SinglePhase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review
Abstract
:1. Introduction
2. Difficulties with PQ in 1ØµGs
3. HCA for 1ØµGs
3.1. PC Loops (PCLs)
3.2. Virtual Impedance (VI) for PQ Enhancement
4. Centralized and Distributed SCs
5. ESs in 1ØµGs
5.1. Alleviating of VαF Variations
5.2. Correction for PF
5.3. Harmonics Compensation (HC)
5.4. Cooperative Operating of Several ESs
6. Discussion of the Approaches under Consideration
7. Future Research Directions
 Additional features, including the PQ index and equipment longevity, can be thought of as objectives in the context of µG management. The load control strategies ought to be examined more thoroughly than before on the control side.
 The increased use of µGs in recent systems creates a host of new problems, such as connections between µGs, multi µGs, multi agents, decentralized and centralized control procedures, and many others.
 Considering the advancement of technology, it is critical to understand how new machinery, particularly µGs, will affect power systems.
 Response to demand and load management in DGs have become crucial issues. With the growth in RESs and sophisticated metering systems in current decades, this topic may now be more important than ever.
 New solvers can be used to simplify and expedite the solving process because heuristic methods have improved.
 Proper uncertainty modeling can make the network functioning resistant to change. The uncertainties in µGs have been addressed in a number of studies, although a comprehensive approach needs to be offered, particularly if multiple uncertain factors exist simultaneously.
 Future systems will also need to address smartening. Every day, more and more systems will use information and communication technologies. So, it is important to take into account the connections between cyber and physical systems and their issues.
 Recent power systems are more open to incorporating µGs thanks to the use of innovative nonlinear and adaptive control techniques.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1ØµGs  Singlephase microgrids 
PQ  Power quality 
RESs  Renewable energy sources 
VαF  Voltage and frequency 
HDs  Harmonic distortions 
FS  Frequency stability 
VS  Voltage stability 
ESSs  Energy storage systems 
VR  Voltage regulation 
FR  Frequency regulation 
DGs  Distributed generators 
LV  Low voltage 
Q  Reactive power 
V\I  Voltage/current 
DC  Droop control 
POCC  Point of common coupling 
HCA  Hierarchical control architecture 
PC  Primary control 
SC  Secondary control 
PBC  Powerbased control 
LVCs  Load voltage controllers 
SL  Smart load 
PαQ  Active and reactive power 
HCs  Harmonic controllers 
TFs  Transfer functions 
LBC  Low bandwidth communications 
SB  Sharing block 
ADCL  Adaptive DC loop 
µGCC  µG central controller 
PF  Power factor 
PA  Phase angle 
DCL  DC link 
PICs  PI controllers 
RCD  Radial–chordal decomposition 
${V}_{DC}$  DCL voltage 
HC  Harmonics compensation 
2LCTs  Twolevel control techniques 
LBNC  Lowbandwidth noncritical communication 
RLs  Restoration loops 
References
 Saha, D.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Multiple Microgrids: A Review of Architectures and Operation and Control Strategies. Energies 2023, 16, 600. [Google Scholar] [CrossRef]
 QuintanaBarcia, P.; Dragicevic, T.; Garcia, J.; Ribas, J.; Guerrero, J.M. A Distributed Control Strategy for Islanded SinglePhase Microgrids with Hybrid Energy Storage Systems Based on Power Line Signaling. Energies 2018, 12, 85. [Google Scholar] [CrossRef] [Green Version]
 Fazal, S.; Haque, E.; Arif, M.T.; Gargoom, A.; Oo, A.M.T. Grid integration impacts and control strategies for renewable based microgrid. Sustain. Energy Technol. Assess. 2023, 56, 103069. [Google Scholar] [CrossRef]
 Ardjoun, S.A.E.M.; Denaï, M.; Chafouk, H. A Robust Control Approach for Frequency Support Capability of GridTie Photovoltaic Systems. J. Sol. Energy Eng. 2022, 145, 021009. [Google Scholar] [CrossRef]
 Mahmoud, M.M. Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSGbased wind generation system. Int. J. Model. Simul. 2022, 1–15. [Google Scholar] [CrossRef]
 Darshi, R.; Shamaghdari, S.; Jalali, A.; Arasteh, H. Decentralized Reinforcement Learning Approach for Microgrid Energy Management in Stochastic Environment. Int. Trans. Electr. Energy Syst. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
 Raza, S.A.; Jiang, J. Mathematical Foundations for Balancing SinglePhase Residential Microgrids Connected to a ThreePhase Distribution System. IEEE Access 2022, 10, 5292–5303. [Google Scholar] [CrossRef]
 Ashtiani, N.A.; Khajehoddin, S.A.; KarimiGhartemani, M. Modeling and Stability Analysis of SinglePhase Microgrids Controlled in Stationary Frame. IEEE Trans. Power Electron. 2022, 37, 7759–7774. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Ratib, M.K.; Aly, M.M.; AbdelRahim, A.M.M. Winddriven permanent magnet synchronous generators connected to a power grid: Existing perspective and future aspects. Wind. Eng. 2021, 46, 189–199. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Aly, M.M.; AbdelRahim, A.M.M. Enhancing the dynamic performance of a winddriven PMSG implementing different optimization techniques. SN Appl. Sci. 2020, 2, 684. [Google Scholar] [CrossRef] [Green Version]
 Ardjoun, S.A.E.M.; Abid, M. Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 1673–1686. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Ratib, M.K.; Aly, M.M.; Moamen, A.; Rahim, M.A. Effect of Grid Faults on Dominant Wind Generators for Electric Power System Integration: A Comparison and Assessment. Energy Syst. Res. 2021, 4, 70–78. [Google Scholar]
 Mahmoud, M.M.; Atia, B.S.; Esmail, Y.M.; Ardjoun, S.A.E.M.; Anwer, N.; Omar, A.I.; Alsaif, F.; Alsulamy, S.; Mohamed, S.A. Application of Whale Optimization Algorithm Based FOPI Controllers for STATCOM and UPQC to Mitigate Harmonics and Voltage Instability in Modern Distribution Power Grids. Axioms 2023, 12, 420. [Google Scholar] [CrossRef]
 Liu, G.; Ollis, T.B.; Ferraril, M.F.; Sundararajan, A.; Chen, Y.; Olama, M.M.; Tomsovic, K. RETRACTED ARTICLE: Distributed energy management for networked microgrids in a threephase unbalanced distribution network. Front. Energy 2022, 1–16. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Hemeida, A.M.; Senjy, T.; Ewais, A.M. Fault RideThrough Capability Enhancement for GridConnected Permanent Magnet Synchronous Generator Driven by Wind Turbines. In Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, Egypt, 23–25 October 2019; pp. 567–572. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Esmail, Y.M.; Atia, B.S.; Kamel, O.M.; AboRas, K.M.; Bajaj, M.; Bukhari, S.S.H.; Wapet, D.E.M. Voltage Quality Enhancement of LowVoltage Smart Distribution System Using Robust and Optimized DVR Controllers: Application of the Harris Hawks Algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 18. [Google Scholar] [CrossRef]
 Ardjoun, S.A.E.M.; Denai, M.; Abid, M. A robust power control strategy to enhance LVRT capability of gridconnected DFIGbased wind energy systems. Wind. Energy 2019, 22, 834–847. [Google Scholar] [CrossRef] [Green Version]
 Mohamed, M.; Basiony, S.; Mohamed, K.; Mohamed, A.; Abdallah, E.; AbdelMoamen, A.R. Investigations on OTCMPPT Strategy and FRT Capability for PMSG Wind System with the Support of Optimized Wind Side Controller Based on GWO Technique. Energy Syst. Res. 2021, 4, 79–91. [Google Scholar] [CrossRef]
 Giraldo, J.S.; Castrillon, J.A.; Lopez, J.C.; Rider, M.J.; Castro, C.A. Microgrids Energy Management Using Robust Convex Programming. IEEE Trans. Smart Grid 2018, 10, 4520–4530. [Google Scholar] [CrossRef]
 Xu, Z.; Yang, P.; Zeng, Z.; Peng, J.; Zhao, Z. Black Start Strategy for PVESS MultiMicrogrids with ThreePhase/SinglePhase Architecture. Energies 2016, 9, 372. [Google Scholar] [CrossRef] [Green Version]
 Mahmoud, M.M.; Aly, M.M.; Salama, H.S.; AbdelRahim, A.M.M. A combination of an OTC based MPPT and fuzzy logic current control for a winddriven PMSG under variability of wind speed. Energy Syst. 2021, 13, 1075–1098. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Aly, M.M.; Salama, H.S.; AbdelRahim, A.M.M. An internal parallel capacitor control strategy for DClink voltage stabilization of PMSGbased wind turbine under various fault conditions. Wind. Eng. 2021, 46, 983–992. [Google Scholar] [CrossRef]
 Biswal, C.; Sahu, B.K.; Mishra, M.; Rout, P.K. RealTime Grid Monitoring and Protection: A Comprehensive Survey on the Advantages of Phasor Measurement Units. Energies 2023, 16, 4054. [Google Scholar] [CrossRef]
 Pappu, S.; Rahnama, A.; Tovar, M.; Bayne, S.; Little, B.; Friend, S.; Borhani, M. Power Quality Analysis of a Sensitive Load Using a Phasor Measurement Unit. In Proceedings of the 2012 IEEE Green Technologies Conference, Tulsa, OK, USA, 19–20 April 2012; pp. 1–6. [Google Scholar] [CrossRef]
 de Melo, I.D.; Pereira, J.L.R.; Duque, C.A.; Antunes, M.P.; Silva, L.R.M.; de Souza, M.A. Power Quality Monitoring using Synchronized Phasor Measurements: An approach based on hardwareintheloop simulations. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
 Ahmed, M.M.; Amjad, M.; Qureshi, M.A.; Imran, K.; Haider, Z.M.; Khan, M.O. A Critical Review of StateoftheArt Optimal PMU Placement Techniques. Energies 2022, 15, 2125. [Google Scholar] [CrossRef]
 Theodorakatos, N.P.; Lytras, M.; Babu, R. A Generalized Pattern Search Algorithm Methodology for solving an UnderDetermined System of Equality Constraints to achieve Power System Observability using Synchrophasors. J. Phys. Conf. Ser. 2021, 2090, 012125. [Google Scholar] [CrossRef]
 Theodorakatos, N.P.; Lytras, M.; Babu, R. Towards Smart Energy Grids: A BoxConstrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming. Energies 2020, 13, 1724. [Google Scholar] [CrossRef] [Green Version]
 Paramo, G.; Bretas, A.; Meyn, S. Research Trends and Applications of PMUs. Energies 2022, 15, 5329. [Google Scholar] [CrossRef]
 Brandao, D.I.; Araujo, L.; Caldognetto, T.; Pomilio, J.A. Coordinated control of three and singlephase inverters coexisting in lowvoltage microgrids. Appl. Energy 2018, 228, 2050–2060. [Google Scholar] [CrossRef]
 Kandari, R.; Neeraj, N.; Micallef, A. Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids. Energies 2022, 16, 317. [Google Scholar] [CrossRef]
 Ishaq, S.; Khan, I.; Rahman, S.; Hussain, T.; Iqbal, A.; Elavarasan, R.M. A review on recent developments in control and optimization of micro grids. Energy Rep. 2022, 8, 4085–4103. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Ratib, M.K.; Aly, M.M.; Abdel–Rahim, A.M.M. Application of Whale Optimization Technique for Evaluating the Performance of WindDriven PMSG Under Harsh Operating Events. Process. Integr. Optim. Sustain. 2022, 6, 447–470. [Google Scholar] [CrossRef]
 Mohamed, S.A.; Anwer, N.; Mahmoud, M.M. Solving optimal power flow problem for IEEE30 bus system using a developed particle swarm optimization method: Towards fuel cost minimization. Int. J. Model. Simul. 2023, 1–14. [Google Scholar] [CrossRef]
 Jones, E.S.; Jewell, N.; Liao, Y.; Ionel, D.M. Optimal Capacitor Placement and Rating for LargeScale Utility Power Distribution Systems Employing LoadTapChanging Transformer Control. IEEE Access 2023, 11, 19324–19338. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Aly, M.M.; Salama, H.S.; AbdelRahim, A.M.M. Dynamic evaluation of optimization techniques–based proportional–integral controller for winddriven permanent magnet synchronous generator. Wind. Eng. 2020, 45, 696–709. [Google Scholar] [CrossRef]
 Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia response and frequency control techniques for renewable energy sources: A review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [Google Scholar] [CrossRef]
 Buła, D.; Grabowski, D.; Maciążek, M. A Review on Optimization of Active Power Filter Placement and Sizing Methods. Energies 2022, 15, 1175. [Google Scholar] [CrossRef]
 Rafiq, M.; Naz, S.; Martins, J.M.; Mata, M.N.; Mata, P.N.; Maqbool, S. A Study on Emerging Management Practices of Renewable Energy Companies after the Outbreak of Covid19: Using an Interpretive Structural Modeling (ISM) Approach. Sustainability 2021, 13, 3420. [Google Scholar] [CrossRef]
 Casalicchio, V.; Manzolini, G.; Prina, M.G.; Moser, D. Renewable Energy Communities: Business Models of Multifamily Housing Buildings. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 261–276. [Google Scholar] [CrossRef]
 GarciaTorres, F.; Vazquez, S.; MorenoGarcia, I.M.; GilDeCastro, A.; RonceroSanchez, P.; MorenoMunoz, A. Microgrids Power Quality Enhancement Using Model Predictive Control. Electronics 2021, 10, 328. [Google Scholar] [CrossRef]
 Lingampalli, B.R.; Kotamraju, S.R.; Kumar, M.K.; Reddy, C.R.; Pushkarna, M.; Bajaj, M.; Kotb, H.; Alphonse, S. Integrated Microgrid Islanding Detection with Phase Angle Difference for Reduced Nondetection Zone. Int. J. Energy Res. 2023, 2023, 1–17. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Salama, H.S.; Aly, M.M.; AbdelRahim, A.M.M. Design and implementation of FLC system for fault ridethrough capability enhancement in PMSGwind systems. Wind. Eng. 2020, 45, 1361–1373. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Ratib, M.K.; Raglend, I.J.; Swaminathan, J.; Aly, M.M.; AbdelRahim, A.M.M. Application of Grey Wolf Optimization for PMSGBased WECS under Different Operating Conditions: Performance Assessment. In Proceedings of the2021 Innovations in Power and Advanced Computing Technologies (iPACT), Kuala Lumpur, Malaysia, 27–29 November 2021. [Google Scholar] [CrossRef]
 Ewais, A.M.; Elnoby, A.M.; Mohamed, T.H.; Mahmoud, M.M.; Qudaih, Y.; Hassan, A.M. Adaptive frequency control in smart microgrid using controlled loads supported by realtime implementation. PLoS ONE 2023, 18, e0283561. [Google Scholar] [CrossRef]
 Micallef, A.; Apap, M.; SpiteriStaines, C.; Guerrero, J.M.; Vasquez, J.C. Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids. IEEE Trans. Smart Grid 2014, 5, 1149–1158. [Google Scholar] [CrossRef]
 Vasquez, J.C.; Guerrero, J.M.; Luna, A.; Rodriguez, P.; Teodorescu, R. Adaptive Droop Control Applied to VoltageSource Inverters Operating in GridConnected and Islanded Modes. IEEE Trans. Ind. Electron. 2009, 56, 4088–4096. [Google Scholar] [CrossRef]
 Alavi, S.A.; Mehran, K.; Hao, Y.; Rahimian, A.; Mirsaeedi, H.; Vahidinasab, V. A Distributed EventTriggered Control Strategy for DC Microgrids Based on PublishSubscribe Model Over Industrial Wireless Sensor Networks. IEEE Trans. Smart Grid 2018, 10, 4323–4337. [Google Scholar] [CrossRef] [Green Version]
 Mahmoud, M.M.; Atia, B.S.; Abdelaziz, A.Y.; Aldin, N.A.N. Dynamic Performance Assessment of PMSG and DFIGBased WECS with the Support of Manta Ray Foraging Optimizer Considering MPPT, Pitch Control, and FRT Capability Issues. Processe 2022, 12, 2723. [Google Scholar] [CrossRef]
 Guerrero, J.M.; Loh, P.C.; Lee, T.L.; Chandorkar, M. Advanced Control Architectures for Intelligent Microgrids—Part II: Power Quality, Energy Storage, and AC/DC Microgrids. IEEE Trans. Ind. Electron. 2012, 60, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
 Ghafouri, A. Microgrid modeling for contribution to the frequency control of power system. Wind. Eng. 2021, 46, 767–779. [Google Scholar] [CrossRef]
 Ahmethodzic, L.; Music, M. Comprehensive review of trends in microgrid control. Renew. Energy Focus 2021, 38, 84–96. [Google Scholar] [CrossRef]
 Bidram, A.; Davoudi, A. Hierarchical Structure of Microgrids Control System. IEEE Trans. Smart Grid 2012, 3, 1963–1976. [Google Scholar] [CrossRef]
 Yamashita, D.Y.; Vechiu, I.; Gaubert, J.P. A review of hierarchical control for building microgrids. Renew. Sustain. Energy Rev. 2019, 118, 109523. [Google Scholar] [CrossRef]
 Bazmohammadi, N.; AnvariMoghaddam, A.; Tahsiri, A.; Madary, A.; Vasquez, J.C.; Guerrero, J.M. Stochastic Predictive Energy Management of MultiMicrogrid Systems. Appl. Sci. 2020, 10, 4833. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Hemeida, A.M.; AbdelRahim, A.M.M. Behavior of PMSG Wind Turbines with Active Crowbar Protection Under Faults. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (iPACT), Vellore, India, 22–23 March 2019; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
 Vasquez, J.C.; Guerrero, J.M.; Savaghebi, M.; EloyGarcia, J.; Teodorescu, R. Modeling, Analysis, and Design of StationaryReferenceFrame DroopControlled Parallel ThreePhase Voltage Source Inverters. IEEE Trans. Ind. Electron. 2012, 60, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
 Shafiee, Q.; Stefanović, Č.; Dragicevic, T.; Popovski, P.; Vasquez, J.C.; Guerrero, J.M. Robust Networked Control Scheme for Distributed Secondary Control of Islanded Microgrids. IEEE Trans. Ind. Electron. 2014, 61, 5363–5374. [Google Scholar] [CrossRef] [Green Version]
 Alsafran, A.S.; Daniels, M.W. Comparative Study of Droop Control Methods for AC Islanded Microgrids. In Proceedings of the 2020 IEEE Green Technologies Conference (GreenTech), Oklahoma City, OK, USA, 1–3 April 2020; pp. 26–30. [Google Scholar] [CrossRef]
 Zadehbagheri, M.; Kiani, M.J.; Sutikno, T.; Moghadam, R.A. Design of a new backstepping controller for control of microgrid sources inverter. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 4469–4482. [Google Scholar] [CrossRef]
 Maqbool, H.; Yousaf, A.; Asif, R.M.; Rehman, A.U.; Eldin, E.T.; Shafiq, M.; Hamam, H. An Optimized Fuzzy Based Control Solution for Frequency Oscillation Reduction in Electric Grids. Energies 2022, 15, 6981. [Google Scholar] [CrossRef]
 Mahmoud, M.M.; Atia, B.S.; Esmail, Y.M.; Bajaj, M.; Wapet, D.E.M.; Ratib, M.K.; Hossain, B.; AboRas, K.M.; AbdelRahim, A.M.M. Evaluation and Comparison of Different Methods for Improving Fault RideThrough Capability in GridTied Permanent Magnet Synchronous Wind Generators. Int. Trans. Electr. Energy Syst. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
 Lu, J.; Savaghebi, M.; Zhang, B.; Hou, X.; Sun, Y.; Guerrero, J.M. Distributed Dynamic EventTriggered Control for Accurate Active and Harmonic Power Sharing in Modular OnLine UPS Systems. IEEE Trans. Ind. Electron. 2021, 69, 13045–13055. [Google Scholar] [CrossRef]
 Bevrani, H.; Shokoohi, S. An Intelligent Droop Control for Simultaneous Voltage and Frequency Regulation in Islanded Microgrids. IEEE Trans. Smart Grid 2013, 4, 1505–1513. [Google Scholar] [CrossRef]
 Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control scheme for voltage unbalance compensation in an islanded droopcontrolled microgrid. IEEE Trans. Smart Grid 2012, 3, 797–807. [Google Scholar] [CrossRef] [Green Version]
 Han, Y.; Shen, P.; Zhao, X.; Guerrero, J.M. An Enhanced Power Sharing Scheme for Voltage Unbalance and Harmonics Compensation in an Islanded AC Microgrid. IEEE Trans. Energy Convers. 2016, 31, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
 Alsafran, A.S. A Feasibility Study of Implementing IEEE 1547 and IEEE 2030 Standards for Microgrid in the Kingdom of Saudi Arabia. Energies 2023, 16, 1777. [Google Scholar] [CrossRef]
 Shafiee, Q.; Guerrero, J.M.; Vasquez, J.C. Distributed Secondary Control for Islanded Microgrids—A Novel Approach. IEEE Trans. Power Electron. 2014, 29, 1018–1031. [Google Scholar] [CrossRef] [Green Version]
 Yu, C.; Zhou, H.; Lu, X. Frequency control of droopbased lowvoltage microgrids with cobweb network topologies. IET Gener. Transm. Distrib. 2020, 14, 4310–4320. [Google Scholar] [CrossRef]
 Köbrich, D.; Marín, L.G.; MuñozCarpintero, D.; Ahumada, C.; Sáez, D.; Sumner, M.; JiménezEstévez, G. A robust distributed energy management system for the coordinated operation of rural multimicrogrids. Int. J. Energy Res. 2022, 46, 19775–19795. [Google Scholar] [CrossRef]
 Aldin, N.A.N.; Abdellatif, W.S.E.; Elbarbary, Z.M.S.; Omar, A.I.; Mahmoud, M.M. Robust Speed Controller for PMSG Wind System Based on Harris Hawks Optimization via Wind Speed Estimation: A Real Case Study. IEEE Access 2023, 11, 5929–5943. [Google Scholar] [CrossRef]
 Sheykhi, N.; Salami, A.; Guerrero, J.M.; AgundisTinajero, G.D.; Faghihi, T. A comprehensive review on telecommunication challenges of microgrids secondary control. Int. J. Electr. Power Energy Syst. 2022, 140, 108081. [Google Scholar] [CrossRef]
 Solanke, S.S.; Jadoun, V.K.; Jayalakshmi, N.S.; Kanwar, N.; Shrivastava, A. A Recapitulation of Electric Spring for Demand Side Management & Power Quality Mitigation. IOP Conf. Series Mater. Sci. Eng. 2022, 1228, 012028. [Google Scholar] [CrossRef]
 Soni, J.; Panda, S.K. Electric Spring for Voltage and Power Stability and Power Factor Correction. IEEE Trans. Ind. Appl. 2017, 53, 3871–3879. [Google Scholar] [CrossRef]
 Kamel, O.M.; Diab, A.A.Z.; Mahmoud, M.M.; AlSumaiti, A.S.; Sultan, H.M. Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems. Energies 2023, 16, 1577. [Google Scholar] [CrossRef]
 Ratib, M.K.; Alkhalaf, S.; Senjyu, T.; Rashwan, A.; Mahmoud, M.M.; Hemeida, A.M.; Osheba, D. Applications of hybrid model predictive control with computational burden reduction for electric drives fed by 3phase inverter. Ain Shams Eng. J. 2022, 4, 102028. [Google Scholar] [CrossRef]
 Hui, S.Y.; Lee, C.K.; Wu, F.F. Electric Springs—A New Smart Grid Technology. IEEE Trans. Smart Grid 2012, 3, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
 Madiba, T.; Bansal, R.; Mbungu, N.; Bettayeb, M.; Naidoo, R.; Siti, M. Underfrequency load shedding of microgrid systems: A review. Int. J. Model. Simul. 2021, 42, 653–679. [Google Scholar] [CrossRef]
 Chaudhuri, N.R.; Lee, C.K.; Chaudhuri, B.; Hui, S.Y.R. Dynamic Modeling of Electric Springs. IEEE Trans. Smart Grid 2014, 5, 2450–2458. [Google Scholar] [CrossRef]
 Kollipara, K.D.; Kumar, J.V.; Prasanthi, R.; Sura, S.R.; Patnaik, M.S.P.K.; Sankar, R.S.R. Energy Efficient PhotovoltaicElectric Spring for Real and Reactive Power Control in DemandSide Management. Front. Energy Res. 2022, 10, 762931. [Google Scholar] [CrossRef]
 Luo, X.; Akhtar, Z.; Lee, C.K.; Chaudhuri, B.; Tan, S.C.; Hui, S.Y.R. Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Trans. Smart Grid 2014, 6, 209–219. [Google Scholar] [CrossRef] [Green Version]
 Akhtar, Z.; Chaudhuri, B.; Hui, S.Y.R. Primary Frequency Control Contribution from Smart Loads Using Reactive Compensation. IEEE Trans. Smart Grid 2015, 6, 2356–2365. [Google Scholar] [CrossRef] [Green Version]
 Boudjemai, H.; Ardjoun, S.A.E.M.; Chafouk, H.; Denai, M.; Elbarbary, Z.M.S.; Omar, A.I.; Mahmoud, M.M. Application of a Novel Synergetic Control for Optimal Power Extraction of a SmallScale Wind Generation System with Variable Loads and Wind Speeds. Symmetry 2023, 15, 369. [Google Scholar] [CrossRef]
 Lee, C.K.; Chaudhuri, B.; Hui, S.Y. Hardware and Control Implementation of Electric Springs for Stabilizing Future Smart Grid with Intermittent Renewable Energy Sources. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 18–27. [Google Scholar] [CrossRef] [Green Version]
 Lee, C.K.; Hui, S.Y.R. Reduction of Energy Storage Requirements in Future Smart Grid Using Electric Springs. IEEE Trans. Smart Grid 2013, 4, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
 Vandoorn, T.L.; Vasquez, J.C.; De Kooning, J.; Guerrero, J.M.; Vandevelde, L. Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Ind. Electron. Mag. 2013, 7, 42–55. [Google Scholar] [CrossRef] [Green Version]
 Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids. IEEE Trans. Power Electron. 2017, 32, 2427–2451. [Google Scholar] [CrossRef] [Green Version]
 Zuo, K.; Wu, L. A review of decentralized and distributed control approaches for islanded microgrids: Novel designs, current trends, and emerging challenges. Electr. J. 2022, 35, 107138. [Google Scholar] [CrossRef]
 Ullah, S.; Khan, L.; Sami, I.; Ro, J.S. Voltage/Frequency Regulation with Optimal Load Dispatch in Microgrids Using SMC Based Distributed Cooperative Control. IEEE Access 2022, 10, 64873–64889. [Google Scholar] [CrossRef]
 Elmetwaly, A.H.; Younis, R.A.; Abdelsalam, A.A.; Omar, A.I.; Mahmoud, M.M.; Alsaif, F.; ElShahat, A.; Saad, M.A. Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer. Sustainability 2023, 15, 5209. [Google Scholar] [CrossRef]
 Sundarajoo, S.; Soomro, D.M. Under voltage load shedding and penetration of renewable energy sources in distribution systems: A review. Int. J. Model. Simul. 2022, 1–19. [Google Scholar] [CrossRef]
 El Zerk, A.; Ouassaid, M. RealTime Fuzzy Logic Based Energy Management System for Microgrid Using Hardware in the Loop. Energies 2023, 16, 2244. [Google Scholar] [CrossRef]
 Mutarraf, M.U.; Guan, Y.; Terriche, Y.; Su, C.L.; Nasir, M.; Vasquez, J.C.; Guerrero, J.M. Adaptive Power Management of Hierarchical Controlled Hybrid Shipboard Microgrids. IEEE Access 2022, 10, 21397–21411. [Google Scholar] [CrossRef]
 Khan, M.Z.; Ahmed, E.M.; Habib, S.; Ali, Z.M. Multiobjective Optimization Technique for Droop Controlled Distributed Generators in AC Islanded Microgrid. Electr. Power Syst. Res. 2022, 213, 108671. [Google Scholar] [CrossRef]
 Brandao, D.I.; Araujo, L.S.; Alonso, A.M.S.; dos Reis, G.L.; Liberado, E.V.; Marafao, F.P. Coordinated Control of Distributed Three and SinglePhase Inverters Connected to ThreePhase ThreeWire Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 3861–3877. [Google Scholar] [CrossRef] [Green Version]
 Zheng, D.; Zhang, W.; Alemu, S.N.; Wang, P.; Bitew, G.T.; Wei, D.; Yue, J. Protection of microgrids. In Microgrid Protection and Control; Elsevier: Amsterdam, Netherlands, 2021; pp. 121–168. [Google Scholar] [CrossRef]
 Veronica, A.J.; Kumar, N.S. Control strategies for frequency regulation in microgrids: A review. Wind. Eng. 2019, 45, 107–122. [Google Scholar] [CrossRef]
 Memon, A.A.; Laaksonen, H.; Kauhaniemi, K. Microgrid Protection with Conventional and Adaptive Protection Schemes. In Microgrids: Advances in Operation, Control, and Protection; Springer: Berlin/Heidelberg, Germany, 2021; pp. 523–579. [Google Scholar] [CrossRef]
 Azeroual, M.; Boujoudar, Y.; EL Iysaouy, L.; Aljarbouh, A.; Fayaz, M.; Qureshi, M.S.; Rabbi, F.; EL Markhi, H. Energy management and control system for microgrid based windPVbattery using multiagent systems. Wind. Eng. 2022, 46, 1247–1263. [Google Scholar] [CrossRef]
 Hosseinzadeh, N.; Aziz, A.; Mahmud, A.; Gargoom, A.; Rabbani, M. Voltage Stability of Power Systems with RenewableEnergy InverterBased Generators: A Review. Electronics 2021, 10, 115. [Google Scholar] [CrossRef]
 Aazami, R.; Heydari, O.; Tavoosi, J.; Shirkhani, M.; Mohammadzadeh, A.; Mosavi, A. Optimal Control of an EnergyStorage System in a Microgrid for Reducing WindPower Fluctuations. Sustainability 2022, 14, 6183. [Google Scholar] [CrossRef]
 Kamel, R.M.; Chaouachi, A.; Nagasaka, K. Comparison the Performances of Three Earthing Systems for MicroGrid Protection during the Grid Connected Mode. Smart Grid Renew. Energy 2011, 2, 206–215. [Google Scholar] [CrossRef] [Green Version]
 Malekpour, A.R.; Niknam, T.; Pahwa, A.; Fard, A.K. MultiObjective Stochastic Distribution Feeder Reconfiguration in Systems with Wind Power Generators and Fuel Cells Using the Point Estimate Method. IEEE Trans. Power Syst. 2012, 28, 1483–1492. [Google Scholar] [CrossRef]
 Qin, D.; Chen, Y.; Zhang, Z.; Enslin, J. A Hierarchical Microgrid Protection Scheme using Hybrid Breakers. In Proceedings of the2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems, Chicago, IL, USA, 28 June 2021–1 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
 Senarathna, S.; Hemapala, K.T.M.U. Review of adaptive protection methods for microgrids. AIMS Energy 2019, 7, 557–578. [Google Scholar] [CrossRef]
 Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Adaptive Protection Scheme for FREEDM Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization Technique. IEEE Access 2022, 10, 55583–55601. [Google Scholar] [CrossRef]
 Pavankumar, Y.; Debnath, S.; Paul, S. Microgrid fault detection technique using phase change of Positive sequence current. Int. J. Model. Simul. 2022, 43, 171–184. [Google Scholar] [CrossRef]
 Guerrero, J.; Berbel, N.; de Vicuna, L.G.; Matas, J.; Miret, J.; Castilla, M. Droop Control Method for the Parallel Operation of Online Uninterruptible Power Systems using Resistive Output Impedance. In Proceedings of the TwentyFirst Annual IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 19–23 March 2006. [Google Scholar]
 Nabatirad, M.; Razzaghi, R.; Bahrani, B. Decentralized Voltage Regulation and Energy Management of Integrated DC Microgrids Into AC Power Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1269–1279. [Google Scholar] [CrossRef]
 Majumder, R.; Chaudhuri, B.; Ghosh, A.; Majumder, R.; Ledwich, G.; Zare, F. Improvement of Stability and Load Sharing in an Autonomous Microgrid Using Supplementary Droop Control Loop. IEEE Trans. Power Syst. 2010, 25, 796–808. [Google Scholar] [CrossRef] [Green Version]
 Guerrero, J.M.; Hang, L.; Uceda, J. Control of Distributed Uninterruptible Power Supply Systems. IEEE Trans. Ind. Electron. 2008, 55, 2845–2859. [Google Scholar] [CrossRef] [Green Version]
 Hartmann, B.; Táczi, I.; Talamon, A.; Vokony, I. Island mode operation in intelligent microgrid—Extensive analysis of a case study. Int. Trans. Electr. Energy Syst. 2021, 31, e12950. [Google Scholar] [CrossRef]
 Alsafran, A.S.; Daniels, M.W. Consensus Control for Reactive Power Sharing Using an Adaptive Virtual Impedance Approach. Energies 2020, 13, 2026. [Google Scholar] [CrossRef] [Green Version]
 Zhang, J.; Wang, X.; Ma, L. A finitetime distributed cooperative control approach for microgrids. CSEE J. Power Energy Syst. 2020, 8, 1194–1206. [Google Scholar] [CrossRef]
 Albatran, S.; AlShorman, H. Reactive power correction using virtual synchronous generator technique for droop controlled voltage source inverters in islanded microgrid. Energy Syst. 2021, 14, 391–417. [Google Scholar] [CrossRef]
 Micallef, A.; Apap, M.; SpiteriStaines, C.; Guerrero, J.M. Mitigation of Harmonics in GridConnected and Islanded Microgrids Via Virtual Admittances and Impedances. IEEE Trans. Smart Grid 2017, 8, 651–661. [Google Scholar] [CrossRef] [Green Version]
 Petersen, B.; Bindner, H.; Poulsen, B.; You, S. Smart transmission grid: Vision and framework. IEEE Trans. Smart Grid 2017, 4, 168–177. [Google Scholar] [CrossRef]
 Guerrero, J.M.; Vasquez, J.C.; Matas, J.; de Vicuna, L.G.; Castilla, M. Hierarchical Control of DroopControlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
 Zhao, M.; Wang, X.; Mo, J. Workload and energy management of geodistributed datacenters considering demand response programs. Sustain. Energy Technol. Assessments 2023, 55, 102851. [Google Scholar] [CrossRef]
 Soultanis, N.L.; Hatziargyriou, N.D. Control issues of inverters in the formation of L. V. microgrids. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–7. [Google Scholar] [CrossRef]
 Wang, B.; Lin, Q.; Wen, B.; Burgos, R. GirdForming Distributed Generation Inverter Control for A Smooth Transition from GridConnected to Islanded Operation Mode in Microgrids. In Proceedings of the2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
 Wang, J. Design Power Control Strategies of GridForming Inverters for Microgrid Application. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021—Proceedings, Virtual, 10–14 October 2021; pp. 1079–1086. [Google Scholar] [CrossRef]
 Vasquez, J.C.; Mastromauro, R.A.; Guerrero, J.M.; Liserre, M. Voltage Support Provided by a DroopControlled Multifunctional Inverter. IEEE Trans. Ind. Electron. 2009, 56, 4510–4519. [Google Scholar] [CrossRef]
 Islam, M.; Nadarajah, M.; Hossain, J. Multifunctional control of singlephase transformerless PV inverter connected to a distribution network. In Proceedings of the 2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, QLD, Australia, 25–28 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
 Mohamed, Y.A.R.I.; ElSaadany, E.F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed Generation Microgrids. IEEE Trans. Power Electron. 2008, 23, 2806–2816. [Google Scholar] [CrossRef]
 Firdaus, A.; Mishra, S. Mitigation of Power and Frequency Instability to Improve Load Sharing Among Distributed Inverters in Microgrid Systems. IEEE Syst. J. 2019, 14, 1024–1033. [Google Scholar] [CrossRef]
 Haddadi, A.; Shojaei, A.; Boulet, B. Enabling high droop gain for improvement of reactive power sharing accuracy in an electronicallyinterfaced autonomous microgrid. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition: Energy Conversion Innovation for a Clean Energy Future, ECCE 2011, Phoenix, AZ, USA, 17–22 September2011; pp. 673–679. [Google Scholar] [CrossRef]
 Zhong, Q.C. Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel. IEEE Trans. Ind. Electron. 2011, 60, 1281–1290. [Google Scholar] [CrossRef]
 Prabaharan, N.; Jerin, A.R.A.; Najafi, E.; Palanisamy, K. An overview of control techniques and technical challenge for inverters in micro grid. HybridRenew. Energy Syst. Microgrids 2018, 97–107. [Google Scholar] [CrossRef]
 Meral, M.E.; Çelík, D. A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions. Annu. Rev. Control 2018, 47, 112–132. [Google Scholar] [CrossRef]
 Castilla, M.; Miret, J.; Matas, J.; de Vicuna, L.G.; Guerrero, J.M. Control Design Guidelines for SinglePhase GridConnected Photovoltaic Inverters with Damped Resonant Harmonic Compensators. IEEE Trans. Ind. Electron. 2009, 56, 4492–4501. [Google Scholar] [CrossRef]
 Micallef, A.; Apap, M.; Staines, C.S.; Zapata, J.M.G. Secondary control for reactive power sharing and voltage amplitude restoration in droopcontrolled islanded microgrids. In Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2012, Aalborg, Denmark, 25–28 June 2012; pp. 492–498. [Google Scholar] [CrossRef] [Green Version]
 He, J.; Li, Y.W.; Guerrero, J.M.; Blaabjerg, F.; Vasquez, J.C. An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme. IEEE Trans. Power Electron. 2013, 28, 5272–5282. [Google Scholar] [CrossRef]
 Zhu, Y.; Fan, Q.; Liu, B.; Wang, T. An Enhanced Virtual Impedance Optimization Method for Reactive Power Sharing in Microgrids. IEEE Trans. Power Electron. 2018, 33, 10390–10402. [Google Scholar] [CrossRef]
 Micallef, A.; Apap, M.; SpiteriStaines, C.; Guerrero, J.M. Performance comparison for virtual impedance techniques used in droop controlled islanded microgrids. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, Capri, Italy, 22–24 June 2016; pp. 695–700. [Google Scholar] [CrossRef] [Green Version]
 Micallef, A.; Apap, M.; SpiteriStaines, C.; Guerrero, J.M. SinglePhase Microgrid with Seamless Transition Capabilities Between Modes of Operation. IEEE Trans. Smart Grid 2015, 6, 2736–2745. [Google Scholar] [CrossRef] [Green Version]
 Marzoni, M.A.; Sadeghzadeh, S.M. Control of singlephase photovoltaic H6 inverter in gridconnected and standalone modes of operation. Int. J. Power Electron. 2022, 16, 80. [Google Scholar] [CrossRef]
 Sreekumar, P.; Khadkikar, V. A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid. IEEE Trans. Power Deliv. 2015, 31, 936–945. [Google Scholar] [CrossRef]
 Guerrero, J.M.; Chandorkar, M.; Lee, T.L.; Loh, P.C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Trans. Ind. Electron. 2013, 60, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
 Milczarek, A.; Malinowski, M.; Guerrero, J.M. Reactive Power Management in Islanded Microgrid—Proportional Power Sharing in Hierarchical Droop Control. IEEE Trans. Smart Grid 2015, 6, 1631–1638. [Google Scholar] [CrossRef] [Green Version]
 Mahmood, H.; Michaelson, D.; Jiang, J. Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control. IEEE Trans. Smart Grid 2015, 6, 3052–3060. [Google Scholar] [CrossRef]
 Alsafran, A.S. Effectiveness of Communication Topology Design on Rate of Convergence of the Reactive Power Sharing in offgrid Microgrids. In Proceedings of the 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 8–11 September 2021. [Google Scholar] [CrossRef]
 Chen, X.; Hou, Y.; Tan, S.C.; Lee, C.K.; Hui, S.Y.R. Mitigating Voltage and Frequency Fluctuation in Microgrids Using Electric Springs. IEEE Trans. Smart Grid 2014, 6, 508–515. [Google Scholar] [CrossRef] [Green Version]
 Avancini, D.B.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Das, A.K.; Kozlov, S.; Solic, P. A new IoTbased smart energy meter for smart grids. Int. J. Energy Res. 2020, 45, 189–202. [Google Scholar] [CrossRef]
 Yan, S.; Tan, S.C.; Lee, C.K.; Chaudhuri, B.; Hui, S.Y.R. Use of Smart Loads for Power Quality Improvement. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 504–512. [Google Scholar] [CrossRef] [Green Version]
 Ankita; Jarial, R. Improved Electric spring control for Power Factor Correction Using Fuzzy PI Controller. In Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 24–25 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
 Lee, C.K.; Chaudhuri, N.R.; Chaudhuri, B.; Hui, S.R. Droop control of distributed electric springs for stabilizing future power grid. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; p. 1. [Google Scholar] [CrossRef]
 Yang, Y.; Ho, S.S.; Tan, S.C.; Hui, S.Y.R. SmallSignal Model and Stability of Electric Springs in Power Grids. IEEE Trans. Smart Grid 2016, 9, 857–865. [Google Scholar] [CrossRef]
 Zheng, Y.; Hill, D.J.; Meng, K.; Hui, S.Y.R. Critical Bus Voltage Support in Distribution Systems with Electric Springs and Responsibility Sharing. IEEE Trans. Power Syst. 2016, 32, 3584–3593. [Google Scholar] [CrossRef] [Green Version]
 Wang, Q.; Deng, F.; Cheng, M.; Buja, G. The State of the Art of Topologies for Electric Springs. Energies 2018, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
 Solanki, M.D.; Joshi, S.K. Review of Electric Spring: A new smart grid device for efficient demand dispatch and active and reactive power control. In Proceedings of the 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 8–11 March 2016; pp. 1–8. [Google Scholar] [CrossRef]
 Rokde, J.; Thosar, D.A. Review of Various Application of Electric Spring. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
 TapiaTinoco, G.; GarciaPerez, A.; GranadosLieberman, D.; CamarenaMartinez, D.; ValtierraRodriguez, M. Hardware structures, control strategies, and applications of electric springs: A stateoftheart review. IET Gener. Transm. Distrib. 2020, 14, 5349–5363. [Google Scholar] [CrossRef]
 Alsafran, A. Literature Review of Power Sharing Control Strategies in Islanded AC Microgrids with Nonlinear Loads. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGTEurope), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
 Yang, H.; Li, T.; Long, Y.; Chen, C.L.P.; Xiao, Y. Distributed Virtual Inertia Implementation of Multiple Electric Springs Based on Model Predictive Control in DC Microgrids. IEEE Trans. Ind. Electron. 2021, 69, 13439–13450. [Google Scholar] [CrossRef]
 Quijano, D.A.; VahidGhavidel, M.; Javadi, M.S.; PadilhaFeltrin, A.; Catalao, J.P.S. A PriceBased Strategy to Coordinate Electric Springs for Demand Side Management in Microgrids. IEEE Trans. Smart Grid 2022, 14, 400–412. [Google Scholar] [CrossRef]
 Wang, Q.; Cheng, M.; Buja, G. Integration of Electric Springs and MultiPort Transformers—A New Solution for AC Microgrids with Renewable Energy Sources. Energies 2017, 10, 193. [Google Scholar] [CrossRef] [Green Version]
 Yan, S.; Lee, C.K.; Yang, T.; Mok, K.T.; Tan, S.C.; Chaudhuri, B.; Hui, S.Y.R. Extending the Operating Range of Electric Spring Using BackToBack Converter: Hardware Implementation and Control. IEEE Trans. Power Electron. 2016, 32, 5171–5179. [Google Scholar] [CrossRef]
 Wang, Q.; Cheng, M.; Chen, Z.; Wang, Z. SteadyState Analysis of Electric Springs with a Novel δ Control. IEEE Trans. Power Electron. 2015, 30, 7159–7169. [Google Scholar] [CrossRef]
 Mok, K.T.; Tan, S.C.; Hui, S.Y.R. Decoupled Power Angle and Voltage Control of Electric Springs. IEEE Trans. Power Electron. 2015, 31, 1216–1229. [Google Scholar] [CrossRef]
 Akhtar, Z.; Chaudhuri, B.; Hui, S.Y.R. Smart Loads for Voltage Control in Distribution Networks. IEEE Trans. Smart Grid 2015, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
 Chen, X.; Hou, Y.; Hui, S.Y.R. Distributed Control of Multiple Electric Springs for Voltage Control in Microgrid. IEEE Trans. Smart Grid 2016, 8, 1350–1359. [Google Scholar] [CrossRef]
 Lu, F.; Liu, H. An Accurate Power Flow Method for Microgrids with Conventional Droop Control. Energies 2022, 15, 5841. [Google Scholar] [CrossRef]
 Buraimoh, E.; Aluko, A.O.; Oni, O.E.; Davidson, I.E. Decentralized Virtual Impedance Conventional Droop Control for Power Sharing for InverterBased Distributed Energy Resources of a Microgrid. Energies 2022, 15, 4439. [Google Scholar] [CrossRef]
 Wang, X.; Zhang, J.; Zheng, M.; Ma, L. A distributed reactive power sharing approach in microgrid with improved droop control. CSEE J. Power Energy Syst. 2020, 7, 1238–1246. [Google Scholar] [CrossRef]
 Boyle, J.; Littler, T.; Muyeen, S.; Foley, A.M. An alternative frequencydroop scheme for wind turbines that provide primary frequency regulation via rotor speed control. Int. J. Electr. Power Energy Syst. 2021, 133, 107219. [Google Scholar] [CrossRef]
 Chowdhury, S.; Crossley, P. Islanding protection of active distribution networks with renewable distributed generators: A comprehensive survey. Electr. Power Syst. Res. 2009, 79, 984–992. [Google Scholar] [CrossRef]
 Jahn, J.; Engler, A. Inductive decoupling of lowvoltage subnetworks. In Proceedings of the 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 9–11 October 2007; pp. 1–6. [Google Scholar] [CrossRef]
 Feng, F.; Fang, J. Weak GridInduced Stability Problems and Solutions of Distributed Static Compensators with Voltage Droop Support. Electronics 2022, 11, 1385. [Google Scholar] [CrossRef]
 Binu, K.U.; Mija, S.J.; Cheriyan, E.P. Nonlinear analysis and estimation of the domain of attraction for a droop controlled microgrid system. Electr. Power Syst. Res. 2022, 204, 107712. [Google Scholar] [CrossRef]
 Alghamdi, S.; Sindi, H.F.; AlDurra, A.; Alhussainy, A.A.; Rawa, M.; Kotb, H.; AboRas, K.M. Reduction in Voltage Harmonics of Parallel Inverters Based on Robust Droop Controller in Islanded Microgrid. Mathematics 2022, 11, 172. [Google Scholar] [CrossRef]
 Zhong, Q.C. Harmonic Droop Controller to Reduce the Voltage Harmonics of Inverters. IEEE Trans. Ind. Electron. 2012, 60, 936–945. [Google Scholar] [CrossRef]
 Zhong, Q.C.; Hornik, T. Harmonic Droop Controller to Improve Voltage Quality. In Control of Power Inverters in Renewable Energy and Smart Grid Integration; Wiley Online Library: New York, NY, USA, 2012; pp. 347–358. [Google Scholar] [CrossRef]
 Mammadov, A.D.; Dincel, E.; Söylemez, M.T. Analytical design of discrete PI–PR controllers via dominant pole assignment. ISA Trans. 2021, 123, 312–322. [Google Scholar] [CrossRef]
 Rezaei, M.H.; Akhbari, M. Power decoupling capability with PR controller for MicroInverter applications. Int. J. Electr. Power Energy Syst. 2021, 136, 107607. [Google Scholar] [CrossRef]
 Kar, P.K.; Priyadarshi, A.; Karanki, S.B. Control Strategy for SinglePhase GridInterfaced Modified Multilevel Inverter Topology for Distributed Power Generation. IEEE Syst. J. 2021, 16, 1627–1636. [Google Scholar] [CrossRef]
 Cardoso, L.S.; Rocha, T.D.O.A.; Ribeiro, R.L.A.; Pinheiro, J.R.; Neto, J.R.D. Improvements on Power Flow Control of VoltageSourceBased GridSupporting Converter by Using Virtual Impedance Concept. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies ConferenceLatin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
 Kim, J.; Guerrero, J.M.; Rodriguez, P.; Teodorescu, R.; Nam, K. Mode Adaptive Droop Control with Virtual Output Impedances for an InverterBased Flexible AC Microgrid. IEEE Trans. Power Electron. 2011, 26, 689–701. [Google Scholar] [CrossRef]
 Cheng, L.; Liu, Z.; Liu, J.; Tu, Y. An RLType Active Damper for Stabilizing Wide Band Oscillations in GridTied Inverter Systems. In Proceedings of the ECCE 2020—IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, 11–15 October 2020; pp. 1686–1693. [Google Scholar] [CrossRef]
 Azghandi, M.A.; Barakati, S.M. Virtual RL Damping and Harmonic Suppression for CurrentSource InverterBased Photovoltaic Systems. In Proceedings of the 2019 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, Shiraz, Iran, 12–14 February 2019; pp. 572–576. [Google Scholar] [CrossRef]
 Jonke, P.; Makoschitz, M.; Ertl, H. Dreiphasiger Netzsimulator mit virtueller Ausgangsimpedanz. e i Elektrotechnik und Informationstechnik 2022, 140, 110–122. [Google Scholar] [CrossRef]
 Liu, Y.; Zhou, X.; Yu, H.; Hong, L.; Xia, H.; Yin, H.; Chen, Y.; Zhou, L.; Wu, W. Sequence Impedance Modeling and Stability Assessment for Load Converters in Weak Grids. IEEE Trans. Ind. Electron. 2020, 68, 4056–4067. [Google Scholar] [CrossRef]
 Eskandari, M.; Savkin, A.V. A Critical Aspect of Dynamic Stability in Autonomous Microgrids: Interaction of Droop Controllers Through the Power Network. IEEE Trans. Ind. Inform. 2021, 18, 3159–3170. [Google Scholar] [CrossRef]
 Hou, S.; Chen, J.; Chen, G. Distributed control strategy for voltage and frequency restoration and accurate reactive powersharing for islanded microgrid. Energy Rep. 2023, 9, 742–751. [Google Scholar] [CrossRef]
 Bilgundi, S.K.; Sachin, R.; Pradeepa, H.; Nagesh, H.B.; Kumar, M.V.L. Grid power quality enhancement using an ANFIS optimized PI controller for DG. Prot. Control Mod. Power Syst. 2022, 7, 1–14. [Google Scholar] [CrossRef]
 Todorovic, I.; Isakov, I.; Reljic, D.; Jerkan, D.G.; Dujic, D. Mitigation of Voltage and Frequency Excursions in LowInertia Microgrids. IEEE Access 2023, 11, 9351–9367. [Google Scholar] [CrossRef]
 Alam, S.; AlIsmail, F.S.; Abido, M.A. Power management and state of charge restoration of direct current microgrid with improved voltageshifting controller. J. Energy Storage 2021, 44, 103253. [Google Scholar] [CrossRef]
 Zhao, C.; Sun, W.; Wang, J.; Fang, Z. Distributed robust secondary voltage control for islanded microgrid with nonuniform time delays. Electr. Eng. 2021, 103, 2625–2635. [Google Scholar] [CrossRef]
 Wilson, D.G.; Robinett, R.D.; Bacelli, G.; Abdelkhalik, O.; Coe, R.G. Extending Complex Conjugate Control to Nonlinear Wave Energy Converters. J. Mar. Sci. Eng. 2020, 8, 84. [Google Scholar] [CrossRef] [Green Version]
 Chinnici, G.; Selvaggi, R.; D’amico, M.; Pecorino, B. Assessment of the potential energy supply and biomethane from the anaerobic digestion of agrofood feedstocks in Sicily. Renew. Sustain. Energy Rev. 2018, 82, 6–13. [Google Scholar] [CrossRef]
 Abohamer, M.; Awrejcewicz, J.; Amer, T. Modeling of the vibration and stability of a dynamical system coupled with an energy harvesting device. Alex. Eng. J. 2023, 63, 377–397. [Google Scholar] [CrossRef]
Method  Advantages  Limitations 

Conventional DC [163,164,165,166] 


Traditional DC with additional GS inductor [57,123,124] 


Inverse/reverse droops [121,167,168] 


Large traditional droop parameters [110,125,169,170] 


$h$th harmonic DC [171,172,173] 


PR controllers [131,174,175,176] 


R/L or RL virtual impedance [132,133,177,178,179,180,181] 


RC virtual impedance [46,124,182,183] 


NVHZ [138] 


Method  Advantages  Limitations 

VαF restoration loops (RLs) [139,184,185] 


VαF RLs together with Q control [46,140,141,186,187] 


VαF RLs including Q control and V HC [46,133,188] 


Method  Advantages  Limitations 

ES1 [82,143,189] 


ES2 [74,145,190] 


ES3 [157,158,161,191] 


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaiz, H.A.; Alsafran, A.S.; Almarhoon, A.H. SinglePhase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review. Energies 2023, 16, 5576. https://doi.org/10.3390/en16145576
Alhaiz HA, Alsafran AS, Almarhoon AH. SinglePhase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review. Energies. 2023; 16(14):5576. https://doi.org/10.3390/en16145576
Chicago/Turabian StyleAlhaiz, Hussain A., Ahmed S. Alsafran, and Ali H. Almarhoon. 2023. "SinglePhase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review" Energies 16, no. 14: 5576. https://doi.org/10.3390/en16145576