, early, or late cleaning activities by the utility company.

The methodological framework can be applied step by step in other case analyses
considering the particular conditions of the PV system. In addition, different environmental
variables could be added to the proposed framework depending on their availability, quality,
and relationship to the PR.

2. Methodological Framework for PR Forecast and Cost Analysis Cleaning Schedule

The impact of dirt on solar panels can be seen mainly in the reduction in electricity
generation. Therefore, it is necessary to define an indicator that represents these changes,
and which helps to identify when cleaning is necessary to recover the original generation
level of the solar panels. For this reason, based on the studies by several authors [21–23],
the use of the performance ratio (PR) is proposed as the main indicator of panel fouling.
The PR indicator is calculated by Equation (1).

PR =
PPV ∗ GSTC

G ∗ Pp ∗
(
1+
∣∣β∣∣∗(Tmod − Tpv

))
∗ (1− Deg)

∗ 100%, (1)

where PPV is the power generated by the solar panels (kW); GSTC is the reference irradiance
in standard test conditions with a value of 1 kW/m2; G is the irradiance measured at the
site (kW/m2); Pp is the peak power of the solar panels (kW); β is the coefficient of the
power variation by temperature (%/◦C); Tmod is the mean temperature reached by the solar
panels (◦C); Tpv is the temperature measured on the solar panels (◦C); Deg is the annual
degradation rate of the solar panels.

For this work, a computational model that forecasts the PR value from its historical
values was created and applied to a solar plant in Colombia. As inputs of the model, the
historical values of the PR, irradiance, delivered active energy, temperature, wind speed,
and rainfall were used. This model was expected to determine the most convenient date to
carry out the next solar panel cleaning, balancing the cleaning costs and the costs of energy
lost due to the decrease in the PR. As a solution, the methodological framework presented
in Figure 1 is proposed and explained in the following sections.

2.1. Historical Data

The first step in the framework is to identify the variables to be used as inputs in
the forecast model. The PR variable is the primary source of information for forecasting.
However, depending on the data availability, quality, and PR behavior, environmental
variables can be used as exogenous variables.

This paper used the data of six variables: PR, irradiance, active energy, wind speed,
temperature, and rainfall. These variables were measured on-site and were selected due to
their availability in the particular case analysis described in Section 3. However, any other
environmental variable can be chosen and evaluated in the next step of the methodology
framework.

The PR variable is the only input to the prediction model, while the other five variables
are used to ensure the quality of the PR variable. Having as many historical values as
possible is advisable to represent the seasonal influence throughout the year.
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2.2. Preprocessing

In this step, the outliers of all previously defined variables are removed based on the
variable limits or historical maximum and minimum values registered on-site to ensure
success in creating the model.

Then, it is defined which variables are relevant for the PR forecast using the Granger [24]
causality test. This is important, as these variables can be used as exogenous input in the
forecast model or to impute missing PR values.

We performed a multivariate analysis of five environmental variables to impute the
missing values in the PR: irradiance, active energy, wind speed, temperature, and rainfall.
This analysis estimates the missing values of the PR variable based on the other variables
through linear regressions. This way, it is possible to use techniques to obtain complete
data to train the forecast model. However, the values have an associated error sensitive to
data adequacy, so it is best to keep the number of imputed values to a minimum.

2.3. Forecast Model

The PR behavior can be analyzed as a time series using three main components: long-
term trend, seasonal trend, and stationary behavior. The first two components depend
on recurrent factors like wind, rainfall, or climate. The third component includes random
movements of the variable and fluctuations that are difficult to explain.
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To train the forecast model, the PR time series obtained after the imputation was
used as the only input, to which the trend and seasonality, both annual and weekly, were
calculated to model the impact of the changes in the climatic seasons. Depending on the
case study, seasonality may have a greater or lesser impact on the prediction of the PR.

On the other hand, cleaning activities performed on a PV system affect the PR. The
PR is expected to increase once the modules have been cleaned, breaking the PR variable’s
normal trend due to soiling. To prevent this phenomenon from impacting the model, the
cleaning activities performed were treated as “shocks” to the PR variable during training.
Once the model was obtained, the daily PR forecast was made within 60 days after the last
known PR value.

In this study, the forecast model accuracy was measured using four metrics:

• Mean squared error (MSE), described in Equation (2);
• Root mean squared error (RMSE), described in Equation (3);
• Mean absolute error (MAE), described in Equation (4);
• Mean absolute percentage error (MAPE), described in Equation (5).

MSE =
1
N

N

∑
i=1

∣∣∣PRi − P̂Ri

∣∣∣ (2)

RMSE =
√

MSE (3)

MAE =
1
N

N

∑
i=1

(
PRi − P̂Ri

)2
(4)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣PRi − P̂Ri
PRi

∣∣∣∣∣ ∗ 100% (5)

where N is the total number of observations. PRi is the actual value of PR at observation i.
P̂Ri is the forecasted value of PR at observation i.

2.4. Next Cleaning Date Forecast

Finally, a cost analysis is performed to determine when the right time is to perform
the next cleaning of the PV system. This analysis compares the economic losses due to
the decrease in the PR with the cost of cleaning. The economic losses are calculated using
Equation (6).

Closs = (PRclean − PR) ∗
Epv

PR
∗ Cenergy, (6)

where Closs is the cost of energy losses due to the decrease in the PR due to soiling. PRclean
is the value of the PR measured once the previous cleaning was performed. PR is the
historical or forecast value of the PR. Epv is the daily active energy delivered by solar
panels (kWh), Cenergy is the cost of energy (USD/kWh).

Figure 2 shows an example of how the reduction of PR generates economic losses, and
Figure 3 shows an example of the comparison between these losses and the cost of cleaning.

To determine the appropriate date to carry out the cleaning, the cost of energy lost due
to soiling since the last cleaning date is calculated based on PR values previously forecasted
and compared to the cost of the cleaning activity. Then the date when these two costs
are equal is selected as the next cleaning date, as shown in Figure 3. However, this date
varies by including the influence of the PR forecast confidence intervals. As a result, a
range of dates with different probabilities of occurrence is found. This effect is reflected as
a probability density function.
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In addition, as a rule, the PR annual average of PV systems must be calculated, and
this must not be less than a pre-established lower threshold defined by the system operator.
Therefore, in this analysis, the annual average was calculated based on historical and
forecast values, and it was determined at what moment cleaning should be carried out in
case this average was to cross the threshold.

3. Case Analysis
3.1. Historical Data

Following the proposed framework, the first step was to obtain the historical values
of the PR and the meteorological variables. In this work, the forecast was based on data
recorded daily for about three and a half years in a solar power plant in Yumbo, Colombia.
The characteristics of this plant are presented in Table 1.
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Table 1. Solar power station characteristics.

Location Yumbo, Colombia (3.5518, −76.4986)

Number of solar panels 34,560
Rated power 11,232 kW
Cleaning cost USD 9382

Energy cost
0.027 USD/kWh weekday
0.024 USD/kWh Saturday

0.023 USD/kWh Sunday and holidays
PR lower threshold Annual average of 63%

The Yumbo power plant registers the daily irradiance value, active energy delivered,
and PR. In addition, a nearby meteorological station records the wind speed, temperature,
and rainfall.

3.2. Preprocessing

The Granger test was performed between the PR and each meteorological variable
to determine their relevance in prediction. The p-value obtained is shown in Table 2 for
different delay values in days.

Table 2. p-value results from the Granger causality test.

Variable 1 Day 7 Days 15 Days 30 Days 60 Days

Delivered active energy 0.00% 2.90% 1.19% 0.17% 0.69%
Irradiance 0.00% 0.11% 0.15% 2.96% 2.21%

Wind speed 0.00% 0.00% 0.00% 0.03% 0.00%
Temperature 0.00% 0.00% 0.00% 0.00% 0.01%

Rainfall 2.25% 3.84% 3.92% 6.28% 6.12%

Using a significance level of 5% for the results in Table 2, the variables of delivered
active energy, irradiance, wind, and temperature could be used to forecast the PR value at
least up to 60 days in the future. However, the rainfall variable lost its relationship with the
PR after 15 days.

The results are specific to the conditions of this case analysis and could differ depend-
ing on the PV system’s geographic location and the local conditions to which this system is
subjected. Therefore, it is suggested to perform the Granger test on every variable for every
different case analysis.

Subsequently, outliers from each of the input variables are removed based on the
percentiles and the historical lowest or highest values registered on-site, as follows:

• PR: Negative values and values above 100;
• Irradiance: Negative values, values less than the 1% quantile and greater than the

99% quantile [25];
• Active energy: Negative values, values less than the 1% quantile and greater than the

99% quantile [25];
• Wind speed: Values over 72 km/h [26];
• Temperature: Values below 14 ◦C and above 50 ◦C [26];
• Rainfall: Negative values, values less than the 1% quantile and greater than the

99% quantile [25].

Once all outliers have been removed, imputing the missing values in all variables is
necessary. We used multivariate linear regression analysis to estimate the missing values
across all six variables.

3.3. Forecast Model

This step adjusts a forecast model based on the preprocessed historical data. However,
despite the previously obtained results, using one or all of the five meteorological variables
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as exogenous inputs to the model did not yield better results than using the PR as the only
input. Hence, these five variables were used only to estimate missing values.

Analyzing the three main components of the PR variable behavior is necessary to
create an adequate forecast model. In this paper, we used the forecasting library Prophet
v1.1 in Python to analyze the PR behavior and to forecast its value for 60 days.

First, the long-term trend is modeled using a piecewise linear function [27]. This
function comprises eight linear pieces whose durations are determined based on the most
significant changes in the PR time series. A different number of linear pieces were tested,
and eight were selected based on their performance metrics. As time passes and new PR
values are measured on-site, the number of linear pieces may increase, yielding a more
accurate model. The long-term trend is shown in Figure 4.
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Subsequently, the seasonal trend is modeled through the Fourier series [27] adjusted
to two different periods: 7 days and 365 days. These periods were selected based on the
geographical conditions of the PV system of this case analysis. Colombia, a tropical country,
generally has two seasons repeated yearly: the dry and rainy seasons. Moreover, Yumbo is
located very close to an industrial zone that follows a well-defined weekly schedule that
affects the air quality and probably the solar panels’ soiling level. The seasonal trend is
shown in Figure 5.
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Seasonal behavior is closely related to the geographic location of the PV system.
Therefore, in other case analyses, there may be, for example, a monthly seasonality or a
four-month seasonality that must be represented in this step.

Finally, the stationary behavior needs to be modeled. Normally, this behavior is
composed of random motion and the magnitude of the past values of the time series.
Therefore, we used autocorrelation and partial autocorrelation as tools to determine the
degree of the relationship that each value of the time series had with its past values.

The results are shown in Figures 6 and 7. The autocorrelation analysis shows that each
stationary behavior value was related to its past seven values. Furthermore, the partial
autocorrelation shows a relation with its three past values.
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An extra component in the modeling had to be considered in this analysis case.
The cleaning activities performed previously impacted the behavior of the PR series and
modified its normal trend. Therefore, this influence must not be reflected in the forecast
model.

According to the cleaning reports, this activity can take between 15 and 30 days to
complete. Therefore, in this paper, a 30-day window is defined starting on each of the
previous cleanup dates. The values contained in each window had a significantly reduced
impact on the model training.
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Based on the previously obtained results, the forecast model was trained. The 60-day
PR value forecast was obtained starting on 16 August 2022, as shown in Figure 8. It can
be seen that the predicted PR value follows the trend of the actual PR, whose value rose
or fell between 7% and 15% daily, which impacted the size of the confidence interval. In
this area, the dry and rainy seasons throughout the year affect the soiling of the modules,
especially between August and November, where the effect is more noticeable. In addition,
the PV system is located close to an industrial zone whose weekly activity appears to be
represented too.
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The model’s performance shown in Table 3 shows that as the forecast horizon increased,
so did the error. According to Lewis [28], a forecast model is highly accurate if its mean
absolute percentage error (MAPE) is less than 10% and accurate if it is less than 20%. According
to this, the forecast model had a high accuracy by obtaining a MAPE of less than 11%.

Table 3. Forecast model performance for Yumbo solar power station.

Horizon (Days) MSE RMSE MAE MAPE

7 13.30 3.65 2.73 3.98%
14 19.93 4.46 3.42 4.90%
21 31.22 5.59 4.10 5.77%
30 49.98 7.07 5.70 8.02%
37 59.14 7.69 6.57 9.34%
44 62.47 7.90 6.78 9.72%
51 58.73 7.66 6.82 9.86%
60 66.72 8.17 7.47 10.90%

3.4. Next Cleaning Date Forecast

Once the PR forecast was obtained, the energy loss cost was obtained using the values
of Table 3 and compared with the cost of cleaning. Figure 9 shows the results obtained,
where the probability density function represents the next cleaning date. This function
is centered at the date where the economic losses and the cleaning cost are equal, and its
width is defined by the confidence interval obtained from the PR forecast.
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Figure 9. Comparison between economic losses due to soiling and the cost of cleaning.

According to the results, the next cleaning in the Yumbo photovoltaic system must be
carried out between 13 November 2022 and 2 December 2022. The forecast cleaning date
exceeds the 60-day forecast horizon proposed in the methodological framework. Therefore,
its uncertainty defines a 19-day range. However, in a constantly updated model, the
uncertainty of the predicted PR value decreases as time passes and new PR values enter
the model. Consequently, the range of dates of the next cleaning also decreases until it
becomes a single value. In this case, the cost analysis defined the next cleaning date since
the PR annual average did not fall below the PR lower threshold defined by the operator,
as shown in Figure 10.
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In this case analysis, the PR variable was used as the only input to the forecast
model; however, the methodological framework allowed the data on this variable to be
complemented by including exogenous variables. In addition, the works mentioned in this
paper’s introduction directly relate solar panels’ energy losses with the degree of soiling.
This can increase the precision of a forecast model since it eliminates external factors other
than soiling, which can affect the PR variable.
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3.5. Analysis of Previous Cleaning Dates

This section evaluates the adequacy of some of the cleaning activities previously
performed by the power company. The model previously trained in the methodological
framework was used to forecast the PR values and then to perform the cost analysis to
obtain the next cleaning date.

Figure 11 shows the suggested cleaning date when the previous cleaning date was 1
April 2019. In this case, a cleaning activity was performed on 1 July 2019. Therefore, the
cost analysis used the historical PR values from 1 April 2019 to 30 June 2019, and the PR
forecasted values from 1 July 2019 to find the next cleaning date. This distinction between
the PR values before and after a cleaning activity was determined to avoid any influence
these events could have had on the following PR historical value behavior.
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The results show a suggested cleaning date between 4 August 2019 and 8 August 2019,
about one month after the actual cleaning performed by the utility company. This difference
represents a loss of close to USD 4.417 due to an early cleaning.

In the case shown in Figure 12, the PR historical values from 5 June 2020 to 7 August 2020
and the PR forecasted values from 8 August 2020 were used to find the next cleaning date.
The results show a suggested cleaning date between 31 January 2021 and 8 March 2021. This
cleaning date exceeds the 60-day forecast horizon proposed in the methodological framework,
so the analysis generated a wide range of dates.

According to the cost analysis, the utility company performed an unnecessary cleaning
activity on 8 August 2020 and an early cleaning activity on 22 January 2021, generating a
loss of close to USD 13.681.

Figure 13 shows a suggested cleaning date when the previous cleaning date was 22
January 2021. The PR historical values from 22 January 2021 to 12 July 2021 and the PR
forecasted values from 13 July 2021 were used in the cost analysis. The results show that
the utility company performed a cleaning activity about one week before the suggested
cleaning date between 21 July 2021 and 23 July 2021. This situation represents a loss of
close to USD 653.
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Figure 13. Suggested cleaning date with a previous cleaning on 22 January 2021.

Figure 14 shows the suggested cleaning date when the previous cleaning date was 13
July 2021. In this case, the cost analysis used the PR historical values from 13 July 2021 to 30
November 2021 and the PR forecasted values from 1 December 2021 to obtain a suggested
cleaning date between 10 March 2022 and 3 April 2022. Once again, the suggested cleaning
date exceeded the 60-day forecast horizon proposed, thus generating a wide range of dates.

The results show that the utility company performed an unnecessary cleaning activity
on 1 December 2021 and a late cleaning activity on 11 April 2022, generating a loss of close
to USD 11.375.

In the case shown in Figure 15, the cost analysis used only the PR historical val-
ues, yielding a suggested cleaning date between 31 July 2022 and 1 August 2022. The
results show a late cleaning activity performed by the utility company on 18 August 2022,
generating a loss of close to USD 1490.
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To summarize, all five cases analyzed show a difference between the suggested clean-
ing date and the actual cleaning performed by the utility company. This difference gen-
erated a total loss of close to USD 31.616, thus highlighting the importance of the applied
methodological framework and the benefits that can be achieved in the future.

4. Conclusions

Effective scheduling of PV system cleaning activities is one of the measures that can
positively impact their operational and economic performance. However, this scheduling is
generally carried out based on the human experience. In addition, most of the time, the rate
at which dirt accumulates is assumed to be constant within each cleaning period, which
neglects the impact of variations in environmental conditions.

In this paper, a methodological framework is proposed to help define the optimal
scheduling of the cleaning activities of PV systems in a planning period. The proposed
framework integrates a forecast model of the performance ratio, including the environmen-
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tal variables’ effects. In addition, an economic analysis involving the economic losses and
maintenance costs of cleaning is used. The different methodological steps were applied
to a case study of a PV system located in Yumbo, Colombia. Based on the historical data
on the irradiance, active energy, temperature, rainfall, and wind speed, the forecast of the
performance profile of the plant in a 60-day horizon, including the next cleaning date, was
defined. The cost analysis associated with the predicted values of the PR was economically
justified and allowed for determining the next cleaning date.

According to the results, the forecast model determined the behavior of the PR and
established the date to carry out the cleaning. Defining the behavior of the PR is an effective
way to set the date to clean photovoltaic systems. However, to ensure the high accuracy
of a forecast model, it is necessary to ensure that the input data are equally accurate
and complete.

The results show that the forecast model can predict the behavior of the PR with a
mean absolute percentage error (MAPE) of less than 11% for a 60-day horizon. The cost
analysis associated with the predicted values of the PR was economically justified and
allowed for determining the next cleaning date.

An analysis performed on five previous cleaning dates showed a total loss of close to
USD 31.616 generated by performing unnecessary, early, or late cleaning activities by the
utility company.

Forecast models can be retrained to improve their fitness and increase their accuracy
as time passes and new historical data are introduced. This is particularly true if the
seasonality of environmental variables, such as the temperature and rainfall, change. The
framework can be applied to other PV systems and specific models that work with the local
environmental conditions can be obtained.

On the other hand, the forecast model can be generalized to fit the behavior of several
PV systems or a cluster of systems with similar characteristics. In addition, the method-
ological framework could be modified to automatically adjust to the conditions of any type
of PV system based on information from the environmental variables.

The quality of the input variables determines the scope or limitations of the method-
ological framework. The model’s accuracy and forecast horizon could be extended by
relating a PV system’s energy losses with the degree of soiling since it eliminates external
factors other than soiling that can affect the PR variable.

New variables can be added to the proposed framework. However, its suitability to
forecast the PR must be evaluated using the Granger test or another method that measures
the degree of causality.
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