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Abstract: Energy crises and the growth of the energy demand have increased the interest in utilizing
unconventional power sources. Thus, renewable energy sources have become a topic of interest to
mitigate rising energy concerns and cope with increased electricity demand. With remarkable merits
including cleanness and abundance, photovoltaic (PV) solar energy systems are a key to solving these
issues. The employed inverters should effectively utilize the maximum available power from the
PV solar system and transfer this power to the utility grid without posing any further limitations.
However, the unequal power generation of different PV systems caused by partial shading (PS) and
other PV panel degradation factors leads to a reduction in generation capacity. One of the relatively
new solutions to mitigate the mismatch concerns between the PV modules and sub-modules is to
extract the maximum power of each sub-module individually. The main objective of this paper
is to present a comprehensive review of such PV grid-connected inverters topologies associated
with sub-module connection and control. It will classify the PV grid-tied inverters in accordance
with the level where the maximum power point tracking (MPPT) system is implemented. A special
focus has been placed on sub-module microinverters (MI) in terms of circuit topologies, conversion
efficiency, and controller design. This paper provides a comprehensive analysis of employing the
distributed MPPT (DMPPT) approach to maximize the power generation of PV systems by mitigating
the mismatch issues inside the PV module. The circuit topology, PV system configuration, and MPPT
algorithms used for applying DMPPT solutions in PV SMs are discussed in detail in this study.

Keywords: photovoltaic (PV); grid-connected inverter; power electronic converter; grid-connected
systems; grid integration; MPPT technique

1. Introduction

Nowadays, the electrical grid has evolved to become a mixture of several power-
generating resources and photovoltaic (PV) generators are an important key player in this
integrated system [1,2]. Extracting the maximum power from the PV system and studying
the possible limitations of injecting electrical energy into the grid is the key design goal of
grid-connected PV systems [3]. Thus, tracking the maximum power from the PV systems
during different irradiation levels, shading conditions, and low conversion efficiency is one
of the main design concerns [3,4]. Several standards are used by different organizations to
prevent overhead complications on the utility grid [5–7]. For example, the power quality,
reactive power control, and islanding operation are some of the main problems that pose
severe issues for the distribution network. Therefore, the employed PV inverter should be
designed so it is able to operate at a unity power factor, improve the power quality, and
have a fast dynamic response. Operating at a unity power factor is important in order to
reduce the total current through the cables and improve the reactive power content in the
grid [8].

From the power quality perspective, the major grid codes state that the total harmonic
distortion (THD) of the output current must not exceed the 5% limit [9]. The THD is subject
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to increase by either the low- or the high-order current harmonics [10]. To reduce the
high order current harmonics, the employed inverter needs to operate at a high switching
frequency or to have big filtering elements in terms of inductors and capacitors. Increasing
the switching frequency puts more burden on the switching elements and may increase the
switching losses, while making the filter bigger will increase the size and volume of the
system [11]. On the other hand, the low order harmonics can be eliminated by the suitable
control loops acting as harmonic compensators [12]. Figure 1 shows experimental results
for inverters producing outputs with high and low-order harmonic currents.
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Figure 1. Experimental results for inverters with a (a) high-order harmonic current and (b) low-order
harmonic current (10 ms/div–5 A/div).

The fast dynamic response of the employed inverter will enable the system to recover
from faults swiftly, increasing the reliability against faults [13]. In addition, the design must
consider the islanding situation to protect both the users and equipment. The conventional
islanding method often monitors the grid parameters and takes preventive actions accord-
ingly [14]. Figure 2 shows another experimental test for an inverter experiencing faults
when its controllers have slow and fast dynamic responses.
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(b) fast dynamic response (10 ms/div–5 A/div).

Categorizing the PV systems can be a helpful method for understanding the different
PV system architectures and the purpose of each design [14]. This might help researchers
in this field to comprehend the state of the art of grid-tied PV systems. The inverters and
MI are designed to convert the direct current (DC) to alternating current (AC) in both
large-scale PV plants and small PV applications, and it plays a crucial role in enhancing
the PV system reliability and improving overall efficiency [14]. Therefore, PV-interfaced
systems research is focused on optimizing the existing PV systems’ topologies to reduce
PV system costs and achieve better system performance [15–20]. The PV system’s design
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usually comes in one of four common topologies according to the PV module arrangements
and PV system requirements. Namely, these topologies are centralized inverter PV plants,
string inverters, multi-string inverter PV, and PV module MI PV systems [21].

The conventional classification of PV systems is mainly based on the power capacity of
the PV applications and projects [21]. Thus, the three main categories of a grid-connected PV
system are large-scale PV plants, medium-scale PV projects, and small-scale PV applications.
The small-scale application starts from a few kW to up to 50 kW, while medium-scale project
capacity can reach up to 1 MW. A PV system with a power capacity of more than 1 MW
can be considered a large-scale project [14,22].

Classifying the grid-tied PV systems based on the voltage level at the point of common
coupling (PCC) is another approach to categorizing grid-connected PV systems. Low volt-
age grid-connected PV systems include both small PV applications and some medium-scale
PV projects where PV systems are installed close to the end users. Large PV plants are
directly connected to a 20 kV voltage grid or more in high-voltage grid-tied PV systems [23].
One main objective of PV power converter devices is harvesting and exporting the max-
imum available power from the PV system to the utility grid. Therefore, designing and
optimizing the maximum power point tracking strategies can significantly improve the PV
system efficiency and enable obtaining the full available PV power [14,24].

PV inverters are designed and controlled to operate on their maximum power point
(MPP) using a maximum power point tracking (MPPT) controller [25–31]. Operating at
the MPP of the PV system is usually related to the scale of the PV system. This means
that when the inverter or MI is connected to a number of the PV modules, the tracking
process becomes swift and more accurate, which can improve the efficiency and reduce the
overhead on the PV system controllers [32]. The grid-tied inverters are an essential part of
renewable energy interfaced systems that link the different types of renewable resource
and energy storage systems to the utility grid. Therefore, optimizing the grid-connected
inverters can significantly contribute to reducing the investment and operation cost of the
PV system [33].

The electrical grids need support from the connected distributed generators, and their
power generation security can be enhanced if the solar power plants can export the power
directly to the medium- or high-voltage networks without limiting grid stability [9,34].
Controlling the active power of the PV system’s current can increase energy yield and
enhance PV system performance, which can improve grid-side performance. However,
different power consumption patterns caused by changing the voltage and frequency of
the utility grid can negatively affect grid stability. Overcoming this issue will be based on
regulating the voltage and frequency during the design of the controllers of the grid-tied PV
systems [34]. The stability of the utility grid can be improved if proper active and reactive
power controllers are used, and common grid-related concerns, especially voltage sags, can
be solved [34,35].

The grid-tied inverters can be interfaced with three-phase and single-phase power
systems according to the PV project size [35]. In the three-phase power system, the step-
up transformers are used to boost the output voltage and meet the grid-side voltage
requirements [36–38]. Centralized inverters are usually used in three-phase power systems
to link large-scale PV plants to the utility grid [39]. The centralized inverter technology
is usually used in three-phase power systems and it might be the most traditional in PV
systems; it has been used for many years because of its large-scale conversion ability. On the
other hand, in a single-phase power system, the small PV applications are often interfaced
with the distribution network, and distributed MPPT inverters are used [40].

Distributed MPPT inverters have been proposed to increase the power harvesting
from PV systems. They can significantly increase power generation under low irradiation
levels. Also, distributing the MPPT can improve the scalability of the PV system without
introducing a significant disturbance to the utility grid [33,40].

The unbalanced power generation of PV modules due to different environmental
conditions is one of the significant issues in centralized PV systems and it significantly
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reduces power generation in PV systems [41,42]. One main cause of unbalanced power
generation between PV components is partial shading due to buildings, clouds, and trees.
This can lead to mismatch problems in PV power systems. The mismatch problem can
negatively affect conversion efficiency, since the PV system current will be limited by the
PV module with the lowest output current [43].

Centralized grid-tied inverters might not be able to identify the power generated by
each parallel sting under a partial shading effect and the overall power generation of the
PV system will be reduced [42]. The bypass diode is commonly integrated with the PV SM
to minimize the effect of partial shading; however, it can cause multiple peak power points.
In such a scenario, the MPPT algorithm might only be able to track the average maximum
power. However, the average output power can be lower than the sum of the maximum
power of the PV modules [44].

The DMPPT technique has been used to mitigate the mismatch issue between PV
components and increase the energy yield of the PV system [45–47]. Although the DMPPT
strategy requires a more complex controlling process, it can improve the reliability of the
PV system and mitigate the mismatch problem [46].

Several issues can lead to the different current generations of PV components, in-
cluding external factors such as different PV panel orientations and partial shading. Also,
interior features such as manufacturing tolerance and aging might unbalance the power
generation of PV strings [44]. Also, faulty PV components can limit the PV string’s current,
which will reduce the current generated by other PV components in the series connection.
Thus, processing the power generation of each PV component can mitigate the negative
effect of the faulty PV component on others in the series connection [45].

Conventional PV systems have several severe problems that limit PV power generation
and adversely affect PV system performance. Power losses due to mismatch issues, partial
shading, and ground-associated faults can be the major issues. Thus, optimizing the
typical PV system is usually based on tackling these concerns. One proper solution to
overcome the mismatch concerns and partial shading effect is employing MPPT at a finer
level. This review paper discusses the state of the art of distributing MPPT technology on
grid-connected PV systems. It is focused on applying the DMPPT approach at the PV SM
level [48].

One main objective of classifying the grid-connected inverter is to understand the
latest trend in this technology and help researchers to choose the optimization opportunities
effectively. Organizing the grid-tied inverters according to where MPPT is applied can
be a proper categorization strategy. In this review paper, the grid-connected inverters are
classified according to the level where the MPPT is applied. The grid-tied inverters can be
grouped into two main groups according to the MPPT function, centralized MPPT, and
DMPPT. This work can be a helpful tool to understand different types of grid-connected
PV systems and the purpose of each PV system topology.

Some review papers have discussed employing the DMMPT approach to effectively
increase the power harvesting of PV systems [49]. Others discuss the negative effect of
partial shading on a group of PV cells [50]. However, none of them have deep discussions
about applying the DMPPT technique at the PV SM level. Thus, the lack of information
about employing DMPPT led to this review paper. Although studies on [51] present some
issues related to DMPPT on the PV SM level, there is still an absence of discussion about
MPPT techniques used at the PV SM level. This paper reviews common power converter
topologies and MPPT techniques that have been used to employ the DMPPT systems at the
PV SM level.

It reviews the power electronic converter topologies used for grid-tied PV systems,
with a specific focus on low-voltage-level modular PV applications. The paper will catego-
rize the grid-connected PV systems according to where MPPT is employed and will explain
the distributed MPPT strategy which has been used as a viable solution to overcome the
unbalanced power generation under the partial shading effect. A detailed explanation
of grid-tied PV inverter topologies including merits, limitations, and technical issues is
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provided in Section 2. An important consideration of PV SM DMPPT architectures and a
specific review of different MPPT algorithms is presented in Section 3. Detailed discussion
about the finding of this review and proposed recommendations are considered in Section 4.
Section 5 discusses the present associated challenges and gives direction for related future
work. Finally, Section 6 concludes the outcomes of this review study.

2. Grid-Connected PV Inverter Topologies

Grid-tied DC–AC inverters have been devised to enable pumping up the generated
power from PV systems into utility grid companies. To effectively send PV power to
the grid, several standards should be fulfilled by the grid-tied DC–AC inverter, including
maintaining power quality, decoupling the arising AC current components at the input side,
and consideration of the islanding situation [52]. The DC–AC inverter is an essential part of
grid-connected PV systems and hence reducing the cost per inverter watt can significantly
minimize the installation cost of the PV generators. Therefore, many researchers focus
on innovating optimized and cost-effective inverters [53–55]. The employed inverter can
operate as a voltage or current source inverter [56]. For voltage source inverters (VSIs), the
input DC voltage will be chopped by input switches operating and controlled by a pulse-
width-modulation (PWM) scheme, converted to the output side by the output switches
and then filtered by inductors.

The main issue with VSIs is that their input currents are discontinuous, which requires
large capacitors at the input side to smooth the PV module current [57]. Installing large
capacitors at the input side (output of the PV modules) is not favored as it can affect the
system’s reliability negatively. Current source inverters (CSIs) can generate continuous
currents at the input side first, then chop the currents using the set of PWM switches, and
then filter this current using a capacitor [58]. CSIs do not need large filtering capacitors at
the input side and therefore are favorable to be employed as PV inverters.

However, their control system is usually more complicated than that of VSIs and needs
careful parameter tuning. This is because the CSI requires at least an additional input stage
where the current is generated by the action of the input switches with the inductors. This
means that the output current and voltage are not generated directly from the input side,
which appears as a right-hand plane (RHP) zero in the frequency domain analysis of the
inverter. Figure 3 shows the basic structures of a VSI and CSI.
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Figure 3. Generic configurations for DC/AC inverters: (a) VSI; (b) CSI.

The connection of the PV modules or panels to the inverters is important in selecting
the suitable inverter system. As shown in Figure 4, there are different possible connection
technologies and they will be presented briefly in the next subsections.

2.1. Grid-Tied Central Inverter

Grid-connected central inverters might be the oldest technology used for both grid-tied
and standalone PV systems. The essential objective of the central inverters is to link high-
powered PV plants with a utility grid. The central inverter technology is a combination
of series and parallel connections of PV modules [59]. The series connection is called a
string, and it is used to generate sufficient output voltage according to the utility grid needs.
Thus, the central inverter does not necessarily require further voltage amplification during
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the circuit design stage. Each PV string of the central inverter is connected in parallel via
string diodes to prevent the reverse current flowing from other strings in the PV array.
The parallel connection in central inverters is often used to obtain PV projects’ high power
requirements [60,61]. One common concern about the centralized inverter is the self-partial
shading of the PV system when some of the modules cause shading of others. This issue
can be solved by varying the distance from the PV strings [62].
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The MPPT control of the grid-tied central inverter is usually operated at the PV plant
level, which reduces the MPPT controllers’ complexity. However, central inverters have
several severe limitations, and one of the main concerns of this technology is the mismatch
losses due to the different power generation from the PV modules during partial shading
conditions [63,64]. Central inverters often use high-voltage cables to link the PV arrays
with the utility grid, significantly increasing the installation cost. Also, the scalability of the
PV design is limited in this technology, thus increasing the power production might not
be achieved. The string diodes that are used in central inverters have an internal loss that
reduces the overall efficiency of the PV plants. A central inverter malfunction might lead to
a loss generated from the PV array [65].

The breakdown of a central large-scale inverter can stop the entire PV system from
working, cause loss of PV power generation, and can pose several limitations to grid utility.
This concern can be mitigated by using multicentral PV inverters [66,67]. Multicentral
inverter topologies can improve the reliability of a large PV power plant and apply the
MPPT at a sub-array level, which might mitigate the mismatch issues. The multicentral PV
inverter technology aims to group the large PV array system into subarrays where each
parallel connection is linked to an individual inverter. This technology is often preferred
for medium and large PV plants where power generation exceeds 0.5 MW [68]. The
multicentral PV inverters are commonly connected in parallel to obtain the maximum
power from the subarrays and maintain the reliability of the PV system in the case of
inverter malfunction. Figure 4a illustrates the single central PV inverter topology and
Figure 4b shows the multicentral PV inverter connection.



Energies 2023, 16, 5468 7 of 23

A basic example of central inverters is the three-phase VSI which is shown in Figure 5.
Because the full power is handled through the six semiconductor switches, the failure of
any switch will result in the full shutdown of the PV system. The switches can be affected
by overvoltage or overcurrent from the PV modules as well as the high temperature which
is expected in this application. This might increase power losses and adversely affect the
efficiency of the PV system. Distributing the MPPT at a lower level can mitigate this issue
and improve PV energy harvesting.
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Figure 5. Three-phase VSI as an example of central inverters.

The central inverter is usually a large inverter used to convert the high DC power
from the PV array to AC power. The system topology might come in one of two different
topologies in terms of power pressing, single-stage central inverter, and dual-stage central
inverter. Three-phase converters can offer some merits compared to single-phase full-
bridge converters, including reducing the size of the high-frequency transformer while
maintaining the switching frequency, reduction in the size of filter components, and better
conversion efficiency [69]. The DC–AC central inverter is often connected to medium- and
high-voltage power systems because this technology is designed to generate high-rated
power, which is more suitable to interface with a three-phase system. One of the main
objectives of using three-phase grid-tied central inverters is their capability to mitigate
the effect of THD and improve transient performance, leading to higher efficiency [70].
On the other hand, single-phase inverters will be required if the scale of the PV system
is lower than 10 kW, which is usually the limit of residential PV systems. The main issue
with single-phase systems is that they have power components pulsating at twice the grid’s
frequency. This pulsating power will cause the input current of the inverter, which is the
output current of the PV modules, to have both DC and AC components. The AC current
component will cause the output PV power to be fluctuating around the MPP and hence
the maximum power will not be obtained; current-voltage and power-voltage curves are
illustrated in Figure 6. Therefore, the AC component of the inverter’s input current has to
be eliminated using either a hardware filter or a complete control algorithm [12,48].

2.2. Grid-Tied Distributed Inverter

The DMPPT is a strategy used to maximize PV energy harvesting and improve PV
system performance [45,47]. The DMPPT approach can be implemented at different PV
system levels from the PV array level to the PV cell level [46]. The maximum energy of PV
systems can be captured when the PV modules operate at their MPP, as shown in Figure 6.
Different tracking algorithms have been used to track and capture maximum power from
PV systems [28–30]. The input voltage of the PV system should have relatively small ripples
to enable the tracking algorithm to operate successfully. To maintain the tracking algorithm
accuracy at more than 98%, the voltage ripple from the PV input side should be less than
8.5% [45].
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2.2.1. PV String-Level Inverter

The string inverter technology in Figure 4c is an updated version of the conventional
central inverter topology [4]. Each string is built by connecting a series of PV modules
and the resultant connection is linked to the DC/AC inverter. Some string inverters
can meet the voltage requirements of the grid side and hence DC–DC step-up converter
will not be needed. However, some other systems will require DC–DC boost converters
on the input side or boosting transformers on the output side to step up the output
voltage in order to reach the voltage level of the utility grid [71]. Grid-tied string inverters
can mitigate some issues presented in central inverters [32]. For example, the power
losses due to using the string diode to eliminate reverse current from other strings of the
parallel connection are eliminated, which helps to improve the overall efficiency of the
PV system. Furthermore, the mismatch issue between the PV system strings caused by
different current generations is reduced, and each PV string will operate at an individual
MPPT [40]. Compared with central inverters, the robustness of the PV system can be
enhanced using string inverters because failure of one string does not stop the entire PV
system from working. Because the total power is shared by several inverters, the current
ratings of the employed semiconductor devices can be reduced in comparison with the
central inverter topology, which will result in improving the efficiency and enhancing the
reliability [49]. Figure 4c illustrates the circuit topology of the string inverters.

2.2.2. PV Module-Level Inverter

The conventional residential PV system topology is usually based on cascading the
PV panel to reach the grid-side voltage level. The maximum power can be harvested by
operating each PV panel at its total MPP, which will be the global point for the combined
panel [72]. Nevertheless, residential PV applications are sensitive to the mismatch problem
between the PV panels because it adversely reduces PV power generation [4]. One proposed
solution to mitigate the mismatch problem between PV panels is to add a parallel diode
with each PV panel, which can reduce the negative voltage polarity of faulty PV modules
caused by full or partial shading [73]. However, power generated from the affected PV
panel will be lost in this case. In the PV module level inverter system, each separate PV
module in the panel will have its dedicated inverter and controller to harvest the maximum
energy and operate the PV modules at their local MPPs. Accordingly, each PV module will
be sold with the MI, which can be a single-stage or a double-stage inverter [74]. Because
the MIs are designed at the module level, the employed semiconductors can have lower
voltage and current ratings, which will increase the total efficiency. Also, the reliability of
the total system will be improved during faults in one or more MI because the rest of the
system will function normally.
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Although it can be predicted that the cost of this system will be higher than those with
the central inverter structure, the study in [75] shows that the price can be lower on some
occasions. Moreover, this system provides a greater degree of freedom in terms of reactive
power generation and grid support in general. In this context, the DC–DC optimizer has
been proposed to obtain each PV module’s power and meet the end users’ local demands.
The DC–DC optimizer can be applied in two common topologies: series connected to a
DC–DC optimizer and parallel connected a DC–DC optimizer [76]. The cascaded DC–DC
optimizer architecture can provide better conversion efficiency compared with parallel
connected optimizers [77]. Figure 4d illustrates module-integrated DC–AC MI.

2.2.3. PV Sub-Module-Level DMPPT

This is a new approach to applying DMPPT in residential PV systems based on the
PV sub-panel level [23,71]. The integrated distributed power electronics enable capturing
the maximum power from each sub-panel inside a single PV module. Employing this
strategy not only reduces the current and voltage mismatch but also can increase the energy
captured by up to 20% by distributing MPPT at the finer level [71]. Commercial PV panels
are usually grouped into three or four groups according to the manufacturing company;
also the PV panel commonly comes with a PV junction box that contains the electronic
parts of the PV panel [23]. Figure 7 illustrates the typical 72-PV-cell panel with its PV
junction box.
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Figure 7. A standard 72-PV-cell panel circuit diagram: (a) the structure of the series connection of a
72-solar-cell PV panel and (b) the integrated junction box of the 72-cell PV panel.

The revolution of the grid-connected PV inverter is presented in Table 1. The past
approach was based on conventional central inverter technology. A centralized inverter is
commonly used with three-phase power systems. The MPPT system is implemented at
the PV array level and only one MPPT is employed. The multi-string inverter technology
comes after the central PV inverter. In such technology, the PV array is grouped into
multi-strings. The MPPT is applied to a lower level and both three- and single-phase power
systems might be interfaced. In the PV string inverter, DMPPT is implemented at the PV
string level and a single-phase system is commonly used in this technology. The present
study focuses on technologies consisting of a PV module and a PV SM inverter. Employing
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DMPPT at this level can significantly maximize power harvesting since the MPPT system
is implemented at a finer level.

Table 1. Comparison of various grid-connected inverter topologies.

Ref. DMPPT Level Single/Three
Phase Voltage Range (V) Rated Power PV Interfaced

Converter
Grid Interfaced

Inverter

[78] Array Three 380 20 kW Boost Three-Phase VIS

[79] Multi-String Three 180 1 kW HFAC Link Three-Phase VIS

[80] String Single 110 1 kW H-NPC H-Bridge

[81] Module Single 230 1 kW Cuk H-Bridge

[82] Sub-Module Single 220 217 W Push–Pull H-Bridge

3. PV SM DMPPT Architectures
3.1. Sub-Module MI

The harvested energy from the residential PV system can be significantly increased
by applying power conditioning to the sub-panel level [47]. Appling the DMPPT at the
sub-panel level can mitigate the mismatch issue between sub-panels inside the same PV
module, increasing energy harvesting of the overall PV system [83]. Cascaded DC–DC
optimizers have been used to reduce the sub-panel mismatch problem and optimize the
residential PV system efficiency [71,76]. However, the installation cost of this system
might rise when compared with the other types and also more complex controllers will be
required. Employing differential power processing (DPP) DC–DC converters is another
strategy to apply power conditioning at the PV sub-panel level [77,84].

The main objective of DPP converters is to equalize the photocurrent of the PV sub-
panel during the mismatch conditions. The complexity of the controlling process and the
high installation cost are the main drawbacks of this optimization method. A sub-module
microinverter (SMMI) can be a promising solution to effectively utilize the PV power from
each sub-panel and improve the total PV system’s efficiency [85]. This futuristic strategy
can convert the DC current of the PV sub-panel to an AC current and link the output
current to the utility grid with no need for a central DC–AC inverter. Figure 8 illustrates
both series and parallel grid-connected MIs at the sub-panel level, which will be presented
in the next subsections.

3.2. Sub-Module Series Converters

The PV SM DC–DC optimizer proposed in [86] aims to increase energy capture of
the PV module during the unbalanced power generation of PV submodules. This study
employed a synchronous buck converter topology to mitigate the PV SM mismatch issue
efficiently. Low-cost devices with small sizes are used in the design stage to increase
the switching frequency range. The synchronous buck converters are cascaded to build
higher output voltage and avoid further step-up power converter circuits. The controlling
process of the SM DC–DC optimizer is relatively simple since no communication is required
between the SM controller during a mismatch effect. Figure 9 shows a schematic drawing
of the SM DC–DC optimizer.

In terms of MPPT control, each PV SM power is tracked using the perturb and observe
(P&O) algorithm. The DC–DC optimizer strategy overcomes the several maximum points
problem caused by the bypass diode under unbalanced power generation. The string
current of the three SMs can be considered a constant value since they are connected in
series. Thus, the controlling parameter used to track the maximum power point is the
corresponding voltage of each PV SM. This becomes a direct optimization problem that
aims to obtain the maximum power by varying the duty cycle of each DC–DC optimizer.
The flow chart in Figure 10 illustrates the MPPT algorithm used to track the local MPP of
each PV SM.
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Figure 9. Diagram of the PV SM-integrated MPPT system.

The local algorithm will start by initializing the parameters of the DC–DC converter.
Then it will sample the voltage output. Comparing the output voltage with the recorded
maximum voltage can determine the next step. If the duty-cycle ratio can achieve the
maximum output voltage, the first algorithm will stop and the output duty ratio will
become the input of the next tracking algorithm. Otherwise, the new duty ratio will be
calculated by perturbing the first duty ratio. After the approximate MPP is found by the
first algorithm, the P&O algorithm will be used to calculate the accurate MPP. The output
duty-cycle ratio from the first algorithm is used as the inial value of the second algorithm.
This duty ratio will be perturbed and voltage will be sampled accordingly. The direction of
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the next tracking cycle can be decided by comparing the voltage of the current cycle with
the voltage of the previous tracking cycle.
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Zhu et al. in [87] propose an SM single-inductor single-sensor DC–DC optimizer to
reduce the converter SM MI’s size and cost. With only a single inductor and a single sensor,
this optimizer can make three SMs work on independent MPPs to maximize the energy
harvest. The suggested buck converters are connected in series to step up higher output
voltage. The MPPT algorithm used in this topology is the perturb and observe algorithm.
The major drawback of such a connection is that a single MPPT system is applied for the
three SMs of the PV panel. Thus, energy harvesting and PV system performance might be
negatively affected. Figure 11 shows the circuit configuration of the novel topology that is
based on a single inductor and single current sensor.

To control the MPP of each SM, the adaptive perturb and observe (P&O) algorithm
has been used to perturb the PV module current and decide the direction of the next cycle.
The PV module current is sensed and compared to each SM’s current, which is used as the
reference current of the next tracking period. The duty–cycle ratio used for operating the
SM converters is calculated as the ratio between the SM current and the module current in
one tracking cycle. Figure 12 shows the flow chart of the adaptive MPP algorithm used in
this study, where the clock parameter is a factor that decides which SM should be tracked.
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The algorithm will start by sampling the PV SM current iL.
The clock value is regularly increased and decided which SM should be tracked. When

the value of the clock is between 0 and t, the controller will track the MPP of the first SM
while the seconded SM MPP can be tracked if the clock value ranges from t and 2 t. The
MPPT controller can track the third SM if the clock value is greater than 2 t and less than 3 t.
The clock will reset after its value exceeds 3 t. Once the controller decides which SM should
be tracked, the corresponding current of the tracked SM is divided by the PV module
current, and the result becomes the duty ratio of the SM DC–DC converter.

3.3. Sub-Module Parallel Converters

The low voltage of solar cells makes the boost converter topologies more practical for
several PV applications. The boost converters are commonly used in parallel connection
to step up the low voltage level to the grid voltage level. One of the common SM parallel
converters is a synchronous boost converter [88]. This topology aims to solve the SM
mismatch problem and effectively increase PV energy yield. The proposed converter is
based on connecting the SM-integrated converter in parallel. The MPP of each SM can
be captured individually to maximize energy harvesting and mitigate power loss. The
external connection between PV modules is in series to build up sufficient output voltage.
Figure 13 illustrates the circuit configuration of the SM parallel integrated converter.
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Figure 13. The connection between the PV sub-module and sub-panel micro converters of a single
PV panel.

One MPPT microcontroller has been used to regulate the three SMs on the PV panel
since the three converters are connected in parallel. The perturb and observe (P&O) tracking
algorithm was used to track the MPP of each SM. The PV module output voltage is used as
a reference value to compare with SM voltages and then decide the direction of the next
tracking cycle. In every cycle of the tracking process, the three voltages of the SMs are
perturbed and compared with the output voltage. Figure 14 shows the MPPT controlling
algorithm flow chart used in [88].
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Figure 14. The flowchart shows the unified MPPT algorithm for capturing the MPP of PV sub-modules.

The first step of the MPPT algorithm is initializing the parameters of the tracking
system. Then the algorithm starts to measure the output voltage and PV SM voltage of
three SM voltages. The SM indices decide which SM voltage is controlled. The three SM
voltages will be perturbed continuously and the change of the output voltage of the PV
module will be recorded. The PV module will have three indices, but they are not shown
in Figure 14. The change in the output voltage of the PV module index will be measured
according to changes in SM voltages. The direction of the tracking cycle of each SM can
be decided according to the change of output voltage based on perturbing respective SM
voltages. The tracking algorithm will continue in the same direction if a change in output
voltage is positive, otherwise the direction of the tracking process will be reversed.

3.4. Sub-Module Differential Power Processing Converters

In [89], a differential power processing (DPP) topology for PV SM MPPT implemen-
tation has been proposed. This study employs DPP PV–PV topology with a bidirectional
buck-boost converter to solve the mismatch issue between the PV SMs to maximize en-
ergy harvesting and reduce power losses. The main objective of the proposed design is
to efficiently balance the current between the PV SMs under unequal power generation.
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Figure 15 illustrates the DPP PV–PV architecture that is used to mitigate mismatch issues
between the PV SMs.
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Figure 15. A schematic diagram of an MI with DPP.

The P&O algorithm is employed to track the MPP. The DPP converter operates at a
relatively high frequency, thus the PV module voltage is assumed to be constant. Since
the PV module voltage is assumed to be static, the PV module current is used as an
indicator to decide the direction of the next tracking cycle. The proposed topology in [89]
employs two loops to track the MPP. The fast-controlling loop operates the DPP buck-boost
converters while the slower loop controls the DC–AC grid-tied inverter. Figure 16 shows
the flow chart of the fast-controlling loop of DPP buck-boost converters.

The tracking algorithm will start by measuring the PV module current before perturb-
ing the duty–cycle ratio of the DC–DC converters. Then, the DPP converter duty ratio will
be updated by adding a perturbing sample. The change of PV module current is sensed
and recorded after regularly varying the duty ratio of DPP converters. The new value of
the PV module current is compared with the previous value. When the PV module current
before perturbation is greater than the PV module current after perturbation, the direction
of the tracking process will change; otherwise, the tracking direction will not change.

Technical comparison results of some DMPPT topologies used in PV SMs are illus-
trated in Table 2. It summarizes power electronic devices that are used to obtain the
maximum power of PV SMs and illustrates that the P&O tracking algorithm is employed
to track the maximum power of PV SMs for most proposed converters. This is to reduce
the overhead complexity of MPPT controllers. However, some research modified the
conventional P&O algorithm to enable tracking the maximum power of each SM using a
single MPPT system. It can be also noted that several researchers have proven a significant
increase in power harvesting due to employing DMPPT at the PV SM level. From a power
converter perspective, it can be seen that several research projects rely on conventional
power electronic circuits including buck, boost, and flyback converters. Some others use
DPP topologies to equalize the current of the PV module by redirecting the SM current
flow according to the irradiation level.
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Table 2. Comparison between different power electronic optimization studies to solve mismatch
issues inside an individual PV panel.

Ref. Rated Power
(W) Topology Arrangement MPPT

Algorithm Efficiency (%) Improvements Limitations

[86] 200 W Synchronous buck Series P&O ≈98
Increase power

harvesting
by (20%)

Local maximum
point controller

[87] - Buck Series P&O - Less
component

Single MPPT for
three SMs

[88] 100 W Synchronous boost Parallel P&O ≈96
Improve efficiency
due to using GaN

technology

Operating
regardless of

mismatch
condition

[89] 60 W Synchronous
buck-boost DPP P&O =95

The capability of
commercial

inverter integration

Communication
between

neighboring DPPs

[90] 60 W Bidirectional
flyback Parallel - ≈98 Reduce mismatch

level by (25%)
A large number of

current sensors

[84] 245 W
DPP architecture

with synchronous
flyback converters

Parallel DMPPT
algorithm -

Improve power
extraction
by 10.19%

Large storage
element required

for decoupling
purposes
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Table 2. Cont.

Ref. Rated Power
(W) Topology Arrangement MPPT

Algorithm Efficiency (%) Improvements Limitations

[91] - DPP with
central boost DPP P&O - Accurate MPP

tracking
Complex

controlling process

[92] - Full bridge
converter FBC Series P&O -

Novel topology to
apply DMPPT at a

finer level

No experimental
validation

[93] 300 W
Synchronous boost
with series virtual

port DPP
DPP Modified P&O - A single current

sensor is required More components

4. Discussions and Recommendations

Distributing the MPPT control to obtain the maximum available power from each
PV SM individually enables maximizing the overall power generation of the PV module,
especially under the effect of the mismatch issue. The accuracy of the MPPT system is im-
proved due to employing the DMPPT approach at the PV SM level, and hence the multiple
MPPs problem caused by bypass diodes is significantly mitigated. The performance of
the PV power electronic converter bocomes slightly different according to the converter’s
characteristics and the material used in the manufacturing process. The MPPT controller
techniques have been thoroughly reviewed in this study. This section presents a discussion
of the power converters for applying the DMPPT strategy to increase the power generation
of the PV module and improve the overall efficiency of the PV system.

The power electronic converters used in employing the DMPPT approach in PV SMs
should be developed in the future to fulfill the technological requirements in the power
circuit topologies, the MPPT techniques, semiconductor materials, the power quality re-
quirements, and grid standards. New power electronic topologies should be developed
with fewer components, better efficiency, and reduced cost to effectively apply the DMPPT
approach at the PV SM level. These converters are expected to achieve the following rec-
ommendations:

• The value of the input capacitors plays an important role in determining the lifetime
of the power electronic converters. Thus, a new decoupling circuit is needed. The
new power electronic devices’ efficiency should be improved due to applying soft
switching techniques. Soft switching technologies not only improve the PV system’s
efficiency but also can increase the lifetime of the power electronic converters.

• The power electronic switch is a basic element in the design of the power converters
and choosing switches with lower switching and conduction losses enables achieving
better efficiencies. It has been proven that GaN- and SiC-based power electronic
switches can achieve better efficiency and effectively minimize power losses. The
on-state resistance between the drain and the source of such switches is relatively low,
which minimizes the conduction losses of the switch. Also, high switching frequencies
are achievable with minimal switching losses.

• In terms of power quality, galvanic isolation is not mandatory nowadays; however,
many researchers consider it in the design stage since it protects against electrical faults.

• Anti-islanding detection is another feature that should be considered in the new
designs; the detection strategies should be swift and accurate to cope with power
grid failure.

• The power quality is directly affected by THD and hence it should be minimized
to improve the power electronic devices. The power quality discussion cannot be
completed without emphasizing the importance of achieving and maintaining a unity
power factor system.

• The development of a novel MPPT controller is important to maintain the voltage level
and help achieve the maximum available power from the PV side. The new MPPT
controllers should be able to pump up the extra power and maintain MPPT in the
daytime and enable compensation mode during nighttime.
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5. Future Trends of the Grid-Tied MI

The partial and full shading effect on PV systems can be unpredictable and unavoid-
able in most scenarios. Partial shading might be a result of several issues, including trees
and building shadows, clouds, and bird droppings. The electrical characteristics of the
shaded part of the PV system become different from those of the unshaded part. The
percentage of irradiation level on the PV SM is directly proportional to the amount of
generated power. Thus, PV SMs with a high irradiation level can generate more power
compared to PV SMs with a low irradiation level. The PV system will be limited by PV
SMs with the lowest irradiation level causing a mismatch between PV SMs.

The PV SM mismatches have a negative impact on the performance of the PV system.
The series connection of the SMs results in limiting of the PV module current by SMs with
the lowest output current. Harvesting each SM’s maximum power individually not only
significantly increases power capturing of the PV module but also mitigates the power
losses. DMPPT at the SM level aims to obtain the true available power by summing the
individual maximum power of the three SMs of a single PV module. New optimized
power electronic topologies are expected to be invented to further improve PV system
performance and achieve better efficiencies. These topologies are needed to overcome the
currently associated limitations and provide reduced-size components. Large band-gap
devices such as GaN and SiC might be a promising solution to enhance PV system efficiency
and enable use of small components by allowing higher switching frequency.

One major issue that reduces the PV system power generation is the mismatch be-
tween PV SMs during unbalanced power generation. The mismatch phenomena might
occur as a result of several reasons; however, partial shading can be the most common
contributing factor to this concern. The behavior of the PV SM is different according to
the environmental conditions of each SM. PV SMs are a part of the PV panel and they
are internally connected. Thus, applying the DMPPT strategy at the SM level requires
breaking the interconnection between SMs. Therefore, PV panel manufacturers might
revise the current electrical arrangement inside the PV panel junction box and provide a
new electrical layout considering the capability of integrating a new power converter to
implement DMPPT at the PV SM level.

Working at the PV SM level and adding optimized power electronic converters can
increase energy harvesting in different types of PV systems. The amount of harvested
energy extracted from the PV system can significantly increase when more DMPPT is
implemented among PV SMs, especially under the partial shading effect. Proposing new
power electronic converters that offer better efficiency and improve the overall performance
of the PV system should be the focus of associated future work. Employing these optimized
power electronic converters in PV SMs can mitigate the mismatch concerns and maximize
power harvesting.

6. Conclusions

This paper discussed the DMPPT strategies which are a practical solution to mitigate
the mismatch problem in different types of PV system topologies. The DMPPT approaches
have been evaluated and compared for PV string, PV module, and PV SM systems. As
the DMPPT approach is applied at a finer level, a more accurate MPP can be achieved,
and the mismatch loss issue can be effectively minimized. It has been concluded that the
most practical level where the DMPPT approach can be applied is the PV SM level. Thus,
the main focus of this paper was to evaluate and compare the different power electronic
converters used for applying DMPPT at the SM level. Also, this study examined the MPPT
algorithm used to track the maximum power for different PV SM topologies. It has been
concluded also that most PV SM control designs use or modify the conventional P&O
tracking algorithms to avoid further complexity in the PV system design stage.

This review paper presents a comprehensive comparison between different power
electronic converters that are used to implement the DMPPT approach at the PV SM level.
Although the P&O MPPT algorithm might be the most commonly used tracking algorithm
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due to its simple implementation, the lack of tracking accuracy is a major concern about
this technique. Future research should focus on utilizing new MPPT approaches such as
artificial intelligence (AI) and optimization algorithm approaches to improve the accuracy
of MPPT methods.
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