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Abstract: When applying graph-based fault detection and isolation (FDI) methods to the attributed
graph data of large and complex industrial processes, the computational abilities and speed of these
methods are adversely affected by the increased complexity. This paper proposes and evaluates five
reduction techniques for the exergy-graph-based FDI method. Unlike the graph reduction techniques
available in literature, the reduction techniques proposed in this paper can easily be applied to
the type of attributed graph used by graph-based FDI methods. The attributed graph data of the
Tennessee Eastman process are used in this paper since it is a popular process to use for the evaluation
of fault diagnostic methods and is both large and complex. To evaluate the proposed reduction
techniques, three FDI methods are applied to the original attributed graph data of the process and
the performance of these FDI methods used as control data. Each proposed reduction technique is
applied to the attributed graph data of the process, after which all three FDI methods are applied to
the reduced graph data to evaluate their performance. The FDI performance obtained with reduced
graph data is compared to the FDI performance using the control data. This paper shows that, using
the proposed graph reduction techniques, it is possible to significantly reduce the size and complexity
of the attributed graph of a system while maintaining a level of FDI performance similar to that
achieved prior to any graph reduction.

Keywords: graph reduction; attributed graph; fault detection and isolation; Tennessee Eastman process

1. Introduction

Industrial processes play a vital role in the modern world and, as such, must produce
a product that meets the necessary quality standards while operating according to the
relevant safety guidelines [1]. For this to be accomplished, the control systems must be
quite robust and identify faulty operational conditions as quickly as possible. By doing this,
it becomes possible to remove the effects of the fault condition or to alert an operator to the
faulty operation. A fault detection and isolation (FDI) scheme can be used to detect and
identify fault conditions in an industrial system. This scheme is capable of detecting the
presence of a fault and then determining which fault has occurred. This allows the system
to be diagnosed quickly and accurately and the appropriate corrective action to be taken.

Over the years, a wide variety of FDI methods have been developed based on models
and data to effectively detect and isolate faults [2–4]. Despite this, none of the individual
methods are capable of meeting all the criteria of a fault-diagnostic system. This has
led to the emergence of hybrid FDI techniques that blend model-based and data-driven
approaches to surpass some of the restrictions of individual methods [3].

One such hybrid method which has shown significant potential is an exergy-based
approach outlined by Marais et al. [5]. This method abstracts physical measurements such
as pressure and temperature to exergy variables, which are then used for FDI. In the seminal
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work by Newman and Clauset [6], the notion of capitalising on the network structure of a
system to characterise system behaviour is investigated. This work illustrates that network
analysis, which borrows ideas from a number of areas, especially graph theory, aims to
form a network’s structural features and gain insight on system behaviour. Van Schoor
et al. [7] expands on the exergy hybrid approach by using the exergy and energy rate
characteristics to create a graph representation of a process. The graph representation is
then used for FDI and the technique has been coined the energy-graph-based visualisation
(EGBV) approach. The work by Greyling et al. [8] illustrates the usefulness of the technique
when applied to a gas-to-liquids process, accounting for both physical and chemical exergy
attributes. The work by Wolmarans et al. [9] introduces generalised FDI steps for the EGBV
technique and draws a parallel with principal component analysis.

When these graph-based FDI methods are applied to larger and more complex pro-
cesses, the resulting graph representation of the process is then also significantly more
complex. The increased degree of graph complexity makes the implementation of the FDI
method more complicated since more process sensor data are required and the mathe-
matical operation performed by the FDI method takes longer to execute [10]. Complex
graph representations, therefore, adversely affect the speed of the FDI method, require
more resources, and increase the risk of the FDI method being inaccurate.

While there are techniques available in literature that can reduce or summarise at-
tributed graphs to reduce their complexity [11–13], these techniques cannot be applied
to the type of attributed graphs used by the graph-based FDI methods, verbatim. It is,
therefore, warranted to develop reduction techniques that can effectively reduce the size
and complexity of the attributed graphs relevant to FDI.

The Tennessee Eastman process (TEP) is a well-known industrial benchmark process
that was originally developed by the Eastman Chemical Company. This process model was
initially implemented in FORTRAN code to generate simulated process data for advanced
process control studies. The process model has become increasingly useful for verifying
the performance of various Fault Detection and Diagnosis (FDD) studies [14]. As time
passed, this process model was updated and converted to a MATLAB Simulink® model [15].
Numerous research studies on FDD use this model to benchmark FDD techniques [16].
Furthermore, several studies incorporate graph-theoretic methods as a means of improving
the diagnostic performance of the techniques [17].

This paper proposes and evaluates graph reduction techniques that can be used to
reduce the size and complexity of the graph representation of a process while maintaining
a similar level of FDI performance achieved with the original graph. For each reduction
technique, three FDI methods are applied to the subsequently reduced graph data to
evaluate the effectiveness of the reduction techniques. The results of this evaluation allow
for the comparison of the proposed reduction techniques. An in-house MATLAB Simulink®

model of the TEP is used as a case study for the evaluation of the graph reduction techniques
as it represents a large, complex system [18].

Section 2 contains a brief overview of the TEP, after which the three FDI methods used
for the evaluation are introduced and discussed in Section 3. Section 4 outlines the graph
reduction techniques as proposed in this paper. The results from the evaluation of the
reduction techniques are provided in Section 5, which is followed by a section on combining
individual reduction techniques in Section 6. Section 7 presents the concluding remarks.

2. Tennessee Eastman Bench Mark Process

The Tennessee Eastman process (TEP) is a model of an industrial chemical plant that
is often used as a benchmark to evaluate fault diagnosis techniques. This process model
was first proposed in the paper by Downs and Vogel [14]. In this study, the TEP model
is used to generate healthy and faulty system data sets and to evaluate graph reduction
techniques. The TEP is characterised by two simultaneous gas–liquid reactions and two
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additional byproduct reactions. These reactions are all exothermic and irreversible. The
two gas–liquid reactions are given by:

A(g) + C(g) + D(g)→ G(liq), (1)

A(g) + C(g) + E(g)→ H(liq). (2)

The TEP diagram can be seen in Figure 1 [18]. The process constitutes five main units,
which are the reactor, condenser, vapour–liquid separator, compressor, and stripper. Twelve
valves can be manipulated in the process, and forty-one process measurements can be
taken to control or monitor process operations. The process has 20 possible fault conditions
and 21 process conditions when the normal operating condition (NOC) is considered.

Figure 1. Diagram of the Tennessee Eastman process model [18].

Table 1 presents an overview of the 20 fault conditions of the TEP. Fault conditions
1 to 7 are as a result of a step change in the process variable associated with each fault.
Fault conditions 8 to 12 are as a the result of random fluctuations in the process variable
associated with each fault. Fault condition 13 replicates a gradual drift in the kinetics of the
process reactions. Fault conditions 14 and 15 are due to stuck valves, and fault conditions
16 to 20 are caused by unidentified faults.

The original process was developed in FORTRAN and was adapted for Simulink® by
Vosloo et al. in [18]. The data generated by this Simulink® model is used for this study.

For each process condition, the Simulink® model generates time series data that
represent a 25 h period. Process measurements are taken every 180 s, resulting in 501
measurements per condition. For every 25 h period, the first hour represents the NOC after
which the process condition is introduced.
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Table 1. Fault conditions of the TEP [19].

Fault ID Fault Description Type of Change Introduced

Fault 1 A/C feed ratio, B composition constant (stream 4) Step
Fault 2 B composition, A/C feed ration constant (stream 4) Step
Fault 3 D feed temperature (stream 2) Step
Fault 4 Reactor cooling water inlet temperature Step
Fault 5 Condenser cooling water inlet temperature Step
Fault 6 A feed loss (stream 1) Step
Fault 7 C header pressure loss-reduced availability (stream 4) Step
Fault 8 A,B,C feed composition (stream 4) Random variation
Fault 9 D feed temperature (stream 2) Random variation

Fault 10 C feed temperature (stream 4) Random variation
Fault 11 Reactor cooling water inlet temperature Random variation
Fault 12 Condenser cooling water inlet temperature Random variation
Fault 13 Reaction kinetics Slow drift
Fault 14 Reactor cooling water valve Sticking
Fault 15 Condenser cooling water valve Sticking
Fault 16 Unknown Unknown
Fault 17 Unknown Unknown
Fault 18 Unknown Unknown
Fault 19 Unknown Unknown
Fault 20 Unknown Unknown

3. Graph-Based FDI

In the context of this paper, a graph can be defined as a set of nodes and a set of
links, where each link connects two nodes [20]. Graph-based FDI methods require a graph
representation of the process in the form of an attributed graph. An attributed graph is a
graph that has information assigned to its nodes and/or links [21].

The energy-attributed graph is composed by regarding each main system component
as a node with the links describing the energy interactions between the components. The
node attributes are chosen to be the rate of exergy change across a node, denoted as ∆Ḃi
with i signifying the specific node. The link attributes are chosen to be the energy flow rate
between nodes denoted by Ėi,j with i, j signifying the location between nodes i and j and
the direction from i to j.

Assuming a total of n nodes, a node signature matrix Ns ∈ Rn×n+1, with subscript s
denoting the term signature, is given by:

Node attr.︷︸︸︷ Link attr.︷ ︸︸ ︷

Ns =



∆Ḃ1 Ė1,1 Ė1,2 . . . Ė1,j . . . Ė1,n
∆Ḃ2 Ė2,1

...
...

. . .
∆Ḃi Ėi,1 Ėi,j

...
...

. . .
∆Ḃn Ėn,1 Ėn,n


. (3)

For nodes between which no energy interaction is taking place, the link attribute is
made zero.

Online process monitoring requires the calculation of (3) for every k time instant,
i.e., calculating Ns,k. Furthermore, the calculation of Ns,re f is required, a reference node
signature matrix composed with energy and exergy attributes of either the desired nor-
mal operating condition (NOC) of the process or known fault conditions. Continuously
comparing Ns,k with the NOC reference matrix Ns,re f N would reveal undesired process
deviations, or faults, thus enabling fault detection. Continuously comparing Ns,k and a
set of reference matrices which include both Ns,re f N and known fault conditions Ns,re f Fq
would enable characterising the differences in order to conduct fault isolation.
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The attributed graph of the TEP can be seen in Figure 2. A summary of the TEP
attributed graph nodes and their corresponding process components is given in Table 2.
As the process data from the TEP model is available in windows of 501 samples, 501
operational attributed graphs are available for each of the 21 process conditions mentioned
in Section 2, i.e., 20 fault conditions and the NOC.

Figure 2. Attributed graph of the Tennessee Eastman process [19].

Table 2. TEP attributed graph nodes and their corresponding process components.

Process Component Node Number Process Component Node Number
Feed stream A Node 1 Feed stream D Node 2
Feed stream E Node 3 Feed stream A/B/C Node 4
Mixing zone Node 5 Reactor Node 6

Reactor cooling bundle Node 7 Condenser Node 8
Condenser cooling side Node 9 Vapour-liquid separator Node 10

Purge stream Node 11 Compressor Node 12
Stripper Node 13 Product stream Node 14

Environment Node 15 -

The three FDI methods used in this study are the distance parameter, eigendecomposi-
tion, and residual-based FDI methods. Each of these methods requires a reference attributed
graph for each of the 21 process conditions. The reference attributed graph (Ns,re f ) of a
process condition is calculated by determining the average of all 501 operational attributed
graphs for that condition.

For both the distance parameter and eigendecomposition FDI methods, the graph
comparison process takes the form of the first step of graph matching according to the
method described by Jouli et al. [22], using the heterogeneous euclidean overlap metric
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(HEOM). The comparison of Ns,re f and Ns,k therefore results in a cost matrix Ck ∈ Rn×n

with its entries cij,k given by:

cij,k =

√√√√n+1

∑
a=1

[
|Ns,re f (i, a)−Ns,k(j, a)|

{range}a

]2

, (4)

with a the corresponding attribute number of nodes i and j being compared and

{range}a = |maxa −mina|, (5)

the range of the corresponding attribute in the reference graph. If the result of (5) is zero,
then {range}a is set to be equal to one. The matrix Ck acts as a distance descriptor between
Ns,re f and Ns,k. Using (4) to compare Ns,re f with itself will result in Cre f , which acts as
the reference distance descriptor for the particular reference whether NOC or a known
fault condition.

The distance parameter FDI method makes use of cost matrices that result from a
comparison of an operational graph Ns,k with all 21 Ns,re f for FDI as portrayed in Figure 3.
Each cost matrix in the resulting set of matrices (seen in the bottom grid of Figure 3) can
then be quantified as a single parameter known as the distance parameters (DC). For the
square cost matrix resulting from the EGBV method, the distance parameter is merely
the average of the diagonal entries of the resulting cost matrix. By observing how the
distance parameter of each operational cost matrix relates to the distance parameters of
every reference cost matrix, the operational condition can be matched to the appropriate
fault condition.

NOC FT1 FT2 FT19 FT20

CN1 CF1_1 CF2_1 CF19_1 CF20_1

CN2 CF1_2 CF2_2 CF19_2 CF20_2

CN500 CF1_500 CF2_500 CF19_500 CF20_500

CN501 CF1_501 CF2_501 CF19_501 CF20_501

....
...

.

...
.

...
.

....

....

....

....

....

...
.

...
.

Graph Comparison

Operational graph

Figure 3. Illustration of how the distance FDI method uses graph reduction to generate cost matrices [19].

Figure 4 [19] shows how the eigendecomposition FDI method compares reference
and operational conditions for FDI. The method compares the reference normal attributed
graph (Ns,re f N) with itself and the reference faulty attributed graphs (Ns,re f Fq) to generate a
set of 21 cost matrices (Array A in Figure 4) based on this comparison. Eigendecomposition
of these cost matrices results in 21 sets of reference eigenvalues (~λRe f ). Next, the method
compares the reference normal attributed graph (Ns,re f N) with an operational attributed
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graph (Ns,k) and generates a single cost matrix (Array B in Figure 4) based on this compari-
son. Upon eigendecomposition of the resulting cost matrix, a set of operational eigenvalues
(~λk) is generated. This operational set of eigenvalues is matched with one of the 21 reference
sets of eigenvalues most similar to itself.

NOC

Fault 1

Fault 20

Dataset for each system condition

Determine the average
attributed graph of

each condition in the
dataset

Graph Comparison

Database of the reference
graphs for each condition

Operational graph

Graph Comparison

Array B Array A

Figure 4. Illustration of graph comparisons used in the eigendecomposition and residual-based
FDI methods [19].

The illustration of Figure 4 [19] also applies to the residual-based FDI method. The
method firstly compares the reference normal attributed graph (Ns,re f N) with itself and
the reference faulty attributed graphs (Ns,re f Fq). It then quantifies the resulting residual
matrices as 21 reference binary matrices (BINre f ) (contained in Array A in the figure) with
statistical operations and creates a set of 21 reference frequency vectors (~f cNRe f ), each of
which indicates the number of "1’s” in each column of its corresponding binary matrix
(BINre f ). The method then proceeds to compare the reference normal attributed graph
(Ns,re f N) with an operational attributed graph (Ns,k). It quantifies the resulting residual
matrix as an operational binary matrix (BINOP) (contained in Array B seen in the figure)
with statistical operations and creates an operational frequency vector (~f cNO), which in-
dicates the number of “1’s” in each column of (BINOP). Finally, the method matches this
operational frequency vector with one of the twenty-one reference frequency vectors most
similar to the operational binary matrix to diagnose the faulty condition. In essence, these
FDI methods mathematically determine the difference between an operational attributed
graph and a group of reference attributed graphs. The distance parameter and eigende-
composition FDI methods express these mathematical differences in the form of a cost
matrix. The distance parameter FDI method quantifies the cost matrix as a single distance
parameter to determine which reference graph best represents the operational graph, while
the eigendecomposition method quantifies the cost matrix as a set of eigenvalues to ac-
complish this goal. For the residual-based FDI method, the mathematical differences are
encapsulated in a residual matrix and are ultimately quantified as frequency vectors to
match the operational graph with its corresponding reference graph. The overall detection
rate represents the average percentage of instances where a fault condition was present
in the system and the FDI method detected that a fault was present. The overall isolation
rate represents the average percentage of instances a fault condition was present and the
FDI method correctly isolated that condition to its corresponding reference condition. The
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performance of the three FDI methods applied to the TEP attributed graph data can be
seen in Table 3. These performance indicators will be used as a set of control data when
evaluating the graph reduction techniques. Certain well-performing specific isolation rates
are highlighted for each FDI method.

Table 3. Summary of the detection and isolation performance of the three FDI schemes applied to
the TEP [19].

Distance Parameter FDI Method Eigendecomposition FDI Method Residual-Based FDI Method

Overall detection rate (%) 89.81 Overall detection rate (%) 96.28 Overall detection rate (%) 98.86

Overall isolation rate (%) 19.90 Overall isolation rate (%) 17.55 Overall isolation rate (%) 20.15

Isolation of Fault 1 (%) 75.00 Isolation of Fault 1 (%) 90.00 Isolation of Fault 1 (%) 80.00

Isolation of Fault 2 (%) 85.00 Isolation of Fault 2 (%) 75.00 Isolation of Fault 2 (%) 61.00

Isolation of Fault 6 (%) 59.00 Isolation of Fault 6 (%) 100.00 Isolation of Fault 6 (%) 88.00

4. Graph Reduction Techniques Description

This study proposes five reduction techniques that were formulated from three princi-
pal approaches based on techniques found in the literature, as well as an understanding of
how FDI methods detect and isolate fault conditions. The tree diagram depicted in Figure 5
illustrates how the three principal approaches branch off into five different techniques. The
first principal approach (Attribute Variation Approach) determines the degree to which
graph attributes under NOC vary when fault conditions are introduced into the process.
The rationale for this strategy is that attributes that experience little change during a fault
situation have a minimal impact on the cost or residual matrices used by FDI techniques
and can be removed from the attributed graph information. Algorithm 1 represents the
technique that results from applying the first principal approach to node attributes, while
Algorithm 2 represents the resulting technique from applying the first principal approach
to link attributes.

The second technique involves recognising attributes with relatively small values
under NOC and eliminating them from the attributed graph data. This approach is based
on the idea that attributes that are quite smaller compared to all the other graph attributes
under NOC have a much smaller impact on the cost or residual matrices utilised by the
FDI methods. The first and second approaches discussed up to now take into account node
and link attributes individually, thus having two distinct techniques for each. Algorithm 3
is the resulting technique from applying the second principal approach to link attributes,
while Algorithm 4 represents the resulting technique from applying the second principal
approach to node attributes.

The final principal approach identifies nodes that have similar attribute values and
summarises those nodes into a single node. The logic underpinning this approach is that,
by summarising similar nodes, the structural size of the attributed graph is reduced, while
all the attributes are retained. This, in theory, has a negligibly small effect on the FDI
method and will not disrupt FDI performance too severely. Table 4 contains a summary of
all five techniques with a brief discussion of each technique. Algorithm 5 is the technique
that results from applying the final principal approach to summarise node attributes.
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Algorithm 1 Node attribute filtering with variation analysis

Calculate how much each node varies from NOC for the 20 fault conditions. The physical
and chemical exergy values of a node are summated.
for i ∈ [1, 2, . . . , 14] do

for j ∈ [1, 2, . . . , 20] do
Temp += | Ns,re f N(i, 1 : 2)− Ns,re f F(j)(i, 1) |

end for
Avg_Variation(i) = ( Temp / Ns,re f N(i, 1) )× 100

end for
Arrange nodes into percentiles according to their percentage variation from NOC values.
Use MATLAB’s ‘isoutlier()’ function to remove a percentile of nodes, iteratively. Start
with the percentile of nodes with the smallest variation.
NReduced = NOriginal
for k ∈ [1, 2, . . . , 10] do

NReduced ← isoutlier(NReduced)
FDI(NReduced)

end for

Algorithm 2 Link attribute filtering with variation analysis

Calculate how much each link varies from NOC for the 20 fault conditions.
for i ∈ [1, 2, . . . , 15] do

for j ∈ [1, 2, . . . , 15] do
for k ∈ [1, 2, . . . , 20] do

Temp += | Ns,re f N(i, j + 2)− Ns,re f F(k)(i, j + 2) |
end for

Avg_Variation(i, j) = ( Temp / Ns,re f N(i, j + 2) )× 100
end for

end for
Arrange links into percentiles according to their percentage variation from NOC values.
Use MATLAB’s ‘isoutlier()’ function to remove a percentile of links, iteratively. Start with
the percentile of links with the smallest variation.
NReduced = NOriginal
for m ∈ [1, 2, . . . , 10] do

NReduced ← isoutlier(NReduced)
FDI(NReduced)

end for

Algorithm 3 Link attribute filtering with a size threshold

Arrange links into percentiles according to the size of their attribute values. Use MAT-
LAB’s ‘isoutlier()’ function to remove a percentile of links, iteratively. Start with the
percentile of nodes with the smallest values.
NTemp = Ns,re f N_avg(1 : 15, 3 : 17)
for m ∈ [1, 2, . . . , 10] do

NReduced ← isoutlier(NTemp)
NTemp = NReduced
FDI(NReduced)

end for
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Algorithm 4 Node attribute filtering with a size threshold

Arrange nodes into percentiles according to the size of their attribute values. Use
MATLAB’s ‘isoutlier()’ function to remove a percentile of nodes, iteratively. The physical
and chemical exergy values of a node are summated. Start with the percentile of nodes
with the smallest values.
NTemp = Ns,re f N(1 : 14, 1 : 2)
for m ∈ [1, 2, . . . , 10] do

NReduced ← isoutlier(NTemp)
NTemp = NReduced
FDI(NReduced)

end for

Algorithm 5 Summarisation of similar nodes

Calculate the difference between each node and all the other system nodes. The physical
and chemical exergy values of a node are summed.
for i ∈ [1, 2, . . . , 15] do

for j ∈ [1, 2, . . . , 15] do
Temp(i, j) = | Ns,re f N(i, 1 : 2)− Ns,re f N(j, 1 : 2) |

end for
end for
Identify node pairs which have the smallest attribute differences between them and
summarise each pair of nodes into a single node.

NSummarized ← min(Temp)
FDI(NSummarized)

Link attribute reduction techniques remove a link from the attributed graph by setting
the corresponding entry in the node signature matrix (NSM) to zero. Node attribute
reduction techniques remove a node from the attributed graph by removing that node’s
corresponding row and column from the NSM. All five techniques are restricted from
removing the environmental node in order to preserve critical structural information.

Table 4. Summary of the graph reduction techniques [19].

Technique Number Name Reduction Type Description

1 Node attribute filtering with
variation analysis Node attribute

Eliminates node attributes based on their
average variation from NOC over all

fault conditions.

2 Link attribute filtering with
variation analysis Link attribute

Eliminates link attributes based on their
average variation from NOC over all

fault conditions.

3 Link attribute filtering with a
size threshold Link attribute Eliminates link attributes based on the

magnitude of the attributes in NOC.

4 Node attribute filtering with a
size threshold Node attribute Eliminates node attributes based on the

magnitude of the attributes in NOC.

5 Summarisation of
similar nodes Node attribute Combines nodes that are alike into one

node by summarising their attributes.
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Figure 5. An illustration of how the three principal approaches translate into five reduction techniques [19].

5. Results and Discussion

To determine the effectiveness of each graph reduction technique, an experimental
evaluation is performed, by which the extent to which each technique reduces the graph
data is increased incrementally and the performance of the FDI methods applied on the
subsequently reduced data is measured, recorded with each iteration. For Techniques
1–4, the reduction intervals are represented by percentiles, and as the reduction interval
increases, the percentile of attributes to be reduced is also increased. For Technique 5, the
reduction intervals are represented by the number of summarisations (also referred to as
the number of mergers), and as the reduction interval increases, the number of mergers is
increased.

Consider, for example, Technique, 1 which is a node attribute reduction technique that
reduces attributes according to the average amount they vary from NOC as fault conditions
occur. The attributes are sorted into percentiles according to their average variation from
NOC. For the first reduction iteration, all the attributes with average variation values that
fall within the 10th percentile are removed from the graph data. Upon the second iteration,
the interval is increased to the 20th percentile, and all attributes that lie between the 10th
and 20th percentile are also removed. This is repeated until the 90th percentile is reached.

When considering Technique 5, the first iteration summarises one pair of similar
nodes. Upon the second iteration, a second pair of similar nodes is also summarised. This
is repeated until none of the remaining nodes have a high degree of similarity so as to
prevent the structural information of the graph from being distorted too severely. All nodes
may only be summarised once.

For the sake of brevity, only overall detection and overall isolation rates are considered
in this paper. These two indicators are the most important performance indicators and
accurately reflect the efficacy of an FDI method.

5.1. Detection Results

The overall detection rate results of all three FDI methods after evaluating reduction
Techniques 1–5 on the TEP graph data are portrayed in Figure 6. Upon inspecting the
overall detection rate results in Figure 6, it is firstly clear that, for all reduction techniques,
the order of performance remains the same, namely, the residual method gives the best
performance, the eigendecompoisition method the second best, and the distance method the
worst performance. Furthermore, it is also characteristic that, as the number of attributes
reduced becomes greater, the detection accuracy increases. This can be expected since, as
the graphs are reduced, unnecessary information that do not contribute to detection are
removed, resulting in more accurate fault detection. Upon further inspection of the results,
it is clear that, for each graph reduction technique, there was at least one reduction interval
where the FDI performance of at least one of the FDI methods maintained a similar level
of FDI performance as achieved before reducing any attributes. This indicates that graph
reduction is a viable solution to addressing the problems caused by large and complex
graph structures.



Energies 2023, 16, 6022 12 of 16

(a) (b)

(c) (d)

(e)

Figure 6. Overall detection rate result after graph reduction: (a) Technique 1; (b) Technique 2;
(c) Technique 3; (d) Technique 4; (e) Technique 5.

5.2. Isolation Results

The overall isolation rate results after evaluating reduction Techniques 1–5 on the TEP
graph data are portrayed in Figure 7. Techniques 1, 3, and 4 show a clear downward trend
as more attributes are reduced. However, Techniques 2 and 5 show promising results with
fairly consistent performance as attributes are reduced.

5.3. General Observations

Two types of anomalies could be observed when looking at the trends of the overall
detection and isolation rates. The first type is the creation of a local maximum when
a downward trend changes to an upward trend as the reduction interval is increased
and changes back to a downward trend upon the following reduction interval increase.
The second type is the creation of a local minimum when an upward trend changes to a
downward trend as the reduction interval is increased, then changes back to an upward
trend upon the following reduction interval increase. An example of such an anomaly can
be seen in Figure 6d for both the eigendecomposition and residual-based FDI methods
once 59.68% of the total number of link attributes present in the original graph have
been reduced.
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The occurrence of these local minima and maxima can be ascribed to the fact that
the graph data contain attribute information that are vital to the FDI process, as well as
attribute information that are non-vital to the FDI process. When the upward trend part
of either the local minima or maxima occurs, it is the result of the reduction operation
removing attributes that negatively impact the FDI process. The downward trend section
of either the local minima or maxima occurs due to the reduction operation removing
attributes that support the FDI process.

(a) (b)

(c) (d)

(e)

Figure 7. Overall isolation rate result after graph reduction: (a) Technique 1; (b) Technique 2;
(c) Technique 3; (d) Technique 4; (e) Technique 5.

By doing an inter-technique comparison, it is possible to determine which reduction
techniques work better than others. When doing this comparison, however, it should
be noted that the scales of the x-axes in Figure 6 are not necessarily displayed linearly.
By comparing all five reduction techniques, it is clear that attribute variation analysis
techniques (Techniques 1 and 2) outperformed the attribute size analysis techniques (Tech-
niques 3 and 4) across all three FDI methods when the same range of reduction is used for
the comparison.
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It is further evident that, when the effect of Technique 5 on the performance of the FDI
methods is compared to that of all four other methods over the same range of reduction,
Technique 5 has the most stable and consistent effect on both the overall detection and
isolation rates of the FDI methods. This shows that Technique 5 is effective at reducing
graph complexity without significantly affecting the performance of the FDI methods. This
is expected since, by only summarising attributes, Technique 5 preserves the majority of
vital attributes while still reducing complexity.

Each FDI method responded well to certain complementary reduction techniques
applied at specific percentile thresholds. The distance parameter FDI method responded
well to Techniques 1, 2, and 5 at specific threshold values. Techniques 2 and 5, at specific
thresholds, had a favourable effect on the performance of the eigendecomposition FDI
method. The residual-based FDI method also had a very good response to Techniques 1, 2,
and 5 at specific threshold values.

In seeking validation of the trends reported with the TEP as a case study, the techniques
were also evaluated on a gas-to-liquids process model. Similar trends were observed;
however, future work is warranted to make more general conclusions [19].

6. Combining Individual Reduction Techniques

After applying each of the five individual reduction techniques to the attributed graph
data used by the FDI methods, the efficacy of combining reduction techniques is briefly
considered. This is accomplished by identifying complementary reduction techniques
(techniques that were able to significantly reduce graph data while still maintaining a
similar level of FDI performance) for each FDI method and applying these reduction
techniques to the graph data simultaneously. For instance, if Techniques 1 and 2 are
identified as complementary to a certain FDI method, and if Technique 1 removes nodes 1
and 3 from the graph data, while Technique 2 removes nodes 5 and 8, then the combined
reduction technique removes nodes 1, 3, 5, and 8, and all the links connected to these nodes,
from the graph data.

While this paper’s investigation into the efficacy of these combined reduction tech-
niques may not have been extensive, the initial results show that combined approaches
have value. By combining Techniques 1, 2, and 5 at certain reduction intervals and applying
the distance FDI method to the resulting reduced graph data, the overall detection rate
increased, the overall isolation rate remained nearly unchanged, and the FDI execution time
decreased by nearly 38% relative to the results obtained from applying this FDI method to
the original graph data.

By combining Techniques 2 and 5 at certain reduction intervals and applying the
eigendecomposition FDI method to the resulting reduced graph data, the overall detection
rate increased by nearly 2%, the overall isolation rate fell by only 0.9%, and the FDI execu-
tion time decreased by nearly 61%, relative to the results obtained from applying this FDI
method to the original graph data. For the residual-based FDI method, it could be observed
that, by combining Techniques 1, 2, and 5 at certain reduction intervals, and applying the
FDI method to the reduced graph data, the overall detection rate increased by 0.45%, the
overall isolation rate also improved with 0.5%, and the FDI execution time decreased by
42%, relative to the results obtained from applying this FDI method to the original graph
data. These results clearly show that using the proposed reduction techniques in specific
combinations offer several advantages and thus warrant further investigation.

7. Conclusions

The results as outlined in this paper indicate that it is possible to reduce the attributed
graph data of a process and maintain a similar level of FDI performance as achieved
before any reduction. By comparing the effectiveness of all five graph reduction techniques
over the same reduction range, it can be seen that Techniques 1 and 2, which rely on
attribute variation, outperformed Techniques 3 and 4, which rely on attribute size, in
terms of detection and isolation capabilities. The comparative investigation also revealed
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that, out of all five techniques, Technique 5 had the most stable effect on the performance
of all three FDI methods. This is because Technique 5 summarises attributes while the
four other techniques remove attributes from the graph data. The understanding gained
from evaluating these proposed reduction techniques can now be used as the basis for
implementing optimisation algorithms, such as a genetic algorithm, to further optimise
complex attributed graph structures used for FDI. This study’s findings also hold significant
value for future studies concerned with effective sensor placement. Once an effectively
reduced version of the attributed graph of a process has been produced, sensors should be
deployed in such a way that they primarily measure process data from the components
and streams which are present in the reduced version of the attributed graph.
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