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Abstract: Adaptive protection schemes have been developed to address the problem of behavior-
changing power systems integrated with inverter-based generation (IBG). This paper proposes
a machine-learning-based fault detection and classification technique using a setting-group-based
adaptation approach. Multigroup settings were designed depending on the types of power generation
(synchronous generator, PV plant, and type-3 wind farm) connected to a transmission line in the
39-Bus New England System. For each system topology, an optimized pretrained ensemble tree
classifier was used. The adaptation process has two phases: an offline learning phase to tune the
classifiers and select the optimum subset of features, and an online phase where the circuit breaker
(CB) status and the active output power of the generators are continuously monitored to identify the
current system topology and to select the appropriate setting group. The proposed system achieved an
average accuracy of 99.4%, a 99.5% average precision, a 99.9% average specificity, and a 99.4% average
sensitivity of classification. The robustness analysis was conducted by applying several fault scenarios
not considered during training, which include different transmission network configurations and
different penetration levels of IBGs. The case of incorrect selection of the appropriate setting group
resulting from selecting the wrong topology is also considered. It was noticed that the performance
of developed classifiers deteriorates when the transmission network is reconfigured and the incorrect
setting group is selected.

Keywords: adaptive protection; machine learning; fault detection and classification; inverter-based
generators; groups setting

1. Introduction

Adaptive protection schemes have emerged in the last few decades to address the
problem of behavior-changing power systems with IBGs. Examples of system-changing
problems include the fault level contribution, the fault characteristics of the IBGs, and
system reconfigurations [1]. Analyzing the fault characteristics becomes difficult because
the IBGs have unique electricity-generating principles due to the integration of power
electronic converters [2]. Adaptive protection was suggested to automatically adjust
protection functions to make them more attuned to prevailing power system conditions [3].
These adaptive protection schemes grant the power system protection the ability to identify,
categorize, and localize faults in power systems that have been penetrated by inverter-
based generators (IBGs), which cause ongoing changes in the direction of the power flow,
the source impedance, and the system inertia.

Several adaptive protection methods were proposed in the literature to mitigate the
issues of integrating renewable resources and changing system topologies. One of the
more recent methods for creating adaptable protection systems is adaptation utilizing
machine learning (ML) algorithms. As a substitute method for fault detection, classification,
and localization, ML techniques for power system protection have emerged. The main
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advantages of ML techniques are accuracy, self-adaptiveness, and robustness to parame-
ter variations [4]. Classical ML techniques face several challenges, such as updating the
training dataset for newly discovered faults and continuously tuning the classifier’s pa-
rameters [5]. Adaptive ML algorithms have been introduced to address the power systems’
changing behavior. The adaptation may occur at feature extraction, feature selection, or
classification levels. Continuous data streaming for training should be supported by the
adaptive classifier, which should be able to adjust to the changing behavior of the power
system thanks to integrated renewables. This process is known as incremental or online
learning [6].

An adaptive microgrid protection strategy employing traditional protection relay
settings and a machine learning classifier was proposed by Hengwei et al. [7]. The rule-
based method was able to choose the appropriate setting group of overcurrent and distance
relays relevant to the current system topology, while the ML classifier was utilized to detect
the faults. A support vector machine (SVM) classifier was used in [8] to predict the remote
CBs’ status, identify the circuit topology, and select the correct relay setting. Marín-Quintero
et al. [9] developed an adaptive protection scheme for an active distribution network with
distribution generators (DGs) using an ML algorithm. Different system topologies were
considered, and each topology used a different ML classifier for fault detection. For each
system topology, the relays in the network were equipped with the classifier that achieved
the best classification accuracy during offline training. In this application, the different
classifiers used a common set of features, which may not be an optimal subset. Yavuz
et al. [10] proposed an adaptative algorithm that computes the optimum weights using
particle swarm optimization for different ML classifiers to achieve a high performance
independent of the system topology and the type of connected generators. The adaptation
was made online using only the voltage, frequency, and phase angle signals obtained from
the PMUs. Tang and Yang [11] developed an adaptive protection scheme by extracting
features from the continuous wavelet transformation of the positive, negative, and zero
sequences of voltage and current and the three-phase currents and voltages. Two system
topologies were considered, namely fixed topology and changing topology. Features were
selected using Pearson’s correlation coefficient. For the fixed topology case, the relay
operation thresholds, obtained using the DT classifier, were embedded in the relays to
enable fault detection. For the changing topology, a neural network was adopted.

This paper proposes an adaptive transmission line protection connected to three
generations: synchronous generators, PV plants, and wind farm. The adaptation design
depends on online system topology identification using a combination of the CBs’ status
and real-time measurement of the active output power of the connected generating units
behind the protected transmission line and the ML model for fault detection classification.

The combination of CB status and power measurement ensures more reliable topology
identification. It is worth noting that the definition of the system topology in this paper
differs from the definition in the literature. Our definition of the system topology is the
generation mixture available in the busbar behind the protected line, whereas the topology
defined by others was the lines or buses connected/disconnected in the power system
network.

The fault detection and fault type classification for each system topology were designed
using an ML model in the offline process. After appropriate topology identification, the
designed ML model parameters were saved in the setting groups. The correct setting
group is selected based on the relative topology in the online process. More specifically, the
proposed method:

• defines the system topology as the generation mixture available at the busbar behind
the protected line;

• considers two types of IBGs, namely large-scale PV and DFIG wind farms (WF);
• combines ML-based classifiers with setting group selection based on circuit breaker

statuses and real-time active power measurements;
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• tunes the hyperparameters of the classifier associated with each system topology using
the Bayesian optimization algorithm to achieve the best classification performance;

• uses the ensemble feature method, an embedded-type feature selection method, to
select the optimal feature subset associated with each system topology;

• selects the appropriate setting group online according to the system topology obtained
from the lookup table.

The adaptive scheme in this study refers to the online topology identification from
CB states and active power measurements of the connected generating units, followed by
the appropriate selection of the setting groups equipped with pretrained ML classification
models to detect and classify the faults.

This paper is organized as follows. Section 2 identifies different system topology
identification methods in the literature. Section 3 describes the methodology used to
identify the generation topology and to build the datasets for the adaptive fault detection
and classification technique. It also describes the ML protection setting method. Section 4
presents and discusses the obtained results. It evaluates the performance of the classification
models using different classification metrics: accuracy, specificity, precision, and sensitivity.
The performance of the proposed adaptive scheme system was evaluated using new fault
events, different IBG penetration levels, and transmission system configurations. Section 5
provides the conclusion.

2. System Topology Identification Methods

Identifying or detecting system topology changes is crucial in selecting the appro-
priate adaptive protection scheme. Several topology identification approaches have been
proposed in the literature.

Identification with CB status: The CB status approach has been widely used for adaptive
protection scheme design. Poudel et al. [8] developed an adaptive protection scheme
for medium-voltage feeders by collecting the CB status of that feeder in the substation
computer, along with the statuses of the loads, DGs, and autoreclosers. The computer
substation saves predefined settings corresponding to each system topology. An adaptive
overcurrent was established and proposed in [12] to detect the faults in two different
setting groups, the islanded mode and the grid-connected mode, by defining the CBs of
the network circuits and the CB status of the distributed generators using the IEC61850
communication protocol. The setting groups were changed after loss of mains, loss of DG,
or islanding. Lin et al. [13] proposed lookup tables for the circuit breaker (CB) and relay
events. The protection settings for different states were calculated offline and stored in the
settings table (action table).

Identification using dynamic state estimation (DSE): When the operating system point
changes more frequently and quickly, it becomes crucial to keep track of the system’s
dynamic state variables, including voltage and current magnitude and angle, current
magnitude and angle, and real and reactive power [14]. The data were collected from
PMUs, merging units (MUs), and digital fault recorders (FRs). The dynamic variables
of the system equipment could be estimated using differential–algebraic equations [15].
Adaptive protection can be developed by estimating the dynamic states to identify the
system topology. Korres et al. [16] utilized the state estimation algorithm to define the
IEEE RTS-96 substation configuration via the circuit breaker status identification using
the active and reactive power flows as continuous state variables. The authors in [16]
tested two algorithms for topology identification: the recursive Bayesian estimation (RBE)
and generalized state estimation (GSE). The GSE provided good model identification
accuracy, even when the number of possible network configurations was increased. The
state estimation approach, however, faces several challenges [17] such as dependency on
the communication system to transfer the data from measuring devices, considering the
network bandwidth and capacity, and limiting the accuracy and rate of data exchange. In
addition, the higher penetration of renewable power resources introduces a higher level
of uncertainty.
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Identification using machine learning: ML can be used to detect and identify the sys-
tem configuration changes by collecting measurements at different locations of the power
system, such as lines, generators, and supplementary devices (fault current limiters, re-
active power compensators, and others). The SVM classifier was used in [18], where the
three-phase voltage and current, RMS values, and the zero-sequence current were the input
features measured at different locations in the IEEE 123-node distribution test system. The
authors in [19] proposed using several ML classifiers (SVM, k-NN, and ensemble algo-
rithms) to identify the system configurations of a simulated standard power distribution
system. The SVM outperformed the other classifiers by achieving 100% detection accuracy.
Rajendra et al. [20] estimated the system configuration of the tie lines in the modified IEEE
123-bus distribution system using deep learning (CNN) and compared it with the SVM.
The CNN outperformed the SVM.

Identification using data-driven approaches: The system topology can be identified by
collecting data from different locations of the power system network and recognizing the
available system components (lines, generators, and loads). The required data are voltage,
current, real power, reactive power, or frequency signals and can also be extracted features
from these signals. Razmi et al. [19] used transient voltage signals at different system-
switching devices to identify the system topology and circuit status. The transient voltage
was obtained from instantaneous voltage signals measured at each end of the distribution
lines in an ANSI standard distribution system and extracted the maximum, minimum, and
rate of change as features. The dataset was classified using SVM, k-NN, DT, and ensemble
tree classifiers. The SVM classifier outperformed the others with its 100% achieved accuracy.
In [8], The circuit status was identified according to the measurements of RMS voltage,
current, real and reactive power collected from the lines of the modified IEEE 34-bus system
and two-bus power system with the PV system. Then, the overcurrent protection settings
were adopted for each circuit topology. The topology identification was achieved using
the SVM classifier, and the results showed that using all measured signals resulted in a
classification accuracy of 100%, whereas using current and voltage measurements only
resulted in lower performance (98%). The authors in [21] designed an ML data-driven
approach to identify the system topology by constructing a connectivity matrix that showed
the status of switches with voltage and current phasors recorded by PMUs. The proposed
method approximates network parameters using an ensemble-based deep learning model
for a modified IEEE 33-bus network and real feeder in Queensland, Australia. Their design
performance was a detection error rate of only 1.2%. For transmission system topology
identification (IEEE 39-bus and 118-bus systems), the authors in [22] identified the line
outage using the phasor angles at buses. Logistic regression (LR), random forest (RF), and
graph convolutional network (GCN) were the models used for identification. The proposed
classifiers were evaluated with two performance metrics (precision and recall). The results
showed that logistic regression outperformed the others with 99% precision and recall.

3. Methodology

In this section, the proposed methodology is described in detail. It consists of three
parts: topology identification procedure, machine learning design requirement, and the
overall proposed adaptive scheme using ML-based protection setting approach.

3.1. Topology Identification Procedure

The proposed topology identification in this paper depends on the circuit breaker
status of the generating units connected at one end of the protected transmission line and
the active output power of these units. Depending on the circuit breaker status alone is not
always reliable. The circuit breaker may fail due to mechanical or electrical reasons and the
intermittency behavior of renewable resources where the output power ranges from zero
to maximum, depending on weather conditions. There are cases where the output power is
zero while the circuit breaker is in a closed position. Figure 1 shows a real case of PV plant
and wind farm output power that varies from zero to maximum during the day’s hours.
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As a result, the circuit breaker status and the active power measurements are used for the
reliability of topology identification. If the power measurement exceeds zero, the output
is one; otherwise, it is set to zero. Considering the three generators connected at one bus
(synchronous generator, PV plant, and wind farm), the topology lookup table is shown in
Figure 2. Individual plant availability status is obtained using the AND gate between the
CB status and the output power, and then the topology can be identified with the lookup
table using the three statuses of the generating plants. The resulting number of topologies
is eight, noting that the ‘No generation’ topology means that none of the three generation
plants are in service. However, other generators connected at different system parts feed
the faults incepted in the protected lines.
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Figure 1. Measurements of the active power output of the PV plant and wind farm during the
day hours.
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Figure 2. Lookup table for topology identification.
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3.2. Machine Learning Design Requirement

This section explains the dataset construction phases, the feature selection method,
the classification model, and the classification performance metrics.

3.2.1. Data Collection and Preparation

The datasets were simulated using the 39-Bus New England System model [23] shown
in Figure 3. The data were simulated using the Power Factory DigSilent software pack-
age [24]. The details related to the parameters of the synchronous generators, transmission
lines, power transformers, and loads can be found in [25]. The protected transmission line
was line 1-2. The following signals were measured at bus -2: the instantaneous three-phase
voltage, instantaneous three-phase current, and the angle between voltage and current.
The signals included fault and nonfault events. The PV plant and wind farm, whose
characteristics are shown in Table 1, were introduced at bus 2.
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Table 1. PV plant and wind farm characteristics.

IBG Characteristics Dynamic Model Type

PV Plant

10 kVA per inverter, local controller: constant Q,
Short circuit model: Dynamic voltage support,
Sub-transient short circuit: 1.21 kVA, R to X” ratio:
0.1, K Factor: 2, Max. current: 1.1 pu, Td”= 0.03 s,
Td’ = 1.2 s

WECC Large-scale Photovoltaic
Plant model

Wind Farm
(Type 3: Doubly fed
induction generator)

2MVA, 1.0 power factor, local controller: constant
Q, Short circuit model: Dynamic voltage support,
Sub-transient short circuit: 2.39 MVA, R to X” ratio:
0.1, K Factor: 2, Max. current: 1.1 pu, Td”= 0.03 s,
Td’ = 1.2 s

WECC Wind Turbine Model Type 3

Swing conditions and normal system behavior make up the nonfault events. The
swing conditions were incorporated into the nonfault class because they should prevent
the protection device from operating during power swing situations. Different fault types,
locations, and resistances were simulated as part of the fault events. Power swing was
detected using the swing center voltage (SCV) signal, as suggested in [26]. The magnitude
of the SCV changes between 0 and 1 per unit of system nominal voltage. The SCV’s
magnitude remains constant under typical load situations. The voltage magnitude at the
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relay point is multiplied by the local voltage and current angle difference to determine it.
The fault scenarios contain combinations of the following fault types: A-G, B-G, C-G, A-B,
A-C, B-C, A-B-G, A-C-G, B-C-G, and A-B-C. They also feature fault resistances of 0 and 100
ohms, fault locations of 10%, 50%, and 90%, and three-phase faults occurring during power
swing situations.

Eight datasets were created for this investigation that represented the generators
attached to bus 2 behind the protected transmission line. Three different generator types
might be coupled, as shown in Figure 3. (G10: synchronous generator, PV plant: connected
to the system with inverters, and wind farm: doubly fed induction machines).

There are eight different system topologies: T1 (SG only), T2 (PV only), T3 (WF only),
T4 (SG and PV), T5, T6, and T7 (SG, PV, and WF) (No generation). Seventy percent of the
total observations were utilized in the training dataset to fine-tune the hyperparameters,
and the remaining observations were used to test the ML classification model.

Eight balanced classes make up each dataset: “0” for normal and swing conditions,
“1” for A-G fault events, “2” for B-G fault events, “3” for C-G fault events, “4” for A-B and
A-B-G fault events, “5” for A-C and A-C-G fault events, “6” for B-C and B-C-G fault events,
and “7” for three-phase fault events. The dataset’s balanced classes have an equal amount
of observations for each class.

3.2.2. Feature Extraction and Selection

According to Table 2, the features were derived from three domains: time, frequency, and
time–frequency. Each dataset contained 343 characteristics in total (7 Signals × 49 features).
These elements were taken into account in our previously published research [27].

Table 2. Extracted features.

Domain Features Number of
Features for Each Signal

Time
Statistical features of the squared signals 9

Statistical features of first-order difference
of the squared signals 9

Time–frequency

Statistical features of spectrogram 9

Statistical features of wavelet
decomposition of first and second detail
coefficients [28]

18

Estimated instantaneous frequency [29] 1

Frequency
Spectral entropy [30] 1

Mean and median frequency [31] 2

This research suggests using the ensemble-based feature selection strategy because it
maximizes classification accuracy. For the same dataset, the ensemble tree classifier out-
performed the k-nearest neighbor, support vector machine, and decision tree classification
models, as described in [27]. The ensemble approach is a strategy for embedded feature
selection that makes use of weak learners to choose the ideal subset of features that optimize
classification accuracy and reduce error. The construction of a linear prediction model using
embedded techniques aims to decrease the number of input features while simultaneously
maximizing the goodness of fit of the model [32]. The rationale behind utilizing decision
trees to assess the significance of a feature is that they perform splits that optimize impurity
reduction. Calculating the mean reduction in impurity for each feature across all trees
yields the feature significance [33]. Impurity-based feature importance is another name for
this technique. The importance calculation follows the following procedure:
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For each given feature
For each tree

1. Compute the impurity decrease (Gini or entropy)
2. Weight by the number of examples at that node
3. Average overall trees (i.e., average impurity decrease)
4. Normalize importance values so that the sum of feature importance values equals one

The feature that experiences a greater impurity reduction at each split is given more
weight. This strategy’s mathematical model can be found in [34].

3.2.3. Classification Model

There are several ML-based classification models, each with advantages and limita-
tions. In our study [27], the results demonstrated that the ensemble classifier outperformed
decision trees, k-nearest neighbors, and support vector machines. The ensemble tree classi-
fication model is, therefore, adopted in this paper. Additionally, the ensemble tree was also
used in feature selection. The classifier’s hyperparameters were tuned using the Bayesian
optimization (BO) algorithm.

3.2.4. Classification Performance Metrics

The accuracy, sensitivity, specificity, and precision are used to describe classification
performance indicators in this paper. Their mathematical definitions, derived from the
confusion matrix, can be found in [27].

3.2.5. Machine Learning Protection Setting Method

As explained in Section 3.1, the suggested adaptive technique is based on gathering
the CB statuses of these units (1: closed position, 0: open position) and the active power
measurements of these units in order to track the availability of various generating types
connected in bus 2.

Following the procedures shown in Figure 4, the ML classifier setting associated
with each system topology was created offline. This graphic explains how to identify the
ideal hyperparameters for each system topology using ensemble-based feature selection
and an optimized ensemble classifier customized by Bayesian optimization. Each system
topology’s setup group is made up of the classifier hyperparameters and the chosen subset
of features. This procedure could be regarded as offline.
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On the other hand, the online procedure was accomplished by performing the follow-
ing steps: (1) checking the information pertaining to the current topology; (2) choosing the
classifier associated with the current topology; and (3) identifying and classifying new fault
events. Figure 5 depicts the offline and online processes.
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4. Results and Discussion of Results

The offline settings in this part begin with creating the best classifiers and choosing the
best collection of features for each preselected topology using the training data. The system
is then tested using test data, and the results are presented in terms of the performance
metrics indicated earlier. The system is then tested for robustness utilizing faults on the
protected line, faults at various degrees of IBG penetration (10, 50, and 100 percent of their
maximum output power), and faults at various transmission system configurations (line
outages). Finally, the classifier’s performance under incorrect topology identification is
assessed.

4.1. Offline Settings

In the offline settings, the system topologies are identified beforehand, the best feature
subsets are chosen, and the various ensemble-based classifiers are trained and optimized.
The number of features that were chosen, the ensemble classifier model hyperparameters
for each system topology, and the performance metrics for validation and testing data are
all displayed in Table 3. The training data represent 70% of the data (five cross-validation
folds), and the testing data represent 30%. Figure 6 shows the importance estimation of the
features for each system topology using the impurity-based feature importance.
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Table 3. Results of the offline settings.

Topology (T) Classification Model
Hyperparameters

Number of
Selected Features

Performance Using
Training Data (%)

Performance Using
Testing Data (%)

T1
SG only

Ensemble method: Adaboost
Maximum number of splits: 5

Number of learners: 13
Learner rate: 10

39

Precision: 98.93
Recall: 98.84

Accuracy: 98.62
Specificity: 99.79

Precision: 97.56
Recall: 97.76

Accuracy: 96.77
Specificity: 99.51

T2
PV only

Ensemble method: Bag
Maximum number of splits: 128

Number of learners: 131
Number of predictors to sample: 79

190

Precision: 99.17
Recall: 98.88

Accuracy: 98.8
Specificity: 99.82

Precision: 99.66
Recall: 99.46

Accuracy: 99.60
Specificity: 99.94

T3
WF only

Ensemble method: Bag
Maximum number of splits: 13

Number of learners: 18
Number of predictors to sample: 82

155

Precision: 99.31
Recall: 98.80

Accuracy: 99.14
Specificity: 99.87

Precision: 99.34
Recall: 99.46

Accuracy: 99.60
Specificity: 99.95

T4
SG + PV

Ensemble method: RUSboost
Maximum number of splits: 159

Number of learners: 25
Learner rate: 0.873

20

Precision: 98.35
Recall: 98.23

Accuracy: 97.58
Specificity: 99.63

Precision: 97.28
Recall: 97.12

Accuracy: 96.47
Specificity: 99.48

T5
SG + WF

Ensemble method: Bag
Maximum number of splits: 168

Number of learners: 45
Number of predictors to sample: 18

157

Precision: 99.77
Recall: 99.57

Accuracy: 99.66
Specificity: 99.95

Precision: 99.31
Recall: 98.81

Accuracy: 99.20
Specificity: 99.88

T6
PV + WF

Ensemble method: Bag
Maximum number of splits: 46

Number of learners: 10
Number of predictors to sample: 10

204

Precision: 99.52
Recall: 99.53

Accuracy: 99.65
Specificity: 99.95

Precision: 98.98
Recall: 99.17

Accuracy: 99.19
Specificity: 99.89

T7
SG + PV + WF

Ensemble method: Bag
Maximum number of splits: 28

Number of learners: 16
Number of predictors to sample: 10

163

Precision: 99.89
Recall: 99.76

Accuracy: 99.90
Specificity: 99.99

Precision: 99.21
Recall: 99.02

Accuracy: 99.52
Specificity: 99.93

T8
No generation

Ensemble method: Bag
Maximum number of splits: 40

Number of learners: 10
Number of predictors to sample: 3

168

Precision: 99.45
Recall: 98.74

Accuracy: 99.12
Specificity: 99.86

Precision: 100
Recall: 100

Accuracy: 100
Specificity: 100

4.2. Performance Evaluation with New Fault Events

Applying new fault events could further assess the resulting classifiers’ performance.
At 70 percent of the protected line (line 1-2) from the measurement point, three cascading
within-the-line faults were simulated. A-G fault (class 1) was the first fault, followed by
A-B fault (class 4) and A-B-C fault (class 7) at 1.0, 2.0, and 3.0 s, respectively. The fault
durations were 100 msec. The faults were created for all previously defined generation
topologies, each with hyperparameters and a subset of features.

As shown in Figure 7, the proposed classifiers for each generation topology were suc-
cessful in precisely identifying and classifying the incepted faults. The proposed classifiers
can detect and classify the faults accurately for each generation topology determined by
the CB statuses and active power measurements, with the exception of a two-phase fault in
topology T6 (PV and WF), where the classifier’s output was classified as class 7 (three-phase
fault). In addition, after clearing the three-phase fault in T6, there was an output of fault
detection as A-B fault. The misclassification occurred due to the percentage error of the
classification model with this topology, which was reported as 0.81%.

4.3. Performance Evaluation with Different IBG Penetration Levels

The training and testing datasets used to train the classifiers in the offline mode and
the testing dataset were thus far simulated assuming either 0% penetration (not connected
or zero output power) and 100% penetration of IBGs (wind farm and PV plant). The present
section aims to evaluate the proposed classifiers’ performance at different penetration levels
other than zero or 100% (i.e., 10% and 50%) for T2 and T3 generation topologies. Only
these two topologies were taken into account because the synchronous generator’s (G10)
fault contribution was frequently dominating and the IBGs’ (PV and wind turbines’) fault
contributions were constrained by the controller parameters of the inverters.
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The contributions of the PV plant and the wind farm for various faults and locations
are given in Figure 8 and Figure 10, respectively, at each penetration level (10%, 50%,
and 100%). The minimum fault current contribution provided by the PV plant was the
three-phase fault at the end of the protected line (near bus 1), and the maximum was for a
single-phase fault at the beginning of the protected line near the PV plant (Figure 8). This
observation can also be made for the wind farm connected to bus 2 (Figure 10).
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Figures 9 and 10 display the topological performance of the T2 classification model
for two distinct PV plant penetration levels and two different fault types (single- and
three-phase faults) at the 10% and 50% fault locations. As can be seen, the classifier detected
the faults accurately. For A–G and three-phase faults, the classifiers’ output was classes
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4 and 7, respectively. The results can be generalized for other PV penetration levels and
fault types.
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Similarly, the classifier’s performance for the T3 setting topology was investigated for
different wind farm penetration levels. Figure 11 shows that the classifier proposed for
T3 could also detect all types of faults at different locations and for two levels of the wind
farm output power (10% and 50%) of its maximum power. For A-G and three-phase faults,
the classifiers’ output was classes 4 and 7, respectively. The results can be generalized for
other wind farm penetration levels and fault types.

4.4. Performance Evaluation with New Transmission System Configurations

In the previous results, the investigation was achieved considering the same trans-
mission system configuration with different generation topologies at bus 2. This section
examines the performance of the developed classifiers at different transmission system
configurations. Three scenarios are considered, which are shown in Figure 12. The first
case is to cut off the supply from G1 by disconnecting the line 1-39. The second is to limit
the contribution of G8 by switching the line 2-25 to the OFF position. The third is the
disconnection of both lines. This line selection will impact different sources’ contribution
to faults that occurred in the protected line (the line 1-2).

Case 1: line 1-39 outage
The outage of line 1-39 prevents the contribution of G1 to faults that occurred in line

1-2, but still, the faults are fed through bus 2 generators, line 2-25, and line 3-2. Figure 13
shows the outputs of the classifiers for each generation topology for the following faults
Phase A fault (Class 1), A-B fault (Class 4), and three-phase fault (Class 7). Topologies 1,
2, 3, 4, 5, and 8 classifiers performed well in detecting and classifying these faults, which
predicted them as classes 1, 4, and 7. However, the effect of line 1-39 outage was clear
on topologies 6 and 7. For topology T6 (wind farm and PV plant were connected), the
classifier still had outputs after a three-phase fault detection, although the fault was cleared.
On the other hand, the T7 classifier detected faults after each clearing time, which should
be reset to zero as the faults were cleared. By retraining them using these new batches of
data, the classifier’s hyperparameters can be updated, which will enhance detection and
classification performance.
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Case 2: line 2-25 outage
The outage of line 2-25 prevents the contribution of G8 to faults in line 1-2, so that

the faults were fed through bus 2 generators, line 1-39, and line 3-2. Figure 14 shows the
outputs of the classifiers for each generation topology for the following faults: Phase B
fault (Class 2), Phase B to C fault (Class 5), and three-phase fault (Class 7). It could be
noted that although the magnitude of the RMS current for single- and two-phase faults was
minimum, the classifiers were able to detect these faults in topologies 1, 2, 3, 4, 5, and 8. The
misclassification rate was high in the case of topologies 6 and 7, where the PV plant and
WF were connected to bus 2. Retraining the classifiers with this new dataset or taking into
account the new setting group for each transmission network configuration could increase
the detection and classification performance. The classifiers performed worse in this case
than they did in the first.
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Case 3: line 2-25 and line 1-39 outages
The combination outage of lines 2-25 and 1-39 allows the fault to be fed through

bus 2 generators and lines 3-2. Figure 15 shows the outputs of the classifiers for each
generation topology for the following faults: Phase B fault (Class 2), B-C fault (Class 5), and
three-phase fault (Class 7). As in case 2, the magnitude of the RMS current of single-phase
and phase-phase faults is low, but the classifiers were able to detect these two faults in
most cases using other proposed features in different domains. The classifiers at each
generation topology can efficiently detect the three types of faults, except for topologies
6 and 7. The misclassification events in topology 6 were more, and an update of the
classifier’s hyperparameters was required to include this transmission topology with the
PV system connection. Generation topology 7 had an issue with fault detection after each
fault-clearing event, with misclassification between classes 5 and 7.
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By implementing a new system topology and following the instructions in Figure 4 to
identify the setting groups, as well as by converting the existing classifiers’ models into
incremental learning to update hyperparameters by retraining them with any new data
stream, the misclassification events in cases 2 and 3 can be reduced.

4.5. Performance Evaluation for Incorrect Topology Identification

The previous analysis assumes the correct identification of generation topology. How-
ever, there is a possibility of incorrect identification of the topology, and, hence, the setting
group is inappropriately selected. To investigate this case, the performance of the classifiers
is assessed by creating faults in the protected line at a specific generation topology with the
different selected setting groups.

Fault scenario: Three cascaded in-zone faults at 70% of the protected line (Line 1-2)
from the measurement point were simulated. The first fault was an A-G fault (class 1) at 1.0
s, the second was followed by an A-B fault (class 4) at 2.0 s, and the third was a three-phase
fault (class 7) at 3.0 s. The fault durations were 100 ms. The faults were created when the
PV plant was only connected to bus 2. This means that T2 should be selected as the setting
group. The selected setting group (wrong selection): topology 1 (SG only).

Results: Figure 16 depicts the RMS current signal for each of the three faults: A-G
fault (Class 1), A-B fault (Class 4), and three-phase fault (Class 7) and the prediction of
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the classifiers in setting group 1 (wrong selection) and setting group 2 (correct selection).
It is evident that the prediction of a single-phase fault was correct in the case of correct
and wrong topology identification, but the classifier of setting group 1 misclassified the
two-phase fault (A-G fault), which was predicted as classes 4 and 7, and the three-phase
fault, that was also predicted as classes 5 and 7. Moreover, there were incorrect predictions
of normal events after clearing the second fault using the classification model of setting
group 1. This result can be generalized for other setting groups. Correct identification
of the generation topology resulted in the appropriate selection of the setting group and,
hence, correct detection and classification of the faults. One way to mitigate this issue is to
convert the classification models into incremental learning models where they are retrained
and the hyperparameters are updated to fit the new system events.
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4.6. Comparative Analysis of Different Methods in the Literature

The proposed adaptive scheme in this paper is compared with the previous methods
of adaptive approaches using system topology identification and machine learning. Table 4
presents four research studies along with our proposed approach. It could be noticed
that each method follows different approaches to define the topology, identify the system
configuration, and utilize ML procedures. Our approach’s classification accuracy outper-
formed the approach in [7] for the 39-bus IEEE power system. This could be due to the
dataset having more valuable features, including features from different domains, as well
as the performance of the feature selection method, which selects features that maximize
classification accuracy. The references [10,11] depend on deep learning techniques to iden-
tify the system topologies, which require lots of data gathered at different locations in the
power system.

Moreover, it is evident that the definition of system topology in this research was
specific to the types of generation units connected to one bus, while others were related to
the connection and disconnection of lines, buses, and other system elements.

In comparison to [7], which used the PSO algorithm to optimize the hyperparameters
of the classifier, the proposed approach used a Bayesian optimization algorithm, resulting
in better performance.
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Table 4. Comparative analysis of selected methodologies from the literature.

Reference Power System Network Topology Definition Topology Change
Identification Method

Number of Topologies
ML Method

Performance
Feature Extraction Method Feature Selection Classifier

[11]
Distribution network:

modified IEEE
30-bus system

DG availability, FCL,
and load varying ANN Two CWT Nil DT Failure rate = 0%

[7]

Medium-voltage network:
Aalborg microgrid and

transmission network: IEEE
9-bus model

Meshed or radial
network configuration,

grid-connected or
islanded modes, and

load variations.

ANN-SVM algorithm Not defined Real-time measurements
(no feature extraction) Nil SVM for fault location

The error of ANN = 0%,
Average error of
SVM = 0.215%

[10]
Transmission networks:

Standard IEEE 14-bus and
standard IEEE 39-bus

Add/drop new bus
or transmission lines

PSO detects
structural changes Unlimited

Measurements of frequency
and phase values of all

buses in the time domain
(no feature extraction)

Nil

PSO-based
weighted ensemble

method of k-NN,
LDA, LR,
NB, DT,

boosting algorithm

Accuracy = 97.93% for the
IEEE classical model.

Accuracy = 96.68% for the
modified system

(PV added)
Accuracy = 96.61% for the

IEEE-39 bus model.

Proposed Transmission (39-Bus New
England System)

Type of generators
connected behind the

relay point
(synchronous machine,

PV plant, and DFIG
wind farm)

Circuit breaker statuses
and the active power of
these generating plants

Eight Table 2 Ensemble trees
(embedded-type)

Optimized ensemble
trees using

Bayesian optimization

Average
accuracy = 98.79%

Average
precision = 98.92%

Average
specificity = 98.76%

Average
sensitivity = 99.82%
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5. Conclusions

This paper proposes an adaptive ML-based fault detection and classification approach
for transmission lines connected to inverter-based renewables like PV plants and wind
farms with type-3 wind turbines. The adaptative scheme tracked the availability of a
synchronous generator, PV plant, and wind farm behind the protected transmission line.
The generation topology was identified using two field data: circuit breaker status and
active output power measurement.

The setting groups were selected for the eight system topologies, including optimized
ensemble tree classification models’ hyperparameters for fault detection and classification.
The reported averaged classifiers’ performance was 98.79% accuracy, 98.92% precision,
98.76% recall, and 99.82% specificity.

Several system events were evaluated for the robustness of the classifiers: fault events
at the protected line, different IBG penetration levels, and new transmission system config-
urations. The proposed classifiers can efficiently detect and classify faults incepted in the
protected lines and for different IBG penetration levels (10%, 50%, and 100%). Changing the
transmission system configuration and incorrect selection of the setting group degraded the
performance of the developed classifiers in several cases. One of two methods can be used
to overcome this. The first is creating new setting groups, and the ML models are used for
each one. This approach has limitations to the number of available setting groups equipped
with protective devices and the difficulty of assuming all expected scenarios of the system
topologies for large-scale power systems. The second is retraining the same classifiers
with new system events or converting the existing classifiers into incremental models.
Incremental learning updates the models without ignoring the previously accumulated
knowledge, and adapts to any new system event at each topology. Incremental learning
algorithms will be considered in future studies.

Furthermore, a practical implementation of the scheme is suggested for proof of
concept (POC) using a real-time digital simulator. The scheme can also be improved by
facilitating fault localization and fault direction. The improvement requires more data
samples for fault localization and adding features to indicate the fault direction. In addition,
the design framework of this research was limited to allocating protection at only one end
of the transmission line in the power system. The scheme may be developed similarly to
other transmission lines with appropriate coordination procedures. Moreover, advanced
methods of incipient fault diagnosis analysis, such as [35,36], can be studied further to
improve detectability and speed.
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