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Abstract: Processing physical quantities into an indirect signal is a standard method of transferring
information about the measured quantity to the master system, which analyzes the data obtained from
the acquisition system. The intermediate signal is very often the voltage, but another transmission
medium can be the frequency of the output signal of the “physical quantity-to-frequency” converter.
The article presents the implementation of the adaptive method of selecting the clock signal frequency
of the counter working in the converter. The issue of selecting the clock signal frequency for the
required processing range of the transducer is discussed in detail. The application of the method
using the STM32L476RG microcontroller is presented. The principle of checking the processing range
of the developed transducer model is discussed. The algorithms of transducer operation in basic and
adaptive modes of measuring the period of the variable frequency signal are proposed. The results of
operation, in both modes, of the transducer model of frequency processing are presented, along with
the metrological analysis of the results. The influence of selected approximations used to reconstruct
the measured quantity on the final presentation of the measurement result is discussed.

Keywords: instantaneous frequency; frequency measurement; frequency-to-code converter

1. Introduction

The conversion of physical quantities into an indirect signal is a constantly developing
field of metrology [1–5]. It is used for data transmission and processing in master systems,
which can be, for example, PCs or other microprocessor systems with sufficient computing
performance for a given application. Very often, the intermediate signal is the voltage [6,7],
which can be easily converted into a digital form using an analog-to-digital converter.
Another possibility is to use the frequency of the transducer’s output signal as an interme-
diate carrier of information [8]. The frequency itself can also provide information about
the examined phenomenon, such as, for instance, the stability of power grid operation,
the variability of the voltage generated by photovoltaic inverters, power plant frequency
control capabilities [9], etc. The frequency of the signal can be directly processed into
numerical values [6,10], but in the case of time-varying values, this issue is still the subject
of many publications [1,11–16] and research on new solutions [17–24]. The intensity of the
research is favored by: high availability of converters of physical quantities into frequency
(X/f) [25], low sensitivity of the information transmission channel using the frequency
signal to electromagnetic interference and amplitude attenuation [26,27], high accuracy of
constant frequency measurement, and widely available programmable systems containing
counters enabling high accuracy frequency measurement [28,29].

The increasing offer of X/f converters and the continuous development and creation
of new innovative constructions enabling the measurement of time-varying parameters
have entailed the need to develop methods of variable-frequency processing [30].
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Constant-frequency measurement is most often carried out using the digital method.
Systems for digital measurement of constant frequency and period are well-known and
widely described in the literature on metrology [6]. The frequency meter usually includes
a counter system, a standard frequency generator, an input signal conditioning system,
and a decoder to convert the information about the measured frequency read from the
counter into readable form. The result of this decoding is presented on the display or
passed to another part of the system. The operation of the frequency counter is based on
the principle of summing up the pulses signaling the end of the current period and the
beginning of the next period of the measured frequency signal [25]. The quotient of the
number of summed pulses and the measurement time is an approximation of the measured
frequency. In the case of period measurement, the pulses from the reference generator are
summed up during the full period of the processed signal [17].

The length of the period is determined by the product of the counter state and the
length of the clock signal period. Provided that the design of the instrument for measuring
frequency and period has been developed correctly, i.e., a Schmitt trigger [25] is used in the
input channel of the meter, and the conditions for stable operation of the reference signal
generator have been ensured, the main source of the measurement error is the quantization
error [31]. The constant frequency measurement result is stable and can be presented in a
readable form on the instrument’s display.

Unlike a constant frequency meter, processing a variable frequency signal into a clear
presentation of the measurement data requires a more complex measurement system, which
will allow for more advanced data processing. Although counter systems are also often
used in this case [6,25], the further data processing procedure is more complicated. The
variable frequency of the signal makes a direct presentation of the result on the display
impossible. In addition, due to its variability, it seems reasonable to measure the frequency
indirectly, through digital measurement of the period, or more precisely, subsequent periods
of the processed signal. Knowledge of the length of successive periods will enable the
most complete mapping of changes in the quantity processed by the X/f converter. The
consequence of the proposed method of frequency measurement is the need to collect the
measurement data in order to present it in a clear form on a graph of the measurand x(t) as
a function of time. Typically, this data is later used to create other, more complex reports.
Due to the nature of the operation of the system converting frequency into numerical
values, this type of device is called a “frequency-to-code” converter and is marked with the
symbol f/N [10]. An example of the structure of the f/N converter that allows continuous
processing of the signal period using a single counter is shown in Figure 1.
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It is obvious that the acquisition of a volume-relevant set of numerical values for sub-
sequent visualization, analysis, and archiving requires an adequately capacious memory in
the system [32] and an interface that will allow for the effective transfer of the measurement
data from the f/N converter to the master computer. An alternative to storing the data in
the RAM of the f/N converter may be the transmission of consecutive numerical values
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obtained during the measurement directly to the master computer. However, this requires
a careful analysis of the possibilities of data acquisition and transmission by the f/N con-
verter and the possibility of receiving and archiving the measurement data sent by the
computer controlling the measurement process [33]. As a consequence, taking into account
the need to store a large amount of data, regardless of the storage method, it becomes
reasonable to develop methods to reduce the memory occupied by the stored data. One
of the possibilities is to limit the transmitted single numerical values to a variable with an
acceptable number of bits, corresponding to the number of bits in the counter register used.
Usually, 8- and 16-bit counters are available, but some microprocessor systems also offer
32-bit counters. Often, universal counters in microprocessor structures can be configured
to create a counter structure with a larger capacity. Figures 2–4 show three graphs of
theoretically achievable frequency measurement range for different sizes of the counter
register. Each measurement range is limited by the assumption that the relative value of
the quantization error will not exceed 1%, i.e., the minimum number of pulses registered
by the counter of the f/N converter is 100. The quantization error is calculated according to
the formula:

δk =
Tg

Txi
100%, (1)

where: Tg—is the period of the clock generator signal with frequency fg, and Txi—is the
period of the processed signal.

The lower limit of each of the presented ranges is the product of the maximum meter
state and the length of the period Tg.

Figure 2 shows the measurement ranges for a meter with an 8-bit register, which gives
a data set consisting of numbers with the least use of the measurement system memory. It
can be seen that for the clock signal used by the counter with the frequency fg = 80 MHz, it
is theoretically possible to measure the maximum frequency of 800 kHz, while the lowest
measurable frequency for fg = 1 MHz and the maximum state of the counter 255 is about
3921.57 Hz.

Unfortunately, it can be seen that the three selected frequencies fg allow processing only
in a discontinuous frequency range of the processed signal. In order to enable measurement
in a continuous range, a more frequent change of the fg frequency division degree would be
required, which would generate additional data informing about the set frequency division
degree [31]. As a consequence, the effect of memory saving would be minimal, while
continuous changes in the frequency division could lead, in extreme cases, to unstable
operation of the measurement system.
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Figure 3 shows the measurement ranges for a meter using a 16-bit register. The
proposed frequencies of the clock signal allow obtaining a continuous measuring range,
whereby for fg = 80 MHz, the maximum range of 800 kHz is obtained, as before, while the
minimum frequency for fg = 1 MHz and the maximum state of the counter 65535 is about
15.26 Hz.
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Figure 3. Measuring ranges for a counter with a 16-bit summing register.

Figure 4 shows the measurement ranges for a counter with a 32-bit register. In this
case, it can be seen that the measuring range is the widest. Like for the previous counters,
for fg = 80 MHz, the limit value of the 800 kHz range is obtained, as imposed by the value
of the minimum state of the counter register. In the range of the lowest frequencies, for
fg = 1 MHz and the maximum counter value of 4,294,967,295, a very significant reduction
of the measurable values to the level of about 232 µHz is obtained. However, the wide
measurement range of the 32-bit counter requires twice as much memory to store the
measurement data as the 16-bit counter.
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In summary, it is reasonable to say that the f/N converter with a 32-bit counter can be
used when it is necessary to measure very low frequencies, while in other cases it seems
better to use a 16-bit counter with switching the division degree of the clock signal frequency
fg in the prescaler, depending on the instantaneous value of the measured frequency.
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Taking into account the above considerations, it was assumed in the further part of
the work that a 16-bit counter will be used in the tests, which will allow counting in the
range from 0 to 65,535 and saving the instantaneous value of the summing register in an
additional register.

The aim of the article is to present an example of the implementation of the method to
change adaptively the frequency division of the counter clock signal working in the f/N
converter and thus extend the range for low frequencies processed by the f/N converter
with a 16-bit counter.

2. Processing of Successive Periods of the Signal

The test signal frequency fxi corresponding to each successive period of Txi is deter-
mined indirectly. The value of fxi is calculated from the formula:

fxi =
1

Txi
(2)

Neglecting the quantization error (1), the approximate value of Txi is calculated as the
product of the period Tg and the state Nxi of the f/N converter counter:

Txi ≈ TgNxi (3)

One of the possible implementations of the functionality of the f/N converter is the
use of a microprocessor system [34], which typically includes counter circuits, memory,
interfaces, and a reference frequency generator. Its structure enables the design of a system
that implements the functionality of digital signal processing [33].

The principle of continuous processing of the period Txi of a variable frequency signal
(hereinafter referred to as the frequency signal) by means of a system containing one
counter (Figure 1) is shown in Figure 5 [31]. The first graph from the top presents the
quantity x(t) processed in the physical quantity-frequency converter, while the next graph
shows the signal of the output voltage UXf(t) of the X/f converter. The period of this signal
is proportional to the instantaneous value of quantity x(t). The third graph shows the
voltage Ug(t) generated at the output of the clock signal generator, and finally, the last
graph presents the time-varying state N(t) of the counter of the f/N converter working
continuously. The instantaneous values of the counter state Ni are read at times ti of the
occurrence of pulses constituting the boundary of successive periods Txi.

x(t) =
1

STxi
=

1
STg(Ni+1 + Nmax ∗O− Ni)

, (4)

where O is the number of recorded meter overflows and S is the sensitivity of the X/f
converter.

In normal practice, if only hardware processing of successive Nxi values is required,
only one case of overflow can be recorded. Storing the information about successive
overflows requires the use of RAM to create an additional software counter. In applications
requiring the fastest possible processing of subsequent Txi periods, a much better solution
will be to use another counter that counts overflows or to replace the used counter with
another unit with a larger capacity.

The absolute value of the total absolute error of processing the information about the
quantity x(t) carried by the frequency of the input signal by the f/N converter is the sum of
two errors. The first is the absolute frequency measurement error ∆fT resulting from the
formation of the quantization error in the Txi measurement. The frequency fxi is calculated
indirectly from the measured values of Txi; hence, this error should be calculated using the
total differential method:

∆ f T =

∣∣∣∣ ∂ fxi
∂Txi

∣∣∣∣|∆Txi|. (5)
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Taking into account relations (2) and (4) and that the absolute quantization error of the
Txi measurement is ±Txi, after relevant substitutions the relation for ∆fT takes the form:

∆ f T =

∣∣∣∣∣∣
∂
(

ST−1
xi

)
∂Txi

∣∣∣∣∣∣Tg. (6)

Determining the derivative in the above relation gives the final formula for the error
∆fT:

∆ f T =
STg

T2
xi

. (7)

The other component of the total error is the absolute averaging error [31]. Finally, for
a sinusoidal test signal:

x(t) = X0 + Xm sin(2πFt), (8)

where F is the frequency of x(t), Xm is the amplitude of x(t), and X0 is the constant compo-
nent of x(t), the absolute total error is given by the formula:

∆Σ =
STg

T2
xi

+ SXm

(
1− sin πFTxi

πFTxi

)
. (9)

On the other hand, the total relative error of information processing related to the
current value of the frequency fxi is given by the formula:

δΣ =

 Tg

Txi
+

fm

(
1− sin πFTxi

πFTxi

)
fxi

 · 100%. (10)

where fm is the amplitude of the frequency change calculated as the product of the amplitude
of x(t) and the sensitivity of the X/f converter.

The graphs of the total error of information processing by the f/N converter are shown
in Figure 6 for different selected values of the converter counter clock frequency and the
assumed frequency of the waveform x(t) equal to 1 Hz.
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3. The f/N Converter Model

This article is intended to present a practical implementation of the method presented
in [31] with the use of a selected microcontroller system. The experiments carried out
during past studies [33] have revealed that there is a discrepancy between the theoretically
achievable measurement range for a counter with a specific pulse summing capacity at a
selected clock frequency fg and the range achievable in real conditions. The performed ex-
periments have shown that the speed of implementation of many transducer functionalities
is very important, including the execution of numerical operations by the processor, counter
service, communication with the memory, and the interface used for communication with
the master computer. The size of the operational memory needed for calculations and
data storage is also important. It turned out that the performance of the popular 8-bit
microcontrollers of the AVR family [33] allowed theoretically to process signal frequencies
in a wide range. After assuming a quantization error of 1% and using a clock frequency of
16 MHz and a 16-bit counter, it should theoretically be possible to measure frequencies up
to 160 kHz. Unfortunately, popular microcontrollers usually have a small amount of RAM,
which significantly limits their ability to collect data. An attempt to transmit the measure-
ment data directly resulted in a dramatic limitation of the measurement range down to
about 10 kHz. Increasing the frequency of the tested signal meant that the microprocessor
did not correctly detect limit pulses for subsequent Txi periods (Figure 5), and, as a result,
the frequency was twice as high as that actually measured. The number of undetected limit
pulses and the number of incorrect measurements increased with the increase in frequency
measured [33].

Taking into account the above considerations, it was assumed that a more efficient
32-bit microcontroller with a memory size sufficient to collect enough data to evaluate the
operation of the method would be used.

To create the f/N converter model, the NUCLEO-L476RG runtime board was chosen
to contain a 32-bit STM32L476RG microcontroller equipped with an ARM Cortex-M4 core.

In addition, the Nucleo-L476RG set was equipped with an ST-LINK programmer that
allows the microcontroller to be programmed directly into the operating system via the
USB interface and a dedicated application. The programmer also allows for debugging the
processor’s operation, i.e., for current analysis of the program stored in the flash memory
of the microcontroller. Various programming languages and environments can be used to
create the code for the microcontroller, e.g., Keil, IAR, and the environment developed by
STM Microelectronics. A set of programming tools included in the STM32Cube was used
in the work on the project of the f/N converter discussed in the article.
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A 16-bit general-purpose counter, T3, was selected to implement the f/N converter.
According to the technical documentation of the module, this counter can be controlled
at a maximum frequency of 80 MHz. The microcontroller clock signal frequency can be
produced in various ways. After purchase, the development kit is configured to work
with an internal RC resonant system producing a frequency of 16 MHz. Other useful
alternatives for the implementation of the f/N converter, which will give a more stable
clock signal, are the external resonator and the resonator of the ST-LINK programmer.
Measurement experiments were carried out to check the stability of the f/N converter by
measuring selected frequencies in the range of 1221 Hz to 200 kHz, each time collecting a
set of data representing 24,000Txi periods. Due to the stability of the RC generator specified
by the manufacturer at a level of ±1%, it was concluded that carrying out the test of the
RC system was unnecessary. The operation of the checked f/N converter was controlled
sequentially from three clock signal sources: two external quartz resonators produced by
different manufacturers with a resonant frequency of 16 MHz and the ST-LINK programmer
generating a clock frequency of 8 MHz. For each set input frequency of the f/N converter,
the average value from a series of 24,000 results was calculated, and then the absolute error
was calculated as the difference between the calculated average value and the value that
should be measured if the set frequency was measured without error. The results of the
calculations in the form of the absolute error vs. frequency plot are shown in Figure 7. The
waveforms fg1 and fg2 describe the graphs of errors obtained for clock signals from external
resonators, while the graph fg3 represents the measurement error when using the clock
signal from the ST-LINK programmer.
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Figure 7. Absolute error of constant frequency measurement for individual resonators.

The average values of the absolute deviation of the Nxi value from the set value show
that the work with the clock signal sent from the programmer is the most stable, where
the error for frequencies up to 100 kHz is practically negligible. The clock signals from the
16 MHz crystal oscillators are basically comparable to each other. In these two cases, some
instability can be observed, but its scale is not high.

The next comparison criterion used to assess the operation of the f/N converter was
the number of large measurement errors generated, i.e., the frequency readings differing
by more than 5% from the set value. The results are presented in Figure 8. The markings of
the waveforms on the graph are analogous to those in Figure 7. Due to the need to present
the stability of the f/N converter, the maximum of the y-axis representing the number
of registered deviations is limited to 3. It can be seen that the occurrence of measured
values deviating from the Nxi value by more than 5% is a great problem in the field of
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measurement errors. In this case, the transducer worked most stably using the programmer
resonator.
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As a result of the conducted experiments, it was found that the clock signal generated
in the programmer has the highest accuracy and stability and ensures the best working
conditions for the f/N converter. Consequently, it was assumed that the clock signal
generated by the programmer of the development kit would be used for further work.
The configuration of the microcontroller enabling the generation of the clock frequency
fg = 80 MHz for the counter is shown in Figure 9.

Energies 2023, 16, x FOR PEER REVIEW 9 of 22 
 

 

Figure 7. Absolute error of constant frequency measurement for individual resonators. 

The average values of the absolute deviation of the Nxi value from the set value show 
that the work with the clock signal sent from the programmer is the most stable, where 
the error for frequencies up to 100 kHz is practically negligible. The clock signals from the 
16 MHz crystal oscillators are basically comparable to each other. In these two cases, 
some instability can be observed, but its scale is not high. 

The next comparison criterion used to assess the operation of the f/N converter was 
the number of large measurement errors generated, i.e., the frequency readings differing 
by more than 5% from the set value. The results are presented in Figure 8. The markings 
of the waveforms on the graph are analogous to those in Figure 7. Due to the need to 
present the stability of the f/N converter, the maximum of the y-axis representing the 
number of registered deviations is limited to 3. It can be seen that the occurrence of 
measured values deviating from the Nxi value by more than 5% is a great problem in the 
field of measurement errors. In this case, the transducer worked most stably using the 
programmer resonator. 

 
Figure 8. The average number of recorded deviations above 5% for individual resonators. 

As a result of the conducted experiments, it was found that the clock signal gener-
ated in the programmer has the highest accuracy and stability and ensures the best 
working conditions for the f/N converter. Consequently, it was assumed that the clock 
signal generated by the programmer of the development kit would be used for further 
work. The configuration of the microcontroller enabling the generation of the clock fre-
quency fg = 80 MHz for the counter is shown in Figure 9. 

 

Figure 9. Clock frequency configuration in the STM32CubeIDE environment.

The converter has been developed according to the structure shown in Figure 1. A
16-bit T3 counter was selected to work as the working counter of the f/N converter. The
counter was connected to the processor’s internal APB1 bus. The maximum settable clock
frequency of 80 MHz was used (Figure 9).

The T3 counter allows you to select and change the frequency division of the counter’s
clock signal. It also has a register that captures the current value stored in the summing
register. A global interrupt for the T3 counter with the number 1 has been set to handle the
operation of the counter.

Instead of the X/f converter, a programmable Agilent 33220A generator was used as
the reference signal source [35]. The manual for the previous model of the generator marked
HP 33120A [36], contains the information that the frequency signal is generated with an
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accuracy of 0.05% for each pulse for a modulation frequency F less than 600 Hz. Taking into
account that the frequency F expected to be set in the tests is in the range 0 < F ≤ 50 Hz [31],
this accuracy was found satisfactory. The use of a programmable generator instead of the
X/f converter additionally made it possible to resign from the analysis of the X/f converter
error, which was considered unnecessary from the point of view of the present work.

The generated frequency signal was passed to the PA6 line of the microcontroller. A
total of 90 kB of RAM was used for data collection, which allowed for the collection of
45,000 two-byte numbers representing successive Txi periods. The USART2 interface was
used for data transmission to the master computer.

4. The Working Algorithm of the f/N Converter Model in the Basic Mode

Figure 10 shows the working algorithm that performs the processing of successive
periods of the frequency signal in the basic mode. Turning on the microcontroller power
supply starts the initialization of internal microcontroller modules and sets the default
values of the system registers. The next step is to set the required configuration of the
microcontroller pins and configure the USART2 interface. To obtain an acceptable transfer
time, the data transfer rate was set to 1 Mb/s. A frame of 8 data bits, 1 stop bit, and no
parity check was used. After the configuration, communication with the PC is started. The
last step is setting the parameters of the T3 counter. It can be seen that saving the counter
state during the processing of successive Txi values will be forced at the rising edge of the
frequency signal.
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After completing the configuration, the f/N converter program sends its readiness for
measurements to the PC.
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Sending the command to start measurements by the PC starts the procedure of pro-
cessing subsequent Txi periods. It is carried out by the main program in cooperation with
the interrupt handling procedure generated when the T3 counter detects the rising edge
of the frequency signal. The working algorithm of the procedure handling the interrupt
generated by the counter is shown in Figure 11. Due to the need to obtain the maximum
speed of the f/N converter, the procedure contains only the commands necessary to carry
out the measurements. Its task is to read the number Ni from the counter, assign it to a
variable in the program, and set a flag informing the main program about the readout.
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Further processing of the read information is performed in the main program. The
stored value Ni is used to calculate the number Nxi, which represents the measured period
Txi. The current value of Nxi is calculated from the formula:

Nxi = Ni+1 + Nmax ∗O− Ni. (11)

The counter overflow is detected by analyzing the sign of the difference between Ni
and Ni−1. A negative difference sign indicates that an overflow has occurred. Then, the
maximum number of states that can be recorded by the counter is added to the difference;
for a 16-bit counter, it is 216. The calculated Nxi is stored in the RAM. Controlling the sign
of the difference between the numbers Ni and Ni−1 is sufficient under the assumption that
Txi will not be greater than the product of Tg∗Nmax. Otherwise, it is necessary to use the
counter overflow count control.

The value of Ni, after calculating Ni−1, is stored as Ni−1 for calculation in the next
iteration of the program. After reaching the complete set of data, the program stops the
work of the T3 counter and generates the final report containing the saved data set and
additional information about the measurement performed. The report is passed to the PC.
Finally, the f/N converter program waits for the next measurement start command.

Before testing the f/N converter model, it was necessary to define the upper and lower
measurement range limits. As already mentioned, the lower limit of the measurement
range is the product of the period Tg of the clock signal used and the capacity of the meter
used. For the assumed clock frequency fg = 80 MHz and the counter capacity of 16 bits, the
lower measurement limit is approximately equal to 1221 Hz.

Next, the upper limit of the measuring range was determined. It was assumed that
a satisfactory method of determining the upper limit of the measurement range would
be to analyze 1 million consecutive constant frequency measurements and verify that the
measurement results are consistent with theoretical considerations and do not exceed the
expected total error range (10). Measuring a frequency twice as low as expected would
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mean that the f/N converter model failed to detect the boundary between the Txi data and
summed up their lengths, thus producing an erroneous result. The maximum frequency
for which erroneous measurements are not recorded was considered the upper limit of the
measurement range. Due to the need to expose the exact maximum and minimum values
of all measurements, it was decided that instead of a histogram, a graph of the measured
frequency in time would be presented.

The results of the measurements performed are shown in Figures 12–14. Figure 12
shows that the measured frequency of 111 kHz is processed correctly, and all results can be
considered correct.
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Figure 13 shows the effect of processing the 112 kHz frequency. It can be seen that
there is a single frequency measurement with the value at half the set point range. In this
case, there was also a problem with detecting the boundary between successive periods of
the frequency signal.
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Figure 14 shows the effect of processing the frequency of 113 kHz. It can be seen that
the measurement problem occurred for ten Txi periods.
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Figure 14. Measurement of fxi = 113 kHz.

When converting the frequencies into numerical values, each subsequent measurement
of the period is treated as a single measurement, and each incorrect reading of Txi will
have a significant impact on the presentation of the final result. To minimize incorrect
reproduction of the graph of frequency changes and, consequently, the processed physical
quantity, a decision was made to consider the frequency of 111 kHz as the upper limit of
the measurement range.

The total error graphs of the developed model of the f/N converter are shown in
Figure 15. The graph of the theoretical error is marked in red (10), while that of the error
obtained from the experiment is marked in blue.
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It can be seen that the error recorded in the experiment does not exceed the theoretical
value. There is also a significant influence of error averaging in the lower part of the
measuring range. In order to determine the switching limit of the fg frequency division for
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adaptive operation, the zoom of the obtained error graph for lower frequencies is shown in
Figure 16. It can be seen that between 4 kHz and 5 kHz, there is an irregularity in the graph,
after which the error value obtained from the experiment begins to increase noticeably. It
was decided that the frequency of 5 kHz, located in the stable part of the graph, would be
convenient and allow for stable operation of the f/N converter.
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5. Error Graph of the f/N Converter Model

The next stage of the research was creating an algorithm for the adaptive work of the
f/N converter and introducing relevant modifications to the program code.

The f/N converter application should continuously analyze the current length of
the Txi period and change the degree of frequency division according to the established
requirements if the threshold values are reached.

The details of the adaptive work of the method to change the degree of division of the
clock frequency used by the counter are described in [31]. The results of the simulation
analysis of this method for various operating conditions are also included there.

It was assumed that in the adaptive mode when reducing the measured frequency fxi
below 5 kHz, the frequency fg would be divided by 8 in the prescaler. As a result, the T3
counter will add up the pulses occurring at a frequency of 10 MHz. The lower limit of the
measurement range is 160 Hz, which is the product of the Tg period and the maximum
capacity of the meter, rounded off to full tens.

The Increase of fxi above 5 kHz will force the return of the division degree to 1 and set
the clock signal for the counter T3 to the frequency of 80 MHz.

The adaptive operating mode changes the shape of the theoretical error graph. For
the period Txi with the value 20−4 s, corresponding to fxi = 5 kHz, there is a step change
in the total error value forced by the change in the quantization error. Figure 17 shows
the error graph for the adaptive mode, plotted as a bold red line. For comparison, the
waveforms of the theoretical total error graphs for fg = 10 MHz and fg = 80 MHz are added.
Certainly, the change in the counter clock frequency division does not have to take place
only for values close to fxi = 5 kHz. The graph shows that the degree of frequency division
can be switched for longer Txi periods, which will further reduce the error. The presented
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threshold of change in the fg division degree should be treated as an example, illustrating
the effectiveness of the presented method.
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The algorithm for the adaptive work of the f/N converter is shown in Figure 18. Part
of the functionality is identical to the algorithm presenting the converter’s work in the basic
mode (Figure 10). The blocks with unchanged functionality have a white filling, while new
blocks and blocks with changed functionality are marked with a green filling.

The first modification of the algorithm consists of adding the start of fg frequency
division in the part initializing the counter T3 setting. Initially, the frequency division
degree is set to 1, and the divider does not work.

The second modification is the inclusion of blocks that analyze the calculated current
value of Nxi and, according to the obtained result, change the frequency division degree.
When Nxi reaches a value of 16,000 or more, the division degree is set to 8. The program
iteration number for the time of changing the division degree is also stored in a dedicated
table. This allows the actual clock frequency to be decoded for subsequent Nxi when
analyzing the data at a later time. In addition, in order to maintain subsequent division
by 8, the program sets a dedicated memory location—a flag signaling that the division
degree is currently set to 8. Thanks to this flag, the division coefficient is not changed
until the next Nxi decreases below 2000, which corresponds to the frequency of 5 kHz for
fg = 10 MHz. Reducing the value of Nxi below 2000 forces the start of the procedure of
setting the division degree to 1. Like in the previous case, the number of program iterations
at which the division degree has been changed is stored for later use, but this time in the
table storing the data about setting the fg division by 1. In order to block duplicate settings
in the fg division, the division by 8 flags is cleared at the same time.

Depending on the calculated values of Nxi, the program changes the division degree
in the prescaler on an ongoing basis, adjusting the counter clock frequency to the values set
in the algorithm.

The last change introduced in the adaptive work algorithm refers to a different way of
generating the final report. In order to be able to calculate Txi from the transmitted Nxi, the
Nxi strings for a given division degree are preceded by a division degree marker. Thanks to
this, the software of the master computer, when reading subsequent data from the report,
is able to calculate the duration of subsequent Txi periods on an ongoing basis.
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6. Verification of the Adaptive Work of the f/N Converter

The tests of adaptive operation of the converter consisted of checking how the con-
verter works for frequencies in the lower part of the measurement range, the switching
range in particular, by analyzing the increase in total error caused by the averaging error. It
was assumed that the applied test signal is calculated based on the following relationship:

ft = f0 + fm sin(2πFt). (12)

The following parameters were set: DC component f 0 = 5.160 kHz, amplitude fm = 5 kHz,
and frequency F = 1 Hz. For these conditions, it was possible to determine the error graph
in the range of 160 Hz ÷ 10,160 Hz. The recorded variable frequency waveform is shown
in Figure 19.

The analysis of the error graph for the entire recorded waveform would result in
multiple plottings of the error curve on one graph, thus making the graphical presentation
illegible. For this reason, it was assumed that the graph would show a data sequence
representing one frequency change from the minimum to the maximum of the given test
waveform ft. The magnification of this waveform is shown in Figure 20. It can be seen that
the division degree change generates a jump in the calculated fxi. An incorrect value of fxi is
read when the procedure sets the new division degree value in the counter and reinitializes
the counter after changing the setting.
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Figure 20. Graph of measurement results in which the process of adding clock pulses to the counter
has been disturbed.

The presented magnification shows that for a threshold frequency close to 5 kHz, the
reproduced waveform (blue) deviates significantly from the test waveform (red), with the
difference between these waveforms reaching a value close to the amplitude fm. Taking
into account that the change of fxi differs significantly from the set test waveform, it was
concluded that an approximation should be used to reconstruct the waveform in the graph
part covering the switching time of the counter’s clock frequency division degree.

The first approximation used was extrapolation with a zero-degree polynomial replac-
ing the incorrectly determined values with the last correct one. Figure 21 shows the error
graph reconstructed in the above way. It can be seen that the theoretical error graph is
consistent with that obtained from the experiment. The effect of reducing the processing
error to a value of about 0.27% has been obtained.
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Due to the rather large error value of the approximation used, it was decided to
additionally test the extrapolation with a first-degree polynomial and the interpolation
with zero and first-degree polynomials. It is obvious that the tested approximations caused
differences in the experimentally obtained error graphs only in the switching range.

A decision was made that, in order to make the approximation effects comparable,
a summary of the error graphs for all the approximations used will be presented in an
enlarged form showing only the frequencies near 5 kHz, i.e., in the range in which the
T3 clock frequency division degree was switched. This summary of graphs is shown in
Figure 22. It can be seen that the best approximation of the test signal change trend is
provided by linear interpolation.
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Figure 23 shows the examined waveform after applying the first-degree polynomial
interpolation. The applied approximation method caused the waveform to be undistorted
in the regions of frequency division degree in the prescaler and to well correspond to the
given test signal.
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7. Conclusions

A number of challenges had to be met when implementing an adaptive method
for changing the frequency division of the counter clock signal in a frequency-to-code
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converter. The first was the selection of a microcontroller to implement the frequency-
to-code converter. Due to the limitations of the factory-applied RC clock signal in the
microcontroller, it was necessary to select and test a more stable signal source. The next
challenge was to determine a method to check the upper limit of the measurement range.
The main and most time-consuming challenge was to implement the basic and adaptive
algorithms in the microcontroller structure. An additional challenge, not discussed in
the article, was the development of software in Python to analyze the data and create
final reports on each measurement. The measurement experiments conducted allow us to
conclude that it is possible to implement the f/N converter structure in the STM32L476RG
microcontroller. The obtained results confirm the compliance of the metrological analysis
of the f/N converter model with the experimentally obtained error graph.

The efficiency of the microcontroller used allowed us to modify the operation of the
f/N converter and improve its operating parameters. The design of the frequency-to-code
converter developed in an earlier work [33] using an 8-bit microcontroller allowed error-free
processing of successive periods of a waveform with a maximum frequency of 10.25 kHz.
As shown in the paper, the device using a 32-bit microcontroller allowed the upper range of
the measured frequencies to reach 111kHz. The above result proves the desirability of using
microcontrollers with higher computing power in cases where processing of successive
periods of the signal over a wider range is needed or when the computing power is used
for additional data processing in the microcontroller. The implementation of an adaptive
algorithm that allows for the extension of the lower limit of the f/N converter measurement
range without requiring the use of a counter with increased capacity is presented.

This limit can be easily extended by selecting the clock frequency division degree of the
meter to the value required in the measurements. The microcontroller used in the research
allowed for the effective selection of the division degree of the meter’s clock frequency to
the required extent. If frequencies in other ranges need to be processed, the f/N converter
system allows the user to divide the frequency within a very wide range.

When using a software change of the counter clock frequency division degree, one
should take into account that during the division degree change, the meter’s operation is
disturbed and, as a result, a small number of incorrect measurement results are generated.
In this case, good interference filtering effects are obtained using linear interpolation.
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