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Abstract: Recent years have seen a rapid uptake in distributed energy resources (DER). Such tech-
nologies pose a number of challenges to network operators, which ultimately can limit the amount
of rooftop solar photovoltaic (PV) systems that can be connected to a network. The objective of this
industry-based research was to determine the potential network effects of forecast levels of customer-
owned rooftop solar PV on Energy Queensland’s distribution network and formulate functions that
can be used to determine such effects without the requirement for detailed network modeling and
analysis. In this research, many of Energy Queensland’s distribution feeders were modeled using
DIgSILENT PowerFactory and analyzed with forecast levels of solar PV and customer load. Python
scripts were used to automate this process, and quasi-dynamic simulation (QDSL) models were used
to represent the dynamic volt–watt and volt–var response of inverters, as mandated by the Australian
Standard AS/NZS 4777. In analyzing the results, linear relationships were revealed between the
number of PV systems on a feeder and various network characteristics. Regression was used to
form trend equations that represent the linear relationships for each scenario analyzed. The trend
equations provide a way of approximating network characteristics for other feeders under various
levels of customer-owned rooftop solar PV without the need for detailed modeling.

Keywords: distributed energy resource; solar PV penetration; voltage rise; network constraints;
network modeling automation; reverse power flow; inverter energy systems

1. Introduction

The impact of residential inverter energy systems (IES) on distribution networks
throughout the past decade has been an intensely studied and discussed subject for dis-
tribution network operators worldwide. The rapid uptake of renewable generation in
Australia, specifically rooftop PV, is a result of network feed-in tariffs combined with falling
costs of PV systems, driven by an overarching transition in consumer attitude toward a
decarbonized, greener energy future [1].

The state of Queensland (Qld) in Australia has the highest levels of residential rooftop
PV penetration by both capacity and percentage of dwellings [2]. High levels of IES pene-
tration on distribution feeders can lead to a host of power quality, plant rating, and network
issues, including voltage rise, voltage unbalance, harmonic emissions, reverse power flow,
poor power factor, and exceedance of plant ratings [3]. As a result, Energy Queensland,
the distribution network service provider for Queensland, has been experiencing voltage
rise excursions beyond statutory limits, as well as reverse power flows on distribution
feeders [4].

Voltage rise occurs because for solar PV inverters to export power to the network, they
must increase the electrical potential to above that of the network. This effect is exacerbated
by the aggregation of many solar PV inverters on the same network.

Currently, it is somewhat easy to determine the inverters’ impact on the network since
solar PV inverters up until recently had a fixed power factor of 0.9 lagging, as defined by
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the Australian Standards at the time. However, in Australia, all new inverter installations
from 2021 onwards must comply with the volt–var and volt–watt response modes as
stated in the Australian Standard AS4777.2.2020 Inverter Requirements Standard [5]. These
modes control the inverters’ active and reactive power output, respectively, depending on
the grid voltage. This dynamic response makes it hard to forecast feeder characteristics
using standard steady-state load flow calculations, a challenge that this research seeks to
overcome using quasi-dynamic analysis techniques.

Research Motivation and Proposed Approach

The aim of this research was to investigate the automation of modeling Energy Queens-
land’s low-voltage (LV) networks in DIgSILENT PowerFactory and analyze the distribution
network effects of forecast levels of solar PV, including active and reactive power levels
and voltage rise, the results of which will be used to formulate trend equations that will
provide a simplistic method of approximating network characteristics for other feeders
under various levels of IES penetration. Achieving this would elevate the requirement for
network planning engineers to conduct detailed network modeling and analyses when
assessing the future impacts of IES penetration on distribution networks.

In satisfying the research aim, the following objectives must be met:

• Automate the process of constructing LV networks in DIgSILENT PowerFactory, onto
the already existing medium voltage (MV) network models;

• Automate the process of analyzing LV networks in DIgSILENT PowerFactory;
• Interpret and present resulting data in a way that is meaningful and usable.

Modeling LV networks and determining forecasts enables the ability to estimate active
and reactive power, voltage, and power factor across distribution networks, as well as how
much customers will export energy and experience curtailment of solar PV generation [6].

This is a two-part process:

1. First, a script was developed to automate the modeling of LV networks onto the
LV buses of distribution transformers in Energy Queensland’s existing distribution
models (existing models go down as far as the transformer LV terminals; this project
looked to expand all the way to the customer premises);

2. Each distribution feeder was then analyzed using forecast levels of rooftop solar PV
installations and minimum underlying load for each year. Again, this process was
automated through a Python script. Minimum load forecasts are used to determine
the worst-case effects of rooftop solar PV, as this coincides with maximum power
being exported to the grid.

2. Background
2.1. Generalised Overview

The network effects of the high IES penetration on distribution feeders is a well-
researched topic in the power industry, as distributed generation has rapidly become a
fundamental component of the electricity system [7].

The advent of customer generation has seen a reverse of the traditional unidirectional
power flow model that electrical grids were designed and built to, where generation and
load are at opposite ends of the network. Having more small-scale distributed generators
on the customer end of the network will inherently require network operators to have
greater visibility and control over the entire network [8].

The amount of installed rooftop solar PV capacity in Australia is approximately 17 GW,
in mid-2023, with installations on over 30% of houses [9]. Distributed energy resources are
rapidly changing the load profile of the Australian national electricity market (NEM), and
control of such resources will be integral to maintaining a stable and reliable grid into the
future [9].
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2.1.1. Network Effects of High Solar PV Penetration

High IES penetration can lead to a number of power quality issues. If the statutory
limits imposed by the local standards are exceeded, it will force network providers to
either limit the number of IES connections on a particular part of the network or impose
restrictions on as to how they can operate [10]. Such power quality issues include voltage
rise, voltage unbalance, and harmonics [3]. Other IES-related issues or considerations
for network operators include network protection, IES anti-islanding schemes, and plant
capacity ratings under reverse power situations [11].

As previously mentioned, inverters must increase the electrical potential to above that
of the network in order to export power back into the network, which results in voltage
rise [12]. Network components can also experience overloading due to reverse power flow
from aggregated solar PV export.

As the maximum demand of each customer is not expected to happen simultaneously,
power networks are often designed with a diversified load factor to maximize economic
benefit [3]. Solar PV generation has little diversity in the generation, as rooftop solar panels
on a row of houses all facing the same direction will all generate maximum energy at the
same time of day. For residential feeders, the period of maximum generation occurs during
the middle of the day, which is often when households are consuming the least electricity,
and, therefore, excess energy is generated and exported back to the grid [13].

An investigation into distribution networks in Sri Lanka found that the limiting
factor in terms of power quality acceptance, and hence, the determining factor of LV
networks hosting capacity, is voltage rise [14]. Although [14] detailed that the connection
requirement for IES installations was unity power factor, and the Australian Standards
previously required 0.9 lagging and now specify a volt/var characteristic, the results are
similar to what is being observed on the Energy Queensland’s network [4].

2.1.2. Network Modeling Techniques

As discussed in Section 1, assessing the network effects of PV can be extremely
difficult due to the complexity and variation in distribution network topology. Research
conducted in England looked to cluster the characteristics of distribution networks into
simplified models based on the number of customers [15]. The researchers created a total of
11 networks to represent the 232 actual networks analyzed as part of the study. This study
concluded that the hosting capacity of each of the 232 networks could be determined with
a high level of accuracy using the 11 representative networks [15].

In determining the hosting capacity of MV and LV feeders, one study used a statistical
network modeling approach that simulated network load flow simulations under all
possible configurations of solar PV sizes connected at various locations until a voltage or
capacity violation was reached [16]. This study determined that the smallest PV system to
cause a violation at a certain point of the network was considered the network’s hosting
capacity [16]. However accurate, this methodology is computationally intense and requires
networks to be modeled in detail, which may present challenges for the industry.

Recent research into the modeling and analysis of LV networks proposed a snapshot
approach to determining/forecasting network conditions under various scenarios [17].
The authors of the research used a combination of power flow analyses with available
data, such as smart meter readings, and processed the information through a state esti-
mation [17]. Currently, this technique is conceptual and provides a proof of concept for
future development.

The network modeling software has previously been used in various studies to conduct
load flow analyses on distribution feeders as a way to determine hosting capacity and
voltage constraints [18]. Commonly used for power flow analysis in the research literature
is DIgSILENT PowerFactory, as its ease of use and function-rich environment has made it a
trustworthy tool among industry and academia [19].

Reference [19] looked to combine DIgSILENT PowerFactory models with Monte Carlo
simulations to develop a stochastic approach to determine PV hosting capacity. This
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research, however, similar to many investigating the effects of network PV, was based on
static PV inverter settings and, hence, does not demonstrate a technique for modeling the
dynamic volt/var, volt/watt requirement currently in place in Australia.

Modeling the steady-state network effects of solar PV is relatively simple, although
when looking into dynamic inverter control or transient responses, certain inverter control
parameters must be modeled. Several studies attempted to construct generic inverter
control models for EMT simulations and concluded that the model was accurate for sim-
ulated aggregate inverter response but not accurate for modeling individual inverter
behavior [18,19].

DIgSILENT PowerFactory has the functionality to create custom PV inverter con-
trollers using the quasi-dynamic simulation language (QDSL) models [20]. These can be
used to model the volt/var and volt/watt control characteristics of inverters. It has been
verified that the QDSL simulations can be used as a computationally efficient and quick
approach to modeling the slow dynamics of inverter functions such as active and reactive
voltage control [21].

2.1.3. Solar PV Modeling and Forecasting Techniques

The active power output of solar PV inverters is a function of the solar irradiation
input to the panels [22]. Studies have found that it is reasonable to assume the maximum
allowable output of inverters as per their connection agreements when modeling the
potential effects of solar PV on networks [23]. Even though each rooftop solar panel on
a feeder may not be generating maximum power at the same time due to varied panel
directions/angles and potential shading, most connection agreements around the world
allow for a certain oversizing of panels to inverter capacity [24]. Therefore, if each solar
panel system on a feeder is greater than 5 kW and each inverter capacity is equal to 5 kW,
then it can be assumed that it is possible to have each inverter simultaneously generating
its rated 5 kW for a period of the day.

When forecasting time-of-day solar outputs, key input variables must be predicted.
One study developed a clear-sky model which used easily predictable meteorological
inputs to determine the solar output for various times of day; such inputs included solar
irradiance determined for location, time, and ambient temperature [25]. When compared
with actual values, the same study found that the results were reasonably accurate for
clear sky days; however, this model was unable to predict loss of generation due to cloud
coverage on unclear days [25].

A study in France [26] investigated methodologies from various research to determine
the best approach for short-term solar forecasting. This study found that a statistical
approach using the mathematical principle of regression tree methodology combined with
numerical weather predictions was the most accurate [26]. Another study took a statistical
approach to forecasting PV generation, clustered historical generation and weather data,
and used curve extrapolation methods to predict future generations with a high degree of
accuracy, although such techniques require high-resolution input data [27]. A similar study
investigates other mathematical forecasting methods using historical data, including the
parabolic curve model and half-sine model, with similar results [28].

2.1.4. Linear Regression and Network Forecasting

As network operators deal with networks both vast and complex, approximations and
assumptions must be made to make predictions about network conditions in the future.
Regression is a mathematical tool that is key to network forecasting [29]. Regression is a
statistical model that can be used to extrapolate dependent variables or responses from
independent variables, i.e., known predictors [29].

Previous research used linear regression combined with deep learning techniques
to estimate LV network characteristics without the use of demand data and managed
to achieve results with 10% of accuracy [30]. As the coordination and orchestration of
distributed energy resources on distribution networks become more complex, researchers
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in China have used regression techniques to simplify the requirements for detailed network
assessments [30]. Another study has designed a robust state estimation engine that utilizes
statistical regression techniques to predict LV network conditions using customer smart
meter data [31].

2.2. Distinctive Features in the Context of Queensland, Australia

Modeling the impacts of IES penetration is often difficult due to the lack of quality data
concerning Energy Queensland’s LV networks. For this reason, an investigation was carried
out by Energy Queensland in 2013 [4], which using the best available data, constructed a list
of Energy Queensland’s typical networks, displayed in Tables 1 and 2. The list comprises
16 LV networks across the most common transformer sizes and categories, including urban
and rural. These networks do not represent the best or worst but the average in terms of
conductor type and network size for each network type [4].

Table 1. Energy Queensland’s typical LV network construction.

Feeder
Category TF Size (kVA) No. of Customers Conductor Type Length Type

Urban 10 (1 ph) 2 2 × 25 mm2 ABC 60 m Overhead
Urban 25 3 2 × 95 mm2 ABC 100 m Overhead
Urban 50 7 4 × 95 mm2 ABC 350 m Overhead
Urban 50 8 120 mm2 Al 1C XLPE 300 m Underground
Urban 63 5 4 × 95 mm2 ABC 250 m Overhead
Urban 100 20 4 × 95 mm2 ABC 370 m Overhead
Urban 100 20 120 mm2 Al 1C XLPE 130 m Underground
Urban 200 44 Mars 7/3.75 AAC 250 m Overhead
Urban 315 38 Mars 7/3.75 AAC 350 m Overhead
Urban 315 38 240 mm2 Al 4C XLPE 250 m Underground
Urban 500 38 240 mm2 Al 4C XLPE 300 m Underground
Rural 10 1 2 × 50 mm2 ABC 75 m Overhead
Rural 25 2 4 × 95 mm2 ABC 120 m Overhead
Rural 50 4 4 × 95 mm2 ABC 250 m Overhead
Rural 63 3 4 × 95 mm2 ABC 120 m Overhead
Rural 100 7 Mars 7/3.75 AAC 300 m Overhead
Rural 200 14 4 × 95 mm2 ABC 400 m Overhead

Table 2. Additional assumptions for Energy Queensland’s LV networks.

Element Urban Rural

MEN resistance 10 Ω 1 Ω
Transformer earth resistance 10 Ω 1 Ω

Customer earth stake resistance 10 Ω 10 Ω
Distance between poles 15 m 50 m

Customer service * length 15 m 30 m
Customer service conductor type 25 mm2 Al 16 mm2 Al

Customer mains ** length 15 m urban 20 m
Customer mains conductor type 10 mm2 CU 10 mm2 CU

* Customer service refers to the cable between the pole to the customers’ premises (point-of-attachment).
** Customer mains refers to the cable between the point of attachment and the customers’ switchboard.

The process used to develop the representative networks was as follows [4]:

1. The most common distribution transformer sizes were determined for each network
type (urban and rural); a transformer was considered to be common if it made up
over 2% of transformers in that specific network type;

2. The average number of customers was calculated for each transformer and network
type. The most typical transformer was determined by ranking the transformers
in terms of their Euclidean distance from the average, as illustrated in (1). For ex-
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ample, Euclidean distance for a particular 25 kVA transformer = average number
of customers served by 25 kVA transformers—number of customers served by the
particular 25 kVA transformer;

Euclidean distance (25 kVA TF) = |TF no.cust − 25 kVA TF no.cust| (1)

3. The transformer with the smallest Euclidean distance was used to determine the
characteristics of the typical network by extracting the network data for that particular
LV network;

4. Lastly, the list was circulated throughout Energy Queensland for critical review, and
any necessary changes were made.

These representative networks and each of their elements are detailed in the following
tables.

The information regarding the topology and construction of Energy Queensland’s
network is stored inside the database of a geographic information system (GIS) program
called Smallworld. The proposed research uses the data in Smallworld to reconstruct the
network in DIgSILENT PowerFactory. If the data are insufficient for any LV networks,
representative networks will be used instead, based on the information in the tables above.

Energy Queensland currently has regional DIgSILENT PowerFactory models where
every substation and distribution feeder are modeled down to the distribution transformer
LV terminal. The LV networks will be modeled directly onto the LV bus of the distribution
transformers in the DIgSILENT PowerFactory regional models.

The representative networks are made more accurate for the purpose of this research
by using the actual number of customers for each transformer. The length of the LV feeder
was extended if the number of customers exceeded the line capacity given a specified
number of customers per pole and distance between poles. The models are also equipped
with multiple earth neutrals (MEN), earth stakes, and line coupling to accurately model the
overhead phase and neutral wires.

2.2.1. Network Forecasting in Energy Queensland

The forecasting team at Energy Queensland determines a variety of forecasts at each
zone substation and distribution feeder level that span up to the year 2060. The proposed
research utilizes two forecasts, the 50% probability of exceedance (POE) feeder underlying
load and the feeder number of PV system connections. The forecast methodologies are
detailed in Energy Queensland’s strategic forecasting annual report 2021 [32].

As a part of the forecasting, a linear regression model of previous datasets is to project
their forecasts forward, using a number of different scenarios. For example, the minimum
underlying load forecast considers feeder growth, customer load mix, electric vehicle (EV),
and PV uptakes. Each scenario has a low, medium, and high uptake forecast. The average
of the scenarios at any time step is considered to be the 50 POE forecast, which is used in
this research work.

The term “minimum underlying load” refers to the load on the feeder irrespective of
contribution from distributed solar PV generation. In other words, it is the load as seen by
the feeder, plus the portion of the load being supplied locally by the rooftop PV, expressed
in (2).

minimum underlying load = minimum load on a distribution feeder + expected rooftop PV generation (2)

The minimum load on a distribution feeder is a measured value, while the expected
rooftop PV generation for each feeder is determined as a function of the connected PV
capacity and global horizontal index (GHI), as expressed in (3).

Generation(kW)t = GHIt × PV Panel Capacity (kW) × Generation Coefficients (3)
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In (3), GHI is the total solar radiation incident on a horizontal surface while the
generation coefficients are calculated figures determined by the forecasting team at Energy
Queensland, who looked at a sample of PV systems on a particular network and back-
calculated the associated power generation as a function of GHI and panel capacity. The
generation coefficients change across regions to reflect a number of variables in solar output
and efficiency.

Using a specific feeder as an example, the forecast data illustrated in Table 3 is obtained
as a part of this research and used as input to analyze each year, for that specific feeder,
from 2020 to 2060.

Table 3. Energy Queensland feeder forecast example.

Forecast Year Num PV Systems Underlying kW Underlying Kvar

2020 169 845.7 −60.9
2021 177 851.7 −60.5
2022 184 856.8 −60.2
. . ..

2060 646 1779.2 −42.0

2.2.2. Grid Connection of Solar PV Systems via Inverters

Australian Standard 4777.2.2020 [5] mandates a curtailment scheme for active and
reactive power, known as volt-var and volt-watt control, where each inverter has the same
control scheme regardless of where it is located on the network. These control modes are
reinforced by Energy Queensland’s Standard for Small IES Connections [33].

The volt-var mode illustrated in Figure 1, instructs the single-phase inverter to either
inject or absorb reactive power depending on whether the grid voltage is lower than 220 V
or higher than 240 V. Since the inverter’s export is capped at 5 kVA per phase under a basic
contract in Queensland, absorbing or injecting reactive power will reduce the active power
output capability of the inverter if the inverter’s apparent power reaches the 5 kVA limit.
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inverters curtail active power generation if the voltage exceeds 253 V.
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3. Network Modeling Approach

Prior to the uptake of solar PV systems, LV networks were not essential for traditional
network planning studies, and as a result, information regarding the construction of these
networks is often incomplete. Energy Queensland’s distribution networks models in
DIgSILENT PowerFactory do not include the LV conductors.

The LV portion of the network is critical for modeling the effects of the customers’
PVs, as inverters control their active and reactive power outputs based on the voltages
seen at the inverter terminals. The proposed research looks to expand the distribution
network models to include the LV networks, as seen in Figure 3 so that a realistic analysis
can be conducted.
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Figure 3. LV network modeling.

Two methods are utilized for constructing LV networks in DIgSILENT PowerFactory
for the purpose of analysis. For each LV network, an attempt is made to construct actual
models, i.e., genuine representations of the real network. If the data are incomplete or insuf-
ficient, i.e., missing conductor type information, load-flow analyses cannot be performed,
and, therefore, representative networks are constructed in place of the actual.
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3.1. Actual Networks

The project initially looked to create actual LV networks by programmatically tracing
the Smallworld geospatial database. The term ‘actual’ means replicating networks as they
appear in the GIS program Smallworld, which is reflective of real-world networks. For
this task, a Python script was developed, which, when run in DIgSILENT PowerFactory,
goes through each distribution substation and collects the substation ID, which is in the
substation element’s name. With the ID collected, the GIS database is queried for the
structural object related to that substation (either pole or padmount). The Smallworld
database is then queried for the line object(s) (wire or cables) connected to that structural
object. This process is repeated using a recursive programming technique until the trace
reaches either the end of the line, an open point, or another distribution transformer, as
illustrated in Figure 4.
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As mentioned in Section 2.2, a major problem is the lack of quality data concerning LV
networks, which means that actual networks cannot always be created. Common problems
include missing conductor types and the reliability of network open points.

3.2. Representative Networks

Due to the challenges detailed in Section 3.1, this research looked to build representa-
tive LV networks when actual networks could not be created.

The script developed for modeling the representative networks, when run in DIgSI-
LENT PowerFactory, goes through each distribution substation and collects the substation
ID, transformer size, and number of LV phases. With the ID collected, a number of corporate
databases are queried to obtain information such as the number of connected customers
and the feeder planning classification, urban or rural.

Using the transformer capacity and planning category, the LV network is matched to
one of the representative models detailed in Tables 1 and 2 in Section 2.2. The network is
made more accurate by using the actual number of customers and extending the length of
the line if the number of customers exceeds the line length, given a specified number of
customers per pole and distance between poles.

3.3. DIgSILENT PowerFactory Network Automation

Using the Python PowerFactory application interface (API), a script is used to automate
the construction of the LV networks.

This process is as follows for each distribution transformer:
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1. The substation ID is attained, which is the string of numbers in the first part of the
substation element name;

2. The substation ID is used as the argument, i.e., input, to trace the LV network in the
Smallworld database and obtain substation details, such as the number of customers
and number of existing PV installations;

3. The traced network is analyzed for completeness by checking if there are any unknown
conductor types;

4. If the data are complete, the actual networks are constructed in DIgSILENT Power-
Factory; otherwise, representative networks are used.

This process is illustrated in Figure 5.
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Figure 5. Constructing LV networks script flowchart.

Figure 6 shows the DIgSILENT PowerFactory application while the networks are
being constructed. The output window at the bottom of the screen lists each of the net-
works as they are being created. The network model at the top of the screen shows the
distribution network overview, and each of the circular objects is a distribution transformer;
the two colors represent two different distribution feeders. The LV networks are not visible
in this graphic but appear once a distribution substation is clicked on, which opens the
internal view.

Figures 7 and 8 display a distribution transformer with a single customer on DIgSI-
LENT PowerFactory, both before and after the LV network was created, respectively. The
original load has been switched out of service on the transformer’s LV bus. To the left,
three additional buses can be seen; the bus on the far left is a typical pole with a MEN; the
next bus represents the attachment point on the house, and the final bus represents the
end of a customer mains from the point of attachment to the switchboard; the load is now
located there along with an earth stake and an inverter. The inverter is in service but may
be switched in or out during the analysis phase if required, as this customer may or may
not be forecast to have a PV inverter. The model is again equipped with line coupling to
more accurately model the overhead phase and neutral wires.



Energies 2023, 16, 5834 11 of 23

Energies 2023, 16, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 5. Constructing LV networks script flowchart. 

Figure 6 shows the DIgSILENT PowerFactory application while the networks are be-
ing constructed. The output window at the bottom of the screen lists each of the networks 
as they are being created. The network model at the top of the screen shows the distribu-
tion network overview, and each of the circular objects is a distribution transformer; the 
two colors represent two different distribution feeders. The LV networks are not visible in 
this graphic but appear once a distribution substation is clicked on, which opens the in-
ternal view. 

 
Figure 6. Constructing LV networks in DIgSILENT PowerFactory. Figure 6. Constructing LV networks in DIgSILENT PowerFactory.

Energies 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

Figures 7 and 8 display a distribution transformer with a single customer on DIg-
SILENT PowerFactory, both before and after the LV network was created, respectively. 
The original load has been switched out of service on the transformer’s LV bus. To the left, 
three additional buses can be seen; the bus on the far left is a typical pole with a MEN; the 
next bus represents the attachment point on the house, and the final bus represents the 
end of a customer mains from the point of attachment to the switchboard; the load is now 
located there along with an earth stake and an inverter. The inverter is in service but may 
be switched in or out during the analysis phase if required, as this customer may or may 
not be forecast to have a PV inverter. The model is again equipped with line coupling to 
more accurately model the overhead phase and neutral wires.  

 
Figure 7. DIgSILENT PowerFactory distribution transformer model before LV network creation. 

 
Figure 8. DIgSILENT PowerFactory distribution transformer model after LV network creation. 

  

Figure 7. DIgSILENT PowerFactory distribution transformer model before LV network creation.



Energies 2023, 16, 5834 12 of 23

Energies 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

Figures 7 and 8 display a distribution transformer with a single customer on DIg-
SILENT PowerFactory, both before and after the LV network was created, respectively. 
The original load has been switched out of service on the transformer’s LV bus. To the left, 
three additional buses can be seen; the bus on the far left is a typical pole with a MEN; the 
next bus represents the attachment point on the house, and the final bus represents the 
end of a customer mains from the point of attachment to the switchboard; the load is now 
located there along with an earth stake and an inverter. The inverter is in service but may 
be switched in or out during the analysis phase if required, as this customer may or may 
not be forecast to have a PV inverter. The model is again equipped with line coupling to 
more accurately model the overhead phase and neutral wires.  

 
Figure 7. DIgSILENT PowerFactory distribution transformer model before LV network creation. 

 
Figure 8. DIgSILENT PowerFactory distribution transformer model after LV network creation. 

  

Figure 8. DIgSILENT PowerFactory distribution transformer model after LV network creation.

4. Proposed Methodology for Network Analysis

With the LV networks on each distribution transformer constructed along each of the
feeders in a DIgSILENT PowerFactory regional model, the analysis of each distribution
feeder can begin.

The methodology for the analysis is as follows:

1. The forecasting database is queried for the number of PV systems and minimum
underlying load for each year between 2020 and 2060 for each feeder;

2. The minimum load is applied to the feeder, and a load flow is conducted with feeder
load scaling switched on;

3. Each load element is set to the resulting P and Q values, and feeder load scaling is
switched off. This step allows the customers to determine the feeder load, as opposed
to having the feeder converge to a specified value;

4. The number of PV systems forecast for that year are switched into service across a
random distribution on the feeder. Each PV system is created with a QDSL model
for fixed power factor and volt/var and volt/watt schemes. If the year is 2020,
the inverters’ fixed power factor model is activated. For every year after, activated
inverters have the volt/var and volt/watt models activated. Each PV system is
set to have a rated output of 5 kVA to simulate a maximum generation, i.e., the
worst-case scenario;

5. A load flow is conducted with feeder load scaling switched off;
6. Data points across the network are recorded;
7. Steps 1–6 are repeated for each year studied (2020–2060), changing the minimum load

and activating additional PV systems as per the forecast;
8. The data are exported for further analysis.

The above process is illustrated in Figure 9.
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Quasi Dynamic Simulation Solar PV Modeling

Each solar PV element activated in DIgSILENT PowerFactory is equipped with a
QDSL element, which allows the inverters to dynamically control active and reactive power
outputs as a function of the network voltage input. QDSL simulations achieve this through
additional control loops after each time step, which are customizable through a series of
parameters, equations, and logic scrips, as illustrated in Figure 10.
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An example of how this is applied to PV models is shown in Figures 11 and 12.
Figure 11 displays the voltage and active and reactive power reference points that are used
in the load flow outer loop script in Figure 12 to calculate the inverters’ active and reactive
power setpoints.
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5. Results

Using a single distribution feeder at Boldon Hill, Qld, Australia as an example, the
following plots illustrate the results of the forecast analysis, illustrating how the PV systems
on the feeder respond to network voltage.

Figure 13 illustrates the voltage seen at each inverter’s terminals; as the forecast
number of PV systems increases each year, so does the average voltage. This result confirms
the theoretical principle that increasing energy generation on a system will result in an
increase in system voltage. There are more data points each year as the forecast number of
PV systems on the feeder increase.

Figures 14 and 15 illustrate the inverters’ active and reactive power output. Since
every inverter in the year 2020 is set with a fixed power factor of 0.9, the active and
reactive power output of every PV system in service that year is between 4.5 kW and
−2.17 kvar, respectively.
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For years after 2020, the volt–var and volt–watt responses are evident from the curtail-
ment of active power and reactive power absorption experienced by some inverters, which
is a result of the voltage levels at the connection point of those inverters.

Figure 14 shows that a few of the solar PV systems begin to curtail their active power
output in 2029, and by 2048, they have completely curtailed to 1 kW, or 20% rated output, as
described in AS4777 [5] when the network voltage exceeds 260 V. These particular systems
curtailing more heavily than the rest would indicate that they are either on a highly resistive
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section of the network, which would be more susceptible to voltage rise, or they are on the
same LV network, and the effects of exporting energy are compounding.

It is to be noted that the aforementioned results are based on a combination of repre-
sentative and actual networks and forecast input data. Accordingly, by aggregating the
results across many feeders, appropriate trends can be determined.

5.1. Active Power Response on Distribution Feeders

Several zone substations and distribution feeders have been analyzed. The feeders are
categorized into the planning categories of urban and rural to compare similar feeders, as
the construction of urban and rural feeders vary significantly at both the MV and LV levels.
The number of PV systems is used to compare feeders of various sizes as opposed to years.

5.1.1. Urban Feeder

Looking at the MV distribution feeder level, Figure 16 illustrates the relationship
between the number of PV systems and the minimum active power levels on urban feeders.
It can be observed that with almost all feeders studied, as the number of PV systems is
increased across years, the active power flows on the feeder are reversed, resulting in a net
export of active power from the feeder into the substation.
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The x-axis in Figure 16 represents the number of PV systems on each distribution
feeder for each of the years analyzed. The y-axis represents the active power seen by each
distribution feeder in MW under minimum forecast load and influenced by the distributed
PV generation. The legend shows each distribution feeder analyzed, represented by the
different colors on the graph.

Using linear regression, a general rule for urban feeder active power as a function of
the number of PV installations can be determined, as illustrated in Figure 17.

The linear regression equation for the trend line is as follows:

y = −3.42x + 324.01 (4)

The formula is in the format y = mx + c, where:

• y is the feeder’s active power in kW;
• m is the gradient (−3.42);
• x is the number of PV systems installed on the feeder;
• c is the y crossing, which in this case, is approximately 324 kW.
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5.1.2. Rural Feeder

A similar trend, as seen on urban feeders, has been found for rural feeders, as seen
in Figures 18 and 19; whereas the number of PV systems increases during times of low
load and high generation, the feeders’ net load becomes negative, meaning that they inject
active power back into the substation.
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The linear regression equation which represents the minimum active power levels on
rural distribution feeders with a number of PV systems is:

y = −4.13x + 153.47 (5)

5.2. Reactive Power Response on Distribution Feeders

By subtracting resulting levels of reactive power from the forecast underlying reactive
power at each time step, we can determine the PV systems’ reactive power contribution to
the feeder.

5.2.1. Urban Feeders

Figure 20 illustrates a decrease in the level of reactive power on distribution feeders
as the number of PV systems increases. This response is indicative of the inverter’s
volt/var control, where reactive power absorption is used to lower the voltage at the
inverter terminals.
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The linear regression equation, which represents the minimum reactive power levels
on urban distribution feeders with a number of PV systems, as represented by the trend
line in Figure 21, is

y = −1.6x − 1.03 (6)
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5.2.2. Rural Feeders

Looking at the reactive power contribution of PVs to rural feeders, as shown in
Figure 22, and the trend for rural feeder reactive power, as shown in Figure 23, it can be
seen that the rate of decrease in reactive power is greater than that of urban feeders, which
is expected as rural networks are often longer and built for less capacity which would make
them more susceptible to the effects of PV generation.
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The linear regression equation, which represents the minimum reactive power levels
on rural distribution feeders with the number of PV systems, is

Y = −1.57x − 9.84 (7)

5.3. Effect of PV Systems on Distribution Feeder Power Factor

Figures 24 and 25 illustrate the effect of PV systems on urban and rural feeders,
respectively. The power factor in each plot shows a shift from positive to negative values
as the flow of power reverses.



Energies 2023, 16, 5834 20 of 23

Energies 2023, 16, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 22. Rural distribution feeders’ reactive power contribution from PV. 

 
Figure 23. Rural distribution feeders reactive power contribution from PV—trend line. 

The linear regression equation, which represents the minimum reactive power levels 
on rural distribution feeders with the number of PV systems, is 

Y = −1.57x − 9.84 (7)

5.3. Effect of PV Systems on Distribution Feeder Power Factor 
Figures 24 and 25 illustrate the effect of PV systems on urban and rural feeders, re-

spectively. The power factor in each plot shows a shift from positive to negative values as 
the flow of power reverses. 

 

Figure 24. Variation in power factor on urban distribution feeders.

Energies 2023, 16, x FOR PEER REVIEW 21 of 23 
 

 

Figure 24. Variation in power factor on urban distribution feeders. 

 
Figure 25. Variation in power factor on rural distribution feeders. 

5.4. Summary of Results 
Table 4 details the trend equations for the relationship between solar PV connections 

and feeder power flow, where “y” is the power of MW or Mvar, and “x” is the number of 
PV systems connected to the feeder. 

Table 4. Feeder PV and power flow trend equations. 

Feeder Type Active Power Equation Reactive Power Equation 
Urban y = −3.42x + 324.01 y = −1.6x − 1.03 
Rural y = −4.13x + 153.47 y = −1.57x − 9.84 

As highlighted in Section 5.3, as solar PV generation increases and the active power 
flowing into the feeder from the wider network decreases, the power factor also decreases 
due to a change in the ratio between active and reactive power. Feeders experience a 
power factor close to zero when solar PV generation is in balance with the feeder load. 
This is because when no active power is flowing in or out of a feeder, reactive power flow 
is all that remains.  

6. Discussion and Conclusions 
A major concern for utility network planners is quantifying and managing the effects 

that increasing levels of rooftop solar PV has on distribution networks. The object of the 
research was twofold; to design a way to complete Energy Queensland’s network models 
in PowerFactory by adding LV feeders and, use these models to analyze forecast levels of 
customer load and rooftop PV.  

Due to issues in the quality of LV network data, modeling and analyzing actual LV 
networks was not always achievable, and therefore, a combination of actual and repre-
sentative models was used in this paper. The proposed research verified that clustering 
LV networks into representative models for the use of PV analysis can yield results with 
a high degree of accuracy compared to the actual network analysis. 

Using the proposed approach, several of Energy Queensland’s distribution feeders 
were analyzed, and the results were grouped into the feeder’s planning category of urban 
or rural to compare feeders of similar network construction and topology. Comparing the 
number of installed solar PV systems for each distribution feeder with values measured 
at the feeder terminal, such as active power and reactive power, revealed pronounced 
trends between the feeders of a similar category. 

Using linear regression, trends were determined, thus creating a simple metric by 
which to determine the network characteristics for other feeders with various levels of 

Figure 25. Variation in power factor on rural distribution feeders.

5.4. Summary of Results

Table 4 details the trend equations for the relationship between solar PV connections
and feeder power flow, where “y” is the power of MW or Mvar, and “x” is the number of
PV systems connected to the feeder.

Table 4. Feeder PV and power flow trend equations.

Feeder Type Active Power Equation Reactive Power Equation

Urban y = −3.42x + 324.01 y = −1.6x − 1.03
Rural y = −4.13x + 153.47 y = −1.57x − 9.84

As highlighted in Section 5.3, as solar PV generation increases and the active power
flowing into the feeder from the wider network decreases, the power factor also decreases
due to a change in the ratio between active and reactive power. Feeders experience a power
factor close to zero when solar PV generation is in balance with the feeder load. This is
because when no active power is flowing in or out of a feeder, reactive power flow is all
that remains.

6. Discussion and Conclusions

A major concern for utility network planners is quantifying and managing the effects
that increasing levels of rooftop solar PV has on distribution networks. The object of the
research was twofold; to design a way to complete Energy Queensland’s network models
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in PowerFactory by adding LV feeders and, use these models to analyze forecast levels of
customer load and rooftop PV.

Due to issues in the quality of LV network data, modeling and analyzing actual LV
networks was not always achievable, and therefore, a combination of actual and represen-
tative models was used in this paper. The proposed research verified that clustering LV
networks into representative models for the use of PV analysis can yield results with a high
degree of accuracy compared to the actual network analysis.

Using the proposed approach, several of Energy Queensland’s distribution feeders
were analyzed, and the results were grouped into the feeder’s planning category of urban
or rural to compare feeders of similar network construction and topology. Comparing the
number of installed solar PV systems for each distribution feeder with values measured at
the feeder terminal, such as active power and reactive power, revealed pronounced trends
between the feeders of a similar category.

Using linear regression, trends were determined, thus creating a simple metric by
which to determine the network characteristics for other feeders with various levels of solar
PV penetration. This estimation can easily be used as a rough guide for planning engineers
to determine worst-case (minimum load) levels of power and voltage on distribution
feeders in the future. Applying the tools developed in this research will save network
planners time when forecasting network conditions by removing the need for detailed
network modeling and analysis.

The power factor analysis raises the question of whether current standards reflect the
reality of LV networks and whether or not network power factor statutory limits apply
during periods of low load. Most network operators’ performance standards specify a
power factor operating range from around 0.9 lagging to 0.9 leading.

In addition to satisfying the objectives, the proposed research delivered the ability to
automate the creation of LV networks into Energy Queensland’s regional models, which is
a tool that the organization can use in the future to analyze distribution networks in more
detail. Use cases include assessing the hosting capacity of specific LV networks, assessing
IES and load connections, and assessing EV charging and vehicle-to-grid impacts.

In future work, a methodology needs to be developed which seeks to formulate similar
trends for varying network constructions and connection of standards/practices. This will
provide broad benefits to network planners beyond Queensland, Australia. Furthermore,
the results from this research should be compared with actual measurements in the future
to verify forecast accuracy.
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