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Abstract: Carbon emissions significantly contribute to global warming, amplifying the occurrence of
extreme weather events and negatively impacting the overall environmental transformation. In line
with the global commitment to combat climate change through the Paris Agreement (COP21), the
European Union (EU) has formulated strategies aimed at achieving climate neutrality by 2050. To
achieve this goal, EU member states focus on developing long-term national strategies (NLTSs) and
implementing local plans to reduce greenhouse gas (GHG) emissions in alignment with EU objectives.
This study focuses on the case of Sweden and aims to introduce a comprehensive data-driven
framework that predicts CO2 emissions by using a diverse range of input features. Considering the
scarcity of data points, we present a refined variation of multi-task learning (MTL) called weighted
multi-task learning (WMTL). The findings demonstrate the superior performance of the WMTL
model in terms of accuracy, robustness, and computation cost of training compared to both the
basic model and MTL model. The WMTL model achieved an average mean squared error (MSE) of
0.12 across folds, thus outperforming the MTL model’s 0.15 MSE and the basic model’s 0.21 MSE.
Furthermore, the computational cost of training the new model is only 20% of the cost required by
the other two models. The findings from the interpretation of the WMTL model indicate that it is a
promising tool for developing data-driven decision-support tools to identify strategic actions with
substantial impacts on the mitigation of CO2 emissions.

Keywords: CO2 emissions prediction; artificial intelligence; weighted multi-task learning

1. Introduction

Global warming has a meaningful impact on the transformation of the environment,
which strengthens the occurrence rate of extreme weather events in the long term. The
Eurobarometer report on climate change points out that more than 90% of the European
Union (EU) citizens consider climate change to be a serious problem [1]. In alignment
with the global climate action commitment to the Paris Agreement (COP21), the EU has
developed strategies towards the climate-neutrality objective by 2050 [2]. For this aim to be
achieved, the EU member states aim at developing national long-term strategies (NLTSs)
via the development and implementation of local plans to reduce the greenhouse gas (GHG)
emissions in line with EU objectives. Salvia et al. [3] provided a comprehensive review
on the climate action plans of 327 cities in the EU. The authors aimed at investigating the
existing correlation between the level of climate-mitigation ambitions and several factors,
such as the city size and its regional location, the type of the plan, and membership of the
climate networks. It was concluded that it is required that the cities urgently double their
ambitions to meet the climate action criteria. Moreover, it was further highlighted that
the national-level plans and legislation impact the local targets to achieve EU objectives.
Among EU members, Sweden has set the overall goal of climate neutrality by 2045, even
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though the strategy is mainly outlined in a qualitative context [4]. To this end, the Swedish
government states that the climate policy framework for the country should be founded on
sectoral long-term and time-based emissions targets [5]. To address the aforesaid challenge,
this work, by considering the study case of Sweden, aims at presenting a comprehensive
data-driven framework to predict CO2 emissions as a function of a diverse set of input
features. This, in turn, provides time-based NLTS to facilitate the national-level policy-
making process in alignment with EU targets.

Background and Research Gap

Short- and long-term carbon emission prediction and its consequence on climate
change have gained ever-increasing attention in technological, policymaking, and socioe-
conomic studies in recent years [6]. Sognnaes et al. [7] presented a multi-model analysis
approach to predict CO2 emissions by comparing technologically rich models (e.g., GCAM,
TIAM, and MUSE) and macro-economic approaches (e.g., ICES, GEMINI, and E3ME). Their
study showed that the precision of the outcomes was highly dependent on the accuracy
level of the baseline emissions, as well as current policies (CPs) and nationally determined
contributions (NDCs). This reflects that the development of individual national-level mod-
els is of crucial importance in the reliable prediction of CO2 emissions. Mansfield et al. [8],
by highlighting the computational complexity of the climate models, proposed a machine-
learning-based method to capture climate change trends from short-term simulations. Their
study focused on temperature changes as the climate change response factor rather than
the carbon emission. However, the presented methodology reveals the pivotal role of
data-driven approaches in accelerating environmental projections by uncovering the early
contributors of long-term responses.

Artificial neural networks (ANNs) are categorized as modern artificial intelligence
models for being applied in a wide variety of non-linear problems, which comprise predic-
tions, projections, simulations, pattern identification, scheduling, and optimization [9–12].
Due to the rise and progress of Industry 4.0, modern energy systems have acknowledged
the vast potential of artificial intelligence. As a result, they are now envisioning the uti-
lization of more complex, creative algorithms across various applications [13]. Through
their investigation of various forecasting models, Hu et al. [14] suggested employing deep-
learning, data-driven, and intelligent algorithms as innovative approaches to develop
prediction models for energy consumption and carbon emissions. Klyuev et al. presented
a comprehensive review of different classical and modern methods of forecasting elec-
tricity consumption. The authors highlighted the importance of classifying the forecast
method based on the forecasting horizon to distinguish between short- to long-term predic-
tions [15]. Aryai et al. [16] applied a machine-learning method for day-ahead predicting of
the emissions’ intensity for the Australian National Electricity Market. Authors concluded
that the extremely randomized trees regressor model they proposed outperformed other
classic machine-learning algorithms (Extreme Learning Machine (ELM), multilayer per-
ceptron (MLP), and decision tree (DT)). The ANNs have also gained enormous popularity
in national-level energy planning, financial assessment, and environmental forecasting
studies in recent years. For instance, Kermanshahi et al. [17] implemented ANN techniques
based on ten input factors to investigate current and future trends of electric loads in Japan.
Azadeh et al. [18] developed an integrated, flexible model, using ANN and computer
simulations to predict Iran’s national electrical energy consumption. It was shown that the
proposed algorithm could provide a dynamic structure for the forecasting. Sadri et al. [19]
developed an ANN-based energy and environmental planning framework using historical
data for the transportation sector in developing countries where the required data are
either unavailable or limited. Mason et al. [20] used evolutionary neural networks to pre-
dict short-term CO2 emissions, demanded power, and wind energy generation in Ireland.
Marjanovic et al. [21] aimed at predicting the gross domestic product (GDP) based on CO2
emissions, using an extreme learning method. Sun and Xu [22] applied ANNs optimized
by a genetic algorithm to evaluate the financial security of the electric power industry in
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China. The study’s results showed superior accuracy and convergence speed advantage
compared to the least-square support vector machine and traditional backpropagation
neural network methods. Sahraei et al. [23] introduced a novel hybrid metaheuristic and
ANN method for predicting the energy demand of the transportation sector. The authors
optimized the coefficients for energy demand prediction based on different input features,
such as GDP, vehicle-km, population, and oil price in Turkey. The outcomes revealed
that the integration of ANN with Particle Swarm Optimization (ANN-PSO) outperforms
other combinations.

In the above-referenced studies, the main focus was on the energy sector or economic
growth and security. Therefore, CO2 emission was considered either an input feature or a
less prioritized output.

Predicting CO2 emissions is categorized as a supervised machine-learning problem.
The selection of a supervised machine-learning algorithm depends on the nature of the
data and the specific problem being investigated. Tree-based models blend the predictions
of various decision trees. The decision trees learn by employing interpretable decision rules
based on the information theory [24]. They are fast to train, require relatively little data for
satisfactory performance, and are less prone to overfitting. ANNs, on the other hand, learn
through an error backpropagation process. ANNs are well-suited for handling complex
non-linear relationships. They can automatically learn hierarchical representations from
raw data, enabling them to capture intricate patterns. ANNs and deep-learning models
are known as the best data-driven models for image and text data [25,26]. When dealing
with tabular data, employing ensemble techniques and tree-based models such as Random
Forest and XGBoost mostly yields more precise outcomes [27]. Nevertheless, tree-based
models face limitations when it comes to predicting future outcomes in regression problems.
In fact, when the range of target outputs has the potential to change, tree-based models are
unable to predict values that fall outside the training range. To be more specific, since the
tree-based model’s predictions are based on the mean value of the training samples in each
leaf node, the predictions will never be outside the range of the target variable observed
in the training data. When applying these models to real-world scenarios, this aspect is
essential to consider [24]. In situations where, for example, the minimum CO2 emission
during the training phase surpasses the expected CO2 emission for the next year, tree-based
models are unable to accurately forecast such a scenario.

Conversely, ANNs do not face this constraint. Since most developed countries strive
to reduce their national-level CO2 emissions over time, employing ANN-based models is a
suitable approach for developing frameworks to predict carbon emissions.

A review of the literature revealed that, in the context of ANN-based CO2 emission
prediction in energy systems, the vast majority of studies has been either focused on
a specific industry or an energy sector [28–32]. For instance, Safa et al. [29] aimed at
estimating CO2 emissions from wheat production farms in New Zealand, using ANN and
multiple linear regression (MLR) models. The authors concluded that the ANN predictions
had a better performance compared to the MLR outcomes, with an approximately 37%
lower root mean square error (RMSE). Singh et al. [28] proposed a deep-learning modeling
approach to predict CO2 emissions from road transport vehicles. The results showed that
the long short-term memory (LSTM) model based on recurrent neural networks (RNNs)
performed remarkably better than other models. Several studies have concentrated on
the global CO2 emissions at the national, regional, or EU level. Ma et al. [33] developed
a machine-learning-based algorithm, using the Gaussian process regression, to analyze
CO2 emissions in China. Five independent variables, namely economic growth, energy
consumption, population, industrialization, and income, were considered in this study. It
was shown that the introduced method provided more accurate predictions compared to
traditional least-squares and the robust least-squares models. Du et al. [34] introduced an
improved backpropagation neural network and genetic algorithm (BP-GA) framework to
predict mid- and long-term CO2 emissions in Jiangsu Province. The authors highlighted
that the proposed method in their study led to higher prediction accuracy than other
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conventional methods, with a maximum relative error of 0.76%. Dozic et al. [9] used the
ANN approach for forecasting CO2 emissions and testing EU long-term energy policy
targets. They determined that ANN with a cascade forward/backpropagation structure
yielded reasonable accuracy for this purpose. Recently, Brito et al. [35] combined a scenario
analysis approach with ANN to quantitatively correlate CO2 emissions, energy matrix, and
burning in Brazilian biomes. The authors used the developed model to define different
scenarios that help Brazil balance development and sustainability through CO2 prediction
and control. Han et al. [36] introduced improved residual neural networks to predict carbon
emissions in 24 different countries/regions based on the needs for various primary energy
resources from 2009 to 2020. According to the authors’ investigation, the CO2 emissions of
Russia, the United States, China, India, and Japan exceeded 1000 Mt in 2020. Moreover, the
CO2 emissions of Brazil, Germany, South Africa, and South Korea exceeded 400 Mt. This is
while the CO2 emissions of Sweden were less than 100 Mt. However, the authors noted
that Sweden needs to precisely handle the relationship between environmental protection
and economic development by using wind and solar power instead of primary energy to
reduce future CO2 emissions.

Various sectors and processes contribute to global CO2 emissions. Accordingly, a wide
variety of individual policies and actions need to be employed to decarbonize the energy
system. None of the previous studies has focused on predicting sector-by-sector CO2
emissions; therefore, their outcomes are often qualitative and vague regarding decision-
making at the sectoral level to cover climate action policies. The present work aims to fill the
aforementioned knowledge gap in alignment with the Swedish government’s strategy for
identifying national-level sectoral emission targets. To this end, this research was initially
inspired by the multi-task learning (MTL) concept introduced by Zhang and Yang [37]
for different engineering and natural science applications that contain multiple outputs.
While having sufficient data is crucial to develop reliable machine-learning models, only
a few records of data points are available in this work since CO2 emissions were once a
year. The objective of this work is to utilize artificial intelligence and data-driven methods
to predict the CO2 emissions of Sweden at the national level, using available historical data
from 1990 to 2019. We present an improved version of MTL named weighted multi-task
learning (WMTL), which is capable of obtaining the most information out of the available
limited data where the output tasks can be weighted based on their prioritization level.
The proposed approach assigns weights to output tasks and selects pertinent subtasks by
using a devised algorithm. To this aim, Bayesian optimization is employed to optimize the
hyperparameters of the models.

2. Materials and Methods

While it is an excellent way to measure CO2 emission with emission factors, it would
not be an appropriate approach to predict long-term CO2 emissions. Since the emission
factors are highly dependent on the technology, this approach is blind to relationships
between sectors, the big picture, and the megatrends that evolve the technology. Further-
more, considering the rapid pace of technological advancements in today’s industries,
relying on emission factors to predict medium-term CO2 emissions is not viable. Addition-
ally, data pertaining to various technologies and their corresponding emission factors are
currently unavailable.

On the other hand, data-driven methods can appropriately find the non-linear re-
lationships between input features and outputs. Thus, regardless of the technologies
impacting CO2 emissions, we can rely on the data and machine-learning methods, as long
as a well-developed model is presented.

Considering the complexities associated with different sectors and industries, investi-
gating all relationships among impactful parameters and CO2 emissions with analytical
methodologies is impossible. Data-driven models have been proven to be implemented as
an alternative to analytical approaches due to no need for detailed knowledge of internal
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process parameters. These techniques greatly reflect the complex dependences of a given
process, without considering detailed mechanisms of specified processes.

2.1. Input Data

The first step in developing data-driven models is the identification of impactful input
parameters to understand how these parameters affect the outputs. Dozic et. al. [9] con-
cluded that the gross domestic product (GDP); population; average annual air temperature;
Total Primary Energy Supply (TPES); electricity consumption; and share of renewable,
nuclear, natural gas, total petroleum products, and solid fuels energy in the TPES are the
crucial parameters for forecasting CO2 emissions in the European Union. The current
study follows similar parameters with more details for more complex parameters. For
example, the electricity supply is divided into main resources, such as hydro, pumped
storage, nuclear, main activity producer CHP, autoproducer CHP, wind, solar, condensing
turbines, gas turbines for reserve and others, and import. Moreover, the types of fuels
used in different types of power plants for electricity production are considered as separate
input parameters. In addition, the consumptions of different fuels for steam and hot water
production by type of power plants are identified as important input parameters. All in all,
61 parameters are considered as the input parameters for the data-driven model to identify
their impacts on Sweden’s total CO2 emission and emissions from different sectors, such as
agriculture, domestic transport, international transport, off-road vehicles, electricity and
district heating, household heating, industry, land use, solvent use and other product, and
waste management. The historical data of these parameters from 1990 to 2019 are taken
into account. Table A1 in Appendix A summarizes all input and output parameters.

Figure 1 illustrates the correlation heatmap of our dataset. As depicted in the figure, it
is evident that nearly all features exhibit a correlation with the target value, which is the
total CO2 emissions.
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2.2. Preprocessing Input Features

ANNs are influenced by the magnitude of various input features. This occurs because
features with larger ranges and magnitudes can disproportionately affect the output com-
pared to other features. To address this, it is important to normalize all input features to
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a consistent scale. Min–max scaling is a technique that is commonly used to achieve this.
The process involves subtracting the minimum value of the feature and then dividing it by
the range (maximum value minus minimum value). This normalization brings the values
of the feature between 0 and 1.

However, the existence of outliers in the data, which are extreme values that deviate
substantially from the majority of data points, can distort the minimum and maximum
values employed for scaling. As a result, the scaling operation can lead to a compression
of the majority of the data points into a narrow range, while the outliers may occupy a
disproportionate part of the range. On the other hand, outliers do not affect standard
scaling, making it a perfect choice for this dataset, where many features have extreme
values. Standard scaling is defined by Equation (1):

X′=
X− µ

σ
(1)

where X′ is the scaled feature, X is the raw feature, µ is the mean of the raw feature, and σ
is the standard deviation of the raw feature.

2.3. Model

Figure 2 illustrates the schematic representations of the three models assessed in
this study, all of which are categorized as ANN architectures. Equations (2)–(4) show
the forward-propagation formulation between layers. Essentially, this process entails a
sequence of matrix multiplications between layers, followed by the application of non-linear
functions known as activation functions.

Z[l] = w[l]a[l−1] + b[l] (2)

a[l] = g[l]
(

Z[l]
)

, (3)

a[l] = x, (4)

where a[l] is the output of layer l, Z[l] is the result of applying a linear function to the input
of layer l, w[l] represents the weights between layer l and layer l-1, b[l] is the bias of layer l,
g[l] is the activation function of layer l, and x represents the input features.
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Equations (5) and (6) outline the formulation for the backward-propagation process,
which is the learning process responsible for updating the parameters of the model (weights
and biases):

w[l] := w[l] − αdw[l] (5)

b[l] := b[l] − αdb[l], (6)

where dw[l] is the gradient of the model error with respect to w[l], db[l] is the gradient of the
model error with respect to b[l], and α is the learning rate.
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The gradients are computed through a procedure known as error backpropagation,
which entails calculating partial derivatives by using the chain rule. The learning rate is a
hyperparameter of the model that requires tuning.

The basic model is a single-task model focused solely on predicting the main task,
which, in this context, corresponds to the total CO2 emission of Sweden. The MTL model,
on the other hand, is a multi-task learning model that includes subtasks. Lastly, the
WMTL model is a weighted multi-task learning model that incorporates customized loss
weights for the output variables. The objective of this study is to achieve high performance
specifically for the main task, which is why the loss associated with the main task is
relatively higher in the WMTL model. It is important to note that the provided values in
Figure 2 are purely illustrative examples.

2.3.1. Basic Model

In this work, the basic model refers to the conventional ANN architecture with only
one target output in its last layer (Figure 2a). This target is the main target to be predicted,
which is the total CO2 emissions of Sweden in the given year. The total loss of the basic
model is calculated by the mean squared error (MSE) function, which is represented in
Equation (7):

TotalLoss =
1
m

m

∑
j=1

(
Yp

j −Ya
j

)2
, (7)

where Yp is the predicted value of the main task, Ya is the actual value of the main task,
and m is the number of data points.

2.3.2. Multi-Task Learning Model

Multi-task learning is a supervised neural network architecture that has multiple
target outputs (Figure 2b). The main advantage of multi-task learning is that, with a careful
design, the prediction accuracy of the main task would be higher in comparison with a
single-task model [37]. In fact, the presence of other subtasks contributes to the generation
of valuable features that can enhance the accuracy of predictions. Equations (8) and (9)
present the calculation of the overall loss for the MTL model, and Equation (10) depicts the
formulation of the loss function for each individual task, using the mean squared error:

TotalLoss =
m

∑
i=1

Wilossi, (8)

Wi =
1
n

, (9)

lossi =
1
m

m

∑
j=1

(
Yp

ij −Ya
ij

)2
, (10)

where Wi is the weight of the i-th task, lossi is the MSE of the i-th task, and n is the number
of tasks.

2.3.3. Weighted Multi-Task Learning Model

The downside of the MTL model is that each subtask’s loss weight is equal to that
of the main task. In fact, the accumulated loss weight fraction of all subtasks would be
higher than the loss weight fraction of the main task, which, in turn, prevents the main task
from contributing enough to the loss function. Furthermore, not all subtasks are necessarily
helpful in increasing the main task accuracy. To address these problems, a WMTL learning
model was developed in this study.

Figure 3 illustrates the algorithm utilized for designing the WMTL model. Once the
raw input features are transformed, an assessment is conducted to determine the feasibility
of developing a WMTL model by adding subtasks. In the case of the WMTL model, once
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the hyperparameters are initialized, the first step involves constructing a multi-task model
that incorporates all the accessible subtasks alongside the main task.
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One distinction between the MTL and WMTL models is that, in the case of the WMTL
model, the loss weight assigned to the main task is optimized using the coefficient of
determination (R2) as the criterion [38]. As a result, the loss weights of the subtasks are
subsequently updated based on the algorithm’s specifications.

During the development of multi-task models, we observed that certain subtasks
which exhibited poor prediction performance negatively impacted the main task’s pre-
dictability. In fact, our observations revealed that by eliminating the subtasks with an R2

below a minimum threshold of 0.65, the predictability of the main task demonstrated no-
table improvement. This observation was consistent for both the MTL and WMTL models.

Wsub−task =
1−Wmain−task

Nsub−tasks
(11)

2.4. Hyperparameter Tuning and Bayesian Optimization

In order to achieve a satisfactory performance for each of the three models, a com-
prehensive search space of hyperparameters was defined. These hyperparameters are
presented in Table 1. Considering the size of the search space, which is almost 50,000, it
is not wise to use the Grid Search method for the tuning. In Grid Search, all parameter
sets in the search space are evaluated. The Random Search method is not efficient, either,
because it simply evaluates a random subset of the search space. The advantage of the
Bayesian optimization is that it does not exhaustively search the entire search space to
reach the optimal value. Instead, it intelligently explores a subset of the search space based
on its observations and previous evaluations. It employs a probabilistic model, such as
Gaussian processes, to model the objective function and uses an acquisition function to
guide the search toward promising regions. By iteratively evaluating and updating the
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model, Bayesian optimization focuses on areas with higher potential for finding the optimal
solution, making it an efficient approach for hyperparameter tuning.

Table 1. Search space of the hyperparameters for the models.

Hyperparameter Values

Learning rate [0.05, 0.01, 0.005, 0.001, 0.0001, 0.00001]
No. of hidden layers [1, 2, 3, 4, 5]

No. of neurons in each layer [32, 64, 128, 256, 512, 1024]
No. of epochs [1, 5, 10, 20, 100, 200]

Activation function of each layer [linear, sigmoid, tanh, relu, selu]
Batch size [2, 4, 8]

Dropout value [0, 0.2, 0.4]

The objective of the Bayesian optimization is to choose the optimal hyperparameters
that result in the lowest validation error. In this work, the search space for potential
hyperparameters, denoted as x, corresponds to the table shown in Table 1. The objective
function, represented by f, aims to minimize the cross-validation error, specifically using the
MSE criterion in this case. The optimization process in the Bayesian optimization algorithm
(BOA) can be described as shown below:

x+ = arg arg maxx∈A f (x), (12)

In this context, the symbol A represents the search space of x. Bayesian optimization is
derived from Bayes’ theorem [39]. It states that the posterior probability, P(M|E), of model
M, given evidence data E, is proportional to the likelihood P(E|M) of observing E given
model M, multiplied by the prior probability, P(M):

P(M|E)αP(E|M)P(M), (13)

Bayesian optimization employs a probabilistic model, such as Gaussian processes, to
model the objective function. A Gaussian process is a type of random process where any
finite subset of random variables follows a multivariate Gaussian distribution. This process
assumes that similar inputs yield similar outputs, thereby establishing a statistical model
of the function [40].

Once the posterior distribution of the objective function is obtained, Bayesian opti-
mization employs the acquisition function to determine the maximum value of the function,
f. Typically, it is assumed that a higher value of the acquisition function corresponds to a
larger value of the objective function, f. Therefore, maximizing the acquisition function is
equivalent to maximizing the function, f.

x+ = arg arg maxx∈A(U(D)), (14)

where x+ represents the position where the function, f, is maximized after obtaining t
sample points.

2.5. Model Interpretation

When a machine-learning model is trained to be a decision-making tool, feature
importance methods are utilized to obtain the effect of each feature on the model’s outputs.
The permutation feature importance method was developed for such a purpose. In order to
obtain the importance of feature F1 with respect to the output, F1 will be randomly shuffled
in the dataset, and then, after making new predictions using the trained model, the level
at which the accuracy of prediction is decreased shows the importance [41]. In this work,
the permutation importance and partial dependency of each feature are calculated with
respect to the main task, which can help policymakers prioritize the factors for reducing
CO2 emissions.
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Although permutation feature importance can calculate the effect of each feature on
the model’s outputs, it does not provide any information about the direction in which
each feature is related to the output. However, partial dependency-based methods [42]
are more informative about the direction. In this paper, the direction for each feature is
obtained using partial dependency. Thus, the model interpretation method in this paper is
a combination of permutation feature importance and partial dependency-based methods.

3. Results
3.1. Developed Models Description

The hyperparameters for all three model types were optimized. Table 2 presents the
optimal hyperparameters for each model. Interestingly, the number of epochs indicates
that training a WMTL model requires only one-fifth of the computation cost compared to
the other two models. All models have three hidden layers.

Table 2. Optimal hyperparameters of the models.

Model No. of Hidden Layers No. of Epochs Learning Rate Batch Size Activation Function
and No. of Neurons

Basic Model 3 100 0.01 8 128 tanh, 512 tanh,
16 linear, 1 linear

MTL 3 100 0.001 2 256 selu, 512 tanh,
128 linear, 8 linear

WMTL 3 20 0.001 4 256 selu, 512 tanh,
64 linear, 8 linear

Figure 4 is a representation of the tuned WMTL model. Following the implementation
of the aforementioned algorithm for the WMTL model, a total of seven subtasks were
retained within the model. The subtasks can be identified in the figure. The optimal loss
weight assigned to the main task was 0.51, while all other tasks were assigned a loss weight
of 0.07.
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When working with machine-learning models, a critical consideration is to avoid
overfitting. Overfitting occurs when a model becomes too complex and starts to memorize
the training data rather than learning general patterns that can be applied to unseen data.
In order to prevent overfitting, we monitored the training and test losses during the training
epochs, enabling us to stop the training once the test loss starts to increase or plateau while
the training loss continues to decrease (see Figure 5). We also regularized our models by
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employing two dropout layers with a dropout rate of 0.4, which can be seen in Figure 4. A
dropout layer randomly deactivates a proportion of its previous layer’s neurons in each
epoch of the training phase. This ensures that individual neurons do not excessively rely
on one another and minimizes co-adaptation among them. As a result, the model becomes
more robust and less likely to overfit the training data.
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The SELU activation function, short for “scaled exponential linear unit”, was initially
introduced to facilitate the creation of high-level abstract representations in shallow net-
works, such as the one employed in this study. Additionally, it enhances the robustness
of the learning process [43]. Given these advantages, the SELU activation function was
incorporated into the search space for activation functions, and, consequently, it was un-
surprisingly selected as the activation function for the first hidden layer in the Bayesian
optimization process.

3.2. Testing and Validation of the Developed Models

To obtain more accurate evaluations of the models and guard against overfitting,
K-fold cross-validation was employed. This technique involves dividing the data into six
equal subgroups. One subgroup is designated as the test set, while the remaining subsets
serve as the training set. This process is repeated, ensuring that each subgroup is used
exactly once for testing. By doing so, overfitting a specific test set is avoided, and the risk
of reporting inflated evaluation results is mitigated.

Figure 5 displays the training and test loss over the training epochs for the optimized
versions (after hyperparameter tuning) of the models presented. The horizontal black lines
represent the converged loss of the models. The figure shows that the WMTL model not
only reached a lower level of loss, but it also converged faster compared to the other models.
Additionally, the MTL model performed better than the basic model. However, during
training, the test loss of the MTL model fluctuated, which can be attributed to the model’s
attempt to equally reduce the loss of subtasks.

Table 3 demonstrates that the WMTL model exhibited a superior performance com-
pared to both the basic model and the MTL model. The average mean squared error (MSE)
of the WMTL model across folds was 0.12, which is lower than the MTL model’s MSE
of 0.15 and the basic model’s MSE of 0.21. The robustness of a model can be assessed
by examining its worst prediction across the folds. Interestingly, the WMTL model also
demonstrates the highest level of robustness among the models evaluated.
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Table 3. Performance of best single-task, best multi-task, and best weighted multi-task models on
test data.

Basic Model MTL WMTL

R2 MSE R2 MSE R2 MSE

Fold 1 0.80 0.19 0.89 0.10 0.81 0.17
Fold 2 0.79 0.15 0.87 0.09 0.85 0.10
Fold 3 0.70 0.22 0.84 0.11 0.84 0.11
Fold 4 0.64 0.40 0.75 0.27 0.93 0.08
Fold 5 0.78 0.18 0.83 0.13 0.80 0.18
Fold 6 0.93 0.10 0.88 0.18 0.93 0.10
Mean 0.77 0.21 0.84 0.15 0.86 0.12
Worst 0.64 0.40 0.75 0.27 0.80 0.18
Best 0.93 0.10 0.89 0.09 0.93 0.08

Figure 6 illustrates the predictions of the training and test sets for the models using
fold 4. It is evident that the WMTL model achieves more accurate predictions for both the
training and test sets.
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3.3. Interpretation and Feature Importance

Figure 7 displays the ordered outcomes of the most significant features determined
through permutation feature importance. However, it is essential to note that permutation
feature importance does not indicate the direction of the relationship between the features
and the output. In this study, the selected WMTL model is interpreted using a combination
of Permutation Feature Importance and Partial Dependency analysis to uncover the direc-
tionality of these relationships, as depicted in Figure 8. Specifically, in our approach, once
we establish the importance of features, we can determine whether they contribute to the
mitigation of CO2 emissions. These results can serve as a foundation for devising effective
policies and making informed decisions regarding various aspects of energy supply and
consumption. However, it is crucial to note that these interpretations do not necessarily
establish causal relationships between input features and the total CO2 emission. In this
regard, these interpretations aid in the decision-making process and expert assessments,
making them valuable primary tools for experts and policymakers.
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Based on the findings of the directed feature importance analysis presented in Figure 8,
it is indicated that hydropower energy supply has the greatest impact on the mitigation
of CO2 emissions. Additionally, importing energy, nuclear energy, GDP/capita, and wind
energy are also identified as influential factors in reducing CO2 emissions. Nevertheless,
there appears to be no causal relationship between GDP per capita and CO2 emissions. The
insights and correlations presented can be comprehended by analyzing Figure 7. In this
graphical representation, the size of each bar corresponds directly to the extent of impact
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that a particular parameter would have on the CO2 emissions. Therefore, the larger the bar
in the graph, the more significant the influence of that specific parameter on the overall CO2
emission levels. Despite its informative nature, Figure 7 lacks the visualization of whether
each parameter has a positive or negative impact on CO2 emissions. To address this,
Figure 8 is introduced, specifically designed to determine the direction of each parameter’s
impact. By carefully examining Figure 8, it becomes evident that negative parameters
signify that an increase in their value would lead to a decrease in CO2 emissions, while
positive parameters indicate the opposite, resulting in an increase in CO2 emissions. This
comprehensive representation enables a clearer understanding of the relationships between
various parameters and their respective impacts on CO2 emission levels.

4. Discussion

In this section, we support the outcomes of the proposed model in this work by
providing key findings from the recently published research in the literature. The results of
this research for the case study of Sweden indicated that hydropower energy supply has the
greatest impact regarding the mitigation of CO2 emissions. It was also shown that importing
energy, nuclear energy, GDP/capita, and wind energy are also identified as influential
factors in reducing CO2 emissions. Berga [44] emphasized the importance of hydropower in
global climate-change mitigation and adaptation, as it prevents about 9% of global annual
CO2 emissions. By referring to the IRENA REMAP 2030 scenario, the authors mentioned
that doubling the global share of renewable energy requires 2200 GW of global hydropower
capacity to achieve its targets. Muhsin et al. [45] studied the impact of hydropower energy to
reduce CO2 emissions in European Union countries. According to their correlation analyses,
hydropower and CO2 are negatively and remarkably connected with each other in most of
the investigated countries, and Sweden held the greatest correlation coefficient of −0.86.
Saidi et al. [46] studied the contribution of renewable and nuclear energy in reducing CO2
emissions in OECD countries. The results showed that a 1 percent increase in renewable
energy consumption reduces CO2 emissions in Sweden by 0.2517%. Nuclear energy was
also shown to be impactful in investment in reducing CO2 emissions in countries such as
Canada, Netherlands, Japan, Switzerland, the Czech Republic, and the UK. Imran et al. [47]
aimed at examining the effect of the clean energy demand and financing on reducing
carbon emissions in 29 economies in Europe and Asia from 2007 to 2020. It was suggested
that increasing investment in nuclear energy and green financing can enhance the regional
environmental quality. Moreover, the authors found a causal link between fuel imports,
nuclear power, and regional growth. In summary, the above-referenced research is in
alignment with the findings of this research, which recommends allocating more resources
toward investment in hydropower, renewable, and nuclear energy production industries to
cut CO2 emissions and develop a sustainable society.

5. Conclusions

This study focused on the utilization of artificial intelligence and data-driven methods
to predict the CO2 emissions on a national level. Given the limited number of data points
available, an enhanced version of multi-task learning (MTL) called weighted multi-task
learning (WMTL) was proposed. The WMTL approach aims to extract maximum informa-
tion from the available data by assigning weights to output tasks and selecting pertinent
subtasks, using a devised algorithm. Bayesian optimization is employed to optimize the
hyperparameters of the models. The results indicate that the proposed new approach out-
performs both the basic and MTL models in terms of accuracy and robustness. The WMTL
model obtained an average mean squared error (MSE) of 0.12 across folds, outperforming
the MTL model’s MSE of 0.15 and the basic model’s MSE of 0.21. Additionally, the compu-
tational cost of training the new model is significantly lower, at only 20% compared to the
other two models. In this study, the interpretation of the selected WMTL model involves
a combination of Permutation Feature Importance and Partial Dependency analysis to
determine the direction of the relationships between the input features and the output.
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The results derived from analyzing the WMTL model suggest its potential as a valuable
data-driven tool for creating decision-support systems that can identify effective strategic
actions to reduce CO2 emissions significantly. In this regard, our approach can serve as a
fundamental method for forecasting CO2 emissions in other countries in future research
studies. Finally, considering the favorable results obtained from the WMTL model, there
is potential for its application in conjunction with the developed algorithm for tabular
problems, especially when faced with limited data points.
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Appendix A

Table A1 provides comprehensive information about the input features and outputs of
the models, including their full names and statistical descriptions.

Table A1. Description of all input features and outputs of the AI models.

Acronym Parameter Min Max Average

Input 1: Temperature Temperature, ◦C 3.8 6.9 5.8
Input 2: GDPc GDP Per Capita, USD/person 24,425.0 61,127.0 42,045.1
Input 3: Primary_Energy Primary energy consumption, TWh 566.1 691.3 624.1
Input 4: C_El Electricity consumption, TWh 134.4 147.1 142.9
Energy supply (GWh)
Input 5: S_tot Total electricity supply 149,718.0 177,982.0 163,721.3
Input 6: S_hydro Electricity supply from hydro 51,740.0 79,061.0 67,420.5
Input 7: S_pstorage Electricity supply from pump storage 22.0 565.0 151.0
Input 8: S_nuclear Electricity supply from nuclear 52,173.0 77,671.0 66,777.2
Input 9: S_CHP Electricity supply from main activity producer CHP 2290.0 12,721.0 7013.1
Input 10: S_autoCHP Electricity supply from autoproducer CHP 2650.0 6959.0 4906.2
Input 11: S_wind Electricity supply from wind 0.0 19,847.0 3999.8
Input 12: S_solar Electricity supply from solar 0.0 663.0 33.6
Input 13: S_cond_turbines Electricity supply from condensing turbine 174.0 3869.0 673.7
Input 14: S_gas-turbines Electricity supply from gas turbines for reserve and others 7.0 147.0 38.4
Input 15: S_import Electricity supply from import 6102.0 24,286.0 12,709.1

Consumption of fuels in electricity generation (TJ)

Input 16: CF_o1 No. 1 fuel oil 186.0 4562.0 1105.2
Input 17: CF_o2 No. 2 fuel oil 0.0 1263.0 428.2
Input 18: CF_o23 Nos. 2 and 3 fuel oil 0.0 236.0 14.6
Input 19: CF_o35 Nos. 3–5 fuel oil 0.0 40,433.0 6370.9
Input 20: CF_o4 No. 4 fuel oil 0.0 342.0 64.7
Input 21: CF_o5h No. 5 and heavier fuel oils 0.0 18,605.0 2526.2
Input 22: CF_coal Hard coal 983.0 21,802.0 6648.0
Input 23: CF_peat Peat and peat briquettes 178.0 3834.0 1273.0
Input 24: CF_wood1 Wood briquettes and pellets 0.0 4561.0 1294.5
Input 25: CF_wood2 Wood chips, wood waste, saw dust, etc. 3949.0 25,131.0 13,970.2
Input 26: CF_kerosene Kerosene 0.0 147.0 32.4
Input 27: CF_diesel oil Diesel oil 0.0 13.0 5.3
Input 28: CF_NG Natural gas 1270.0 10,449.0 3408.3
Input 29: CF_biogas Biogas 0.0 224.0 92.1
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Table A1. Cont.

Acronym Parameter Min Max Average

Input 30: CF_oven_gas Coke oven gas 186.0 742.0 475.7
Input 31: CF_furnace_gas Blast furnace gas, incl. 2383.0 8701.0 4708.7
Input 32: CF_liquor LD gasBlack liquor, spent liquor, tall oil, and pitch oil 0.0 29,895.0 9918.9
Input 33: CF_LPG Liquid petroleum gas (LPG) 0.0 544.0 147.6
Input 34: CF_nuclear Nuclear fuel 539,704.0 822,396.0 694,604.4
Input 35: CF_solid_waste Municipal solid waste 385.0 14,047.0 5334.6
Input 36: CF_other Other fuels 508.0 5181.0 2360.6
Input 37: CF_fuels Sum of fuels 612,760.0 894,501.0 755,997.4
Input 38: CF_surplus_steam Surplus steam 0.0 1185.0 294.2
Input 39: CF_tot_fuels_steam Sum of fuels and steam 612,760.0 895,351.0 756,296.9

Consumption of fuels for steam and hot water production (TJ)

Input 40: CFH_o1 No. 1 fuel oil 1471.0 7112.0 3373.2
Input 41: CFH_o2 no. 2 fuel oil 0.0 2996.0 852.4
Input 42: CFH_o23 Nos. 2 and 3 fuel oil 0.0 1986.0 254.3
Input 43: CFH_o35 Nos. 3–5 fuel oil 0.0 22,827.0 5425.0
Input 44: CFH_o4 No. 4 fuel oil 0.0 3161.0 530.6
Input 45: CFH_o5h No. 5 and heavier fuel oils 0.0 17,585.0 2712.6
Input 46: CFH_coal Hard coal 2827.0 26,229.0 9739.0
Input 47: CFH_peat Peat and peat briquettes 3149.0 13,728.0 9153.5
Input 48: CFH_wood1 Wood briquettes and pellets 0.0 22,717.0 13,102.7
Input 49: CFH_wood2 Wood chips, wood waste, saw dust, etc. 13,316.0 77,580.0 48,508.4
Input 50: CFH_kerosene Kerosene 0.0 83.0 3.2
Input 51: CFH_diesel oil diesel oil 0.0 29.0 3.9
Input 52: CFH_NG natural gas 3707.0 24,036.0 10,266.8
Input 53: CFH_biogas Biogas 0.0 1626.0 760.0
Input 54: CFH_oven_gas coke oven gas 115.0 653.0 399.2
Input 55: CFH_furnace_gas blast furnace gas, incl. 2438.0 3921.0 3032.2
Input 56: CFH_liquor LD gasBlack liquor, spent liquor, tall oil and pitch oil 0.0 7909.0 3678.8
Input 57: CFH_LPG Liquid petroleum gas (LPG) 42.0 4636.0 1249.6
Input 58: CFH_solid_waste Municipal solid waste 14,119.0 56,346.0 29,210.1
Input 59: CFH_other Other fuels 609.0 21,635.0 8782.3
Input 60: CFH_fuels Sum of fuels 88,400.0 209,185.0 151,035.2
Emissions of greenhouse gases (kt CO2-eqv.)
Output 1: Em_Total Total air emissions 23,123.0 44,968.1 34,911.9
Output 2: Em_Agriculture Emissions from agriculture sector 6714.4 7763.5 7189.6
Output 3: Em_Transport Emissions from transport sector 16,428.1 21,401.3 19,773.7
IOutput 4: Em_ElecHeat Emissions from electricity and district heating 4537.3 11,665.4 6617.7
Output 5: Em_HeatHouse Emissions from heating of houses and buildings 804.0 9298.1 4458.3
Output 6: Em_Industry Emissions from industry sector 15,751.9 22,438.5 19,945.8
Output 7:
Em_InternationalTransport Emissions from international transport sector 3725.2 10,191.4 7152.0

Output 8: Em_Offroad Emissions from off-road vehicles and other machinery 2804.9 3584.2 3324.5
Output 9: Em_Solvent Emissions from solvent use and other product 489.9 1792.1 1331.0
Output 10: Em_Waste Emissions from waste 1094.4 3819.8 2661.2
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