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Abstract: Classical model-free predictive current control (MFPCC) is a robust control technique for
a two-level inverter-fed induction-motor drive, with advantages that consist of a simple concept,
rapid response, simple implementation, and excellent performance. However, the classic finite-
control-set MFPCC still exhibits a significant current ripple. This article presents a method to enhance
performance using a combination of model-free predictive current control (MFPCC) and discrete-
space vector modulation (DSVM). The MFPCC employs an ultralocal model with an extended-state
observer (ESO) that does not consider motor parameters, therefore improving the control system’s
reliability by eliminating the parameter dependency. The proposed method integrates DSVM, which
divides a single sample period into N equal intervals and generates virtual vectors to reduce stator
current ripple. It achieves the minimum cost-function value across the entire operating range of
the induction-motor (IM) drive by selecting the optimal vector from a limited set of permissible
voltage vectors. Using DSVM effectively reduces the total harmonic distortion (THD) without any
detrimental effects during transients or steady states. Experimental studies validate the effectiveness
and superiority of the suggested technique over the Finite-Control-Set (FCS) MFPCC, which only
considers real voltage vectors in its computations.

Keywords: model-free predictive current control (MFPCC); induction motor; current control; robust-
ness; discrete-space vector modulation (DSVM); observers

1. Introduction

The industrial sector has embraced induction motors for their flexibility, low mainte-
nance needs, and longevity. As a result, various control strategies for induction motors have
been extensively studied in the literature, each offering unique features and characteristics.
Model Predictive Control (MPC) has received considerable attention in power converters
and induction-motor drives due to its intuitive nature and broad applicability over the past
decade. MPC techniques can be classified into two categories within this domain, reflecting
their disparate approaches and potential applications, and the distinction between the
two is determined by the method used to generate the switching signals that control the
operation of the power converters [1,2]. In one implementation, the predictive algorithm
is essential for generating reference outputs that function as modulation step inputs. By
utilizing the switched nature of power converters, an alternative model predictive control
technique eliminates the need for modulation, enabling the selection of a restricted set of
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output states. Considering the application’s specific control objectives and limitations, the
optimal condition is determined by evaluating these states thoroughly. This technique is
known as finite-control-set model predictive control (FCS-MPC), first described in [3,4].
Finite-control configuration MPC is the only MPC method that considers an inverter’s
discrete character and provides the optimal solution to the online optimization problem.
For motor drives, predictive control can be categorized as either current control or direct
torque control, with the performance of both methods being exceptional despite certain
limitations [5]. For applications such as ventilation systems, pumping systems, and air
compressor systems, predictive current control (PCC) is favorable to direct torque control
for variable-speed drives. Moreover, this strategy integrates constraints and nonlinearities,
and its digital implementation is simple enough [6].

Due to FCS-MPC being nonlinear, it is impossible to determine the effect of parameter
variations using widely recognized analysis techniques relevant to linear systems. Hence,
the influence of model–parameter mismatch has been analytically assessed in prior research
by analyzing FCS-MPC behavior under various uncertainty states. Applications have been
studied, including current prediction and control for three-phase two-level inverters, multi-
level voltage–source converters, active front-end converters, and multiphase electric motors.
However, MPC significantly depends on the precision of the machine parameters. The
operating point and environment may influence the machine’s parameters; for instance,
meteorological conditions can impact the stator resistance and inductance of the motor.
In addition, for example, because the environment of underground mines is too harsh,
underground mining equipment such as auxiliary fans, conveyor belts, and other machinery
might adversely affect the system’s overall effectiveness [7–10].

Numerous control strategies have been published in the literature to address the prob-
lem of parameter dependence. For instance, the online parameter identification method,
online parameter estimation, and autotuning of a discrete-time model for induction-motor
drives are proposed, in addition to multi-objective parameter estimation [11]. However,
online parameter identification necessitates enormous mathematical calculations, leading
to the system’s complexity, and the identification correctness directly impacts the system’s
control performance [12].

Recently, the model-free control strategy suggested by Fliess and Join received signifi-
cant interest in intelligent transportation, energy system management, and other fields [13].
Based on an ultralocal model, research has been conducted on model-free predictive current
control (MFPCC) for an induction-motor drive system [14]. The availability of stator current
harmonics in a two-level voltage–source inverter means that this approach still has limita-
tions for MFPCC with a finite control set. The performance of FCS-MPC in induction-motor
(IM) drives can be improved with the help of a discrete-space vector modulation (DSVM)
method, as suggested in [15,16]. Several synthetic virtual voltage vectors are generated in a
single sample period using the DSVM method. In [17], a power converter that uses DSVM
and FCS-MPC was presented.

This article offers an MFPCC technique that combines an ultralocal model with
Discrete-Space Vector Modulation (DSVM) to achieve a more robust and reduced sta-
tor current total harmonic distortion (THD). An extended-state observer is implemented to
determine the ultralocal model’s unknown variables. By comparing THD in stator current,
the proposed method outperforms MFPCC-ESO while retaining the same level of dynamic
responsiveness. DSVM-MFPCC provides enhanced performance through the generation of
several virtual voltage vectors. However, as the number of virtual vectors increases, the
calculation burden rises significantly. Here, the sample period divides into two equal time
intervals to generate 12 voltage virtual voltage vectors without significantly increasing
computation time. The effectiveness of the proposed method is evaluated using a 2.2 kW
IM drive whose motor control strategy is FOC. A comprehensive comparison between the
proposed method and the conventional MFPCC-ESO has been conducted. Results demon-
strate the proposed method’s superior performance under various low-speed operating
conditions, including regeneration and enhanced motor parameter variation robustness.
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2. Induction Motor and Two-Level Voltage–Source Inverter

The two most frequently used methods for controlling electrical motors are field-
oriented control (FOC) and direct torque control (DTC) [18–20]. These methods allow
stator currents to be closed-loop controlled with outstanding dynamic performance. The
first method employs an inner loop to regulate stator current, which provides a voltage
reference, and an outer loop to regulate speed and flux. In contrast, the second method
employs a lookup table correlating the stator flux position with torque direction and stator
flux error. MPC has been implemented in AC drives to regulate the current flowing through
the stator (Model Predictive Current Control; MPCC) and to manipulate the torque and
flux of the machine directly (Model Predictive Torque Control, MPTC), utilizing these two
methods as a foundation [5,6].

The simulation and experiment were performed on the three-phase squirrel-cage
induction-motor drives. For a stationary reference frame, the essential electrical and
mechanical equations are described as follows [18]:

Vs = IsRs +
dΨs

dt

0 = IrRr +
dΨr

dt
− jωΨr

Ψs = Ls Is + Lm Ir

Ψr = Lr Ir + Lm Is

Te =
3
2

pIm
{

Ψs Is
}

(1)

where Vs is the stator voltage, Is and Ir are the stator and rotor current, Te is the electromag-
netic torque, Ψs and Ψr are the stator and rotor flux, andω is the speed. The parameters Rs
and Rr are the stator and rotor resistances, Ls, Lr, and Lm represent the stator, rotor, and
mutual inductances. In the electromagnetic torque equation, Ψs represents the complex
conjugate of Ψs, the Im{.} operator represents the imaginary component and p is the
number of pole pairs.

The dynamic mathematical model for the stator current can be constructed using the
previously described IM model [18]:

dIs

dt
= − Rσ

σLs
Is +

kr

σLs

(
1
τr
− jω

)
Ψr +

1
σLs

Vs (2)

where σ = 1− krks is the total leakage coefficient, kr =
Lm
Lr and ks =

Lm
Ls are the magnetic

coupling factor, τr = Lr
Rr

and Rσ = Rs + kr
2Rr.

This article employs a traditional three-phase voltage–source inverter (VSI). The
inverter is responsible for producing eight real voltage vectors, as illustrated in Figure 1a,
and defined by the following equation:

Vi =
2
3

Vdc

(
S1 + aS2 + a2S3

)
(3)

where i = 0, 1, 2, . . ., 7 denotes the number of each real voltage vector, S1, S2, and S3
represent the switching phases of the inverter’s legs, and a is the constant whose value is
e

i2π
3 . The magnitudes of two voltage vectors containing zero are considered zero voltage

vectors, denoted by Vs0(000) and Vs7(111). In contrast, the remaining vectors are the real
voltage vector—Table 1 lists switching states and voltage vectors.



Energies 2023, 16, 5657 4 of 13

Energies 2023, 16, x FOR PEER REVIEW 4 of 14 
 

 

Table 1. Real Voltage Vector with Respective Switching States. 

Real Voltage Vector Switching State [𝑺𝟏 , 𝑺𝟐, 𝑺𝟑] 

𝑉𝑠0 [0, 0, 0] 

𝑉𝑠1 [1, 0, 0] 

𝑉𝑠2 [1, 1, 0] 

𝑉𝑠3 [0, 1, 0] 

𝑉𝑠4 [0, 1, 1] 

𝑉𝑠5 [0, 0, 1] 

𝑉𝑠6 [1, 0, 1] 

𝑉𝑠7 [1, 1, 1] 

 

Figure 1. Space Vector Modulation (a) Real Voltage Vectors. (b) 20 Voltage Vector (real and virtual) 

for two equal time intervals. 

2.1. Discrete-Space Vector Modulation Method 

In the conventional SVM technique, high torque ripple and stator current harmonics 

are available in a two-level voltage–source inverter due to limited numbers of voltage vec-

tors. To overcome these disadvantages, DSVM was proposed as a viable solution. In 

DSVM, acquiring a virtual vector in one sampling period for predetermined time intervals 

is possible. Virtual vectors (𝑉𝑣𝑖𝑟) in one sampling period subdivided into an equal N num-

ber of intervals for a two-level VSI can be defined as [15,21–23]: 

𝑉𝑖
𝑣𝑖𝑟 = ∑ 𝑡𝑉𝑖

𝑟𝑒𝑎𝑙

𝑖 = 1,2,...𝑁

 (4) 

where 𝑉𝑖
𝑟𝑒𝑎𝑙 ∈ {𝑉𝑠0, 𝑉𝑠1, … 𝑉𝑠7}, and 𝑡  =  

𝑇𝑠

𝑁
. 

The total number of real and virtual voltage vectors can be determined as follows: 

Total number of voltage vectors = 3𝑁2 + 3𝑁 + 1 (5) 

Twenty voltage vectors can be obtained by dividing the sampling period into the 

same amount of time intervals, as shown in Figure 1b, and their respective values are listed 

in Table 2. In addition, based on the magnitude of both the real and virtual voltage vectors, 

Table 3 categorizes the voltage into four groups. 

  

Figure 1. Space Vector Modulation (a) Real Voltage Vectors. (b) 20 Voltage Vector (real and virtual)
for two equal time intervals.

Table 1. Real Voltage Vector with Respective Switching States.

Real Voltage Vector Switching State [S1 ,S2,S3]

Vs0 [0, 0, 0]
Vs1 [1, 0, 0]
Vs2 [1, 1, 0]
Vs3 [0, 1, 0]
Vs4 [0, 1, 1]
Vs5 [0, 0, 1]
Vs6 [1, 0, 1]
Vs7 [1, 1, 1]

2.1. Discrete-Space Vector Modulation Method

In the conventional SVM technique, high torque ripple and stator current harmonics
are available in a two-level voltage–source inverter due to limited numbers of voltage
vectors. To overcome these disadvantages, DSVM was proposed as a viable solution. In
DSVM, acquiring a virtual vector in one sampling period for predetermined time intervals
is possible. Virtual vectors (Vvir) in one sampling period subdivided into an equal N
number of intervals for a two-level VSI can be defined as [15,21–23]:

Vvir
i = ∑

i=1,2,...N
tVreal

i (4)

where Vreal
i ∈ {Vs0, Vs1, . . . Vs7}, and t = Ts

N .
The total number of real and virtual voltage vectors can be determined as follows:

Total number of voltage vectors = 3N2 + 3N + 1 (5)

Twenty voltage vectors can be obtained by dividing the sampling period into the same
amount of time intervals, as shown in Figure 1b, and their respective values are listed in
Table 2. In addition, based on the magnitude of both the real and virtual voltage vectors,
Table 3 categorizes the voltage into four groups.
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Table 2. Discrete Voltage Vector for N = 2.

Discrete Voltage Vector

Vs0 = 0 Vs8 = Vs1
2 Vs14 = Vs1+Vs2

2
Vs1 = 2

3 Vdc Vs9 = Vs2
2 Vs15 = Vs2+Vs3

2
Vs2 = Vs1 + Vs3 Vs10 = Vs2

2 Vs16 = Vs3+Vs4
2

Vs3 = Vs1

(
−0.5 + 1j

√
3

2

)
Vs11 = Vs2

2 Vs17 = Vs4+Vs5
2

Vs4 = Vs3 + Vs5 Vs12 = Vs2
2 Vs18 = Vs5+Vs6

2
Vs5 =

(
−0.5− 1j

√
3

2

)
Vs13 = Vs2

2 Vs19 = Vs6+Vs1
2

Vs6 = Vs1 + Vs5 Vs7 = 0

Table 3. Vector Control Set.

Index Discrete Voltage Vector

Real Vs1, Vs2, Vs3, Vs4, Vs5, Vs6
Short Vs8, Vs9, Vs10, Vs11, Vs12, Vs13
Large Vs14, Vs15, Vs16, Vs17, Vs18, Vs19
Zero Vs0, Vs7

2.2. Model-Free Predictive Current Control of Induction Motor

Knowing the system model is crucial for the MPC algorithm’s performance. However,
it is common for the system’s parameters to shift over time. Therefore, such a model should
include temporal variation. The problem is that obtaining such a model would impose
undesirable computing overhead on the practical implementation of the control system.
Additionally, there is the problem of developing a foolproof initial parameter identification
technique for an unknown plant. In extreme circumstances, performance loss and control
instability might result from a mismatch between the model and the controlled parameters.

An alternative strategy is to use Model-Free Predictive control. The methodologies
are divided into three categories based on their dependency on models. First, strictly
model-free prediction does not rely on models. Instead, a lookup table makes predic-
tions based on the system’s past input and output data. Second, it employs an ultralocal
model, which utilizes a model alongside one or more undefined variables that must be
continuously estimated based on the system’s input and output data. Thirdly, Prediction
Correction methods employ an idealized plant model. Nevertheless, correction factors are
evaluated to compensate for the predictions using the system’s input, output, and previous
prediction data.

2.2.1. Ultralocal Model-Based MFPCC

For a single input U and single output Y, an ultralocal model can replace the unknown
complex mathematical model. The complex vector-based ultralocal dynamic model for the
stator current of an induction motor in a stationary frame as [13,24]:

dIs

dt
= αVs + F (6)

From Equation (2), F = − Rσ
σLs

Is +
kr
σLs

(
1
τr
− jω

)
ψr is considered to be an unknown

component, while α = 1
σLs

represent the scaling factor of the input voltage vector Vs. Taking
α as a constant, Is(x + 1) can be determined by estimating F using an ESO-based observer.
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2.2.2. MFPCC Parameter Design

Based on the above equation, a linear extended-state observer can be designed by
employing an unknown part F and stator current Is as a state variable along with feedback
of error in a stator current err as [14]:

err(x) = Ire f
s (x)− Is(x)

Îs(x + 1) = Is(x) + Ts
(

F̂(x) + αVs(x)
)
− β01err(x)

F̂(x + 1) = F̂(x)− β02err(x) (7)

where Îs(x + 1) represents the predicted stator current Is(x), F̂(x) is the approximated

value of F, and for z ∈ (0, 1) β01 = 2(1− z) and β02 = (1−z)2

Ts
, represent the observer’s error

feedback gain, while z is set to 0.15.

3. Proposed DSVM-Based MFPCC

The control block diagram for the proposed method is shown in Figure 2, while
Figure 3 is a flowchart illustrating the proposed method. From Equation (6) and the unit
step delay in the reference stator current, the reference voltage can be determined as:

Vs(x + 1) =
Ire f
s (x + 2)− Îs (x + 1)

αTs
− F̂(x + 1)

α
(8)

where Vs(x + 1) is the applied voltage vector at an instant (x + 1). To compute the difference
between Ire f

s and Is, the following cost function is constructed:

g = | I
re f
s (x + 2)− Is(x + 1)

α
− Ts

(
Vs(x + 1)− F̂(x + 1)

α

)
|2 (9)
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The voltage vector Vs(x + 1) must be applied to acquire the minimum value of the
cost function g ∼= 0. Since DSVM is a type of finite-control set predictive control, the
voltage vector Vs(x + 1) is not always a member of the finite-control set vectors. Therefore,
the voltage vector closest to the Vs(x + 1) should be selected as optimal Vopt to minimize
the cost function. To minimize the cost function, select an optimal Vopt that is close to the
voltage vector Vs(x + 1).
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4. Results

Simulation and experimental testing using squeal-cage induction-motor drivers on
a two-level voltage–source inverter validate the effectiveness of the proposed method.
Table 4 contains a description of the control system parameters that were implemented in
the simulation and experimental configuration. The sampling frequency is 10 kHz, and the
values of β01 and β02 are 1.7 and 7225, respectively. Here, four parameters stator current
in the DQ axis Id and Iq, speed Wm and stator current Ia (phase A current) are observed.
The Id is directly proportional to the stator flux and Iq is directly proportional to the torque.
Keeping stator flux constant, the torque generated only depends on Iq.

Table 4. Induction-motor parameters.

Induction-Motor Parameters Symbols Value

DC Voltage Vdc 700 V
Rated Power PN 2.2 kW
Rated Voltage VN 415 V
Rated Current IN 4.4 A

Rated Frequency fN 50 Hz
Rated Torque TN 14 Nm

Pole Pairs p 2
Stator Resistance Rs 4.125 Ohm
Stator Inductance Ls 300.37 mH
Rotor Resistance Rr 2.486 Ohm
Rotor Inductance Lr 300.37 mH

Mutual Inductance Lm 284.80 mH

4.1. Simulation Results

In MATLAB/Simulink, a simulation comparison of the conventional ultralocal model
base MFPCC and the proposed DSVM-MFPCC is conducted. Figure 4 illustrates the
simulation results of the conventional ultralocal model base MFPCC and the proposed
DSVM-MFPCC with precise IM parameters. The test condition can observe the performance
of the proposed method, in that the speed reference steps up from 0 to 1000 rpm at t = 0 s,
and a sudden load torque of 10 Nm is applied at t = 6 s. It can be observed that when load
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torque is applied, Iq increases and restores the induction motor’s speed. These conditions
help to observe the transient and dynamic response of the control system.
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Similarly, in Figure 5, the test condition is that the reference speed increases from 0
to 1000 rpm at t = 0 s, followed by applying an abrupt load torque of 10 Nm at t = 6 s,
and observes the similar speed recovery which evaluate the performance of the proposed
method concerning the mismatch parameter. The motor parameters change to Ls

′ = 0.8
Ls and Rs

′ = 0.5 Rs. The 1st channel presents the reference and stator current in the DQ
axis, the 2nd channel presents the reference and actual speed, and the 3rd channel displays
the phase A stator current. Observations indicate that conventional MFPCC has more
significant ripples in stator current than the proposed DSVM-MFPCC.

Figures 4 and 5 depict the responses for exact and mismatched parameters for starting at
the rated speed and reversing at the rated speed, respectively. The proposed DSVM-MFPCC
performs similarly to the conventional MFPCC. With a sampling frequency of 10 kHz and
at the speed of 1000 rpm, it is observed that conventional MFPCC has a THD of 14.34%. By
contrast, the proposed method reduces the THD to 7.13%. Also, for mismatch parameters, the
THD is 14.97% for conventional MFPCC and 7.61% for the proposed method, a reduction of
approximately 50% compared to conventional MFPCC. Similar to conventional MFPCC, the
proposed method demonstrates outstanding dynamic performance.

In Figure 6, the test condition is that the speed reference steps from 100 rpm to 500 rpm
at t = 4 s to analyze the performance of the proposed method under low-speed applications.
In addition, the simulation results show that the proposed method is effective, as stator
current THD is 17.93% for conventional MFPCC and 9.14% for proposed DSVM-MFPCC.
Therefore, the proposed method THD is improved compared to the MFPCC method
under different operating conditions. Figure 7a displays the current THD for the various
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simulation conditions, from which it can be concluded that the THD for the low-speed
operation of an induction motor is more significant than for high-speed operation.
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Figure 7. Current THD (a) for different simulation conditions, (b) for no-load and rated-load conditions.

An induction-motor drive’s optimal performance and efficiency depend significantly on
its low-speed performance. Various factors, including motor parameters, load characteristics,
and control strategy, influence the low-speed performance of the motor drive. Therefore,
analyzing and optimizing its low-speed performance is essential to ensure that the motor
drive operates reliably and efficiently over a wide range of speeds and loads. In Figure 6b, the
simulated result shows the performance of the induction motor at low speed. The proposed
method performs better with less current ripple than the conventional MFPCC.

4.2. Experimental Results

The proposed DSVM-MFPCC and MFPCC are experimentally tested on a 2-Level 3 ph
voltage–source inverter module fed 2.2 kW/415 V/50 Hz IM, as shown in Figure 8. The
control of rotor speed and phase A stator current are displayed via NI-based LabView 2023
Q1. All waveforms are displayed by a waveform graph available in the control palette in
LabView.
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Figure 8. Experimental Setup.

Figure 9 illustrates the starting response and reference speed taken from zero to the
rated speed, then a speed reversal at the rated speed for the two methods. A sampling
frequency is taken at 10 kHz throughout the experiment. Similar to conventional MPCC, the
proposed method displays outstanding dynamic performance. For conventional MFPCC-
ESO, the current ripple is evident. However, for DSVM-MFPCC, the current ripple is
diminished. The THD calculated for the MFPCC is 19.82%, and for the DSVM-MFPCC,
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it is 11.79% for the no-load condition. Therefore, the experimental results correspond to
Figure 4’s simulation results.Energies 2023, 16, x FOR PEER REVIEW 12 of 14 
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Figure 9. Starting responses to rated speed and reversal at rated speed: (a) MFPCC; and (b) DSVM–
MFPCC.

Figure 10 illustrates the dynamic response to a step-load torque change from 0% to 50%,
then 100% of the rated load with the help of the load lamp, as shown in Figure 8. The THD
calculated for the rated-load condition is 15.37% for MFPCC and 8.03% for DSVM-MFPCC.
Figure 7b displays the current THD for the no-load conditions and rated-load condition,
from which it can be concluded that the THD for the no-load condition of an induction
motor has a higher value than for the rated-load condition. Figure 10 demonstrates the
experimental results with the same speed recovery characteristics as Figures 4 and 5. The
dynamic responses of the two methods are alike. To compensate for the sudden load, the
q-axis current rises rapidly, and the motor speed recovers to its reference value. Studies
validate the suggested method’s efficiency in generating a rapid dynamic response.
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5. Conclusions

This paper presents a model-free predictive current control based on discrete-space
vector modulation for induction-motor drives that do not depend on motor parameters
and exhibit resilient parameter robustness. It has a straightforward concept and is simple
to implement. The simulation and experimental results demonstrated that the effectiveness
of the proposed DSVM-MFPCC and conventional MFPCC are comparable. In contrast,
DSVM-MFPCC performed better than MPFCC regarding stator current ripple under both
conditions, i.e., exact parameters and mismatch parameters, resulting in about a 50%
reduction. Also, THD may vary under different simulation and load conditions, but DSVM-
MFPCC performed better than MPFCC in all conditions. The simulation and experimental
studies illustrated that the suggested method obtains excellent reliability and effectiveness
to the induction-motor drive. Additionally, a motor’s low-speed efficacy is enhanced by
a reduction in current ripple, demonstrating a more accurate estimation of the unknown
variable F of the ultralocal model of IM in conjunction with a significant reduction in
steady-state fluctuations over a broad range.
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