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Abstract: This paper presents an empirical study of a spark-ignition internal combustion engine with
modifications made to increase its effectiveness. The modification was implemented bi-directionally
in terms of changes to the compression ratio and changes to the engine’s valve train. The compression
ratio was increased by 2.3 units by design and a hybrid intake valve opening control was used in the
engine’s valve train. The hybrid control involved autonomous control of one of the inlet valves with a
dedicated electromagnetic actuator. The designed electromagnetic actuator was mounted downstream
of the single-cylinder engine’s intake system’s modified camshaft to control the effective compression
pressure build-up. Field calculations were carried out for the electromagnetic actuator’s design variants
and its current characteristics were determined. The multivariate calculations were carried out in order
to find the quasi-optimal geometry of the actuator. The width and height of magnetic field coils and
the dimensions of the stator poles were changed, while maintaining the same external dimensions
of the actuator to enable its mounting in the cylinder head system. In the next step, the prototype of
the actuator was made and placed on the combustion engine in order to conduct the experimental
investigations. The work was aimed at improving the internal combustion engine’s efficiency at the
low load range, as this is load range in which it has low efficiency despite it being the most often used
during normal vehicle operation. The original measurement stand was prepared, and many tests were
carried out in order to investigate the influence of the electromagnetic valve on the combustion engine
characteristic. This improved the internal combustion engine’s efficiency at its low-load range by up to
25%. Both calculation and measurement results are presented in form of graphs.

Keywords: electromagnetic actuator; combustion engine fuel conversion efficiency; compression
ratio; valve controlling

1. Introduction

Internal combustion engines of vehicles equipped with classic propulsion systems
operate mainly in the range of partial loads, where the engine efficiency is significantly
lower than its maximum [1]. This fact applies especially to urban driving, where crankshaft
speeds are much lower than in motorway driving, and its changes are more frequent
and intense. The same applies to the engine load variability in the vehicle’s drive unit.
Hence, the engine’s overall efficiency in variable conditions depends on the load and
crankshaft speed, but in instantaneous operating conditions, the efficiency depends on
the temporary maximum compression ratio in the cylinder. Maintaining the highest
compression ratio possible under given conditions for traditional internal combustion
engines is difficult due to limitations in the air mixture’s combustion process in the cylinder,
including the occurrence of engine knocking. The engine’s maximum peak compression
ratio can be adjusted in several ways. Currently, the most popular method of changing the
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cylinder’s pressure is to change the throttle valve opening angle, which limits the flow of
the fuel–air mixture to the engine as well as the pressure increase. Flow reduction with
a closed or partially opened throttle valve in the intake manifold causes the engine to
run with a large negative charge exchange loop. This leads to a reduction in the engine’s
compression ratio, which in turn reduces its maximum efficiency. One way to solve this
issue is to use an internal combustion engine turbocharger, which is often insufficiently
efficient at low speeds. It would therefore be preferable to ensure a high compression
ratio (CR) at low-load conditions and a low CR at high-load conditions, which aids the
aforementioned methods of adjusting the maximum compression ratio. It was the engine’s
variable compression ratio that prompted the authors to build an electromagnetic actuator
to control the compression ratio in valve train. As the internal combustion engine is
still the most popular source of power for vehicle drive units, this topic is addressed in
many scientific elaborations [2,3], where the issue of inadequate use of engine power in a
passenger car’s drive unit is described extensively in terms of its low loads and improved
charge exchange. The introduction of solenoid valves, so-called live valves, which do
not have a kinematic connection with the engine’s crankshaft, provided a new degree of
freedom into the control system. In this case, it is possible to control the valve’s opening
time and lift, significantly affecting the charge exchange and cylinder pressure build-up.
In his paper [4], Theobald presented an empirical study carried out on a single-cylinder
engine, where the focus was on optimizing the valve train’s operation by controlling the
opening time at 1500 RPM under varying load conditions with a stoichiometric fuel–air
mixture. Changing the valves’ opening angles and timing relative to the top dead center
(TDC) enabled the introduction of internal exhaust fume recirculation in the engine’s
cylinder. It was shown that the introduced changes had a positive effect on power and
reduction in primary emissions. The operation of a valve train based on electromagnetic
actuators with a moving coil is the subject of elaboration [5], in which attention was paid to
the system’s current efficiency by changing the valve opening and closing cycle, and the
resulting issue of the valve hitting the head seat. The current efficiency was assessed based
on the valve motion speed and the coil’s electromagnetic force. The paper’s results indicate
that the use of adequately programmed controllers provides a better current efficiency. This
topic is also addressed in papers [3,6], which focus not so much on internal combustion
engine efficiency, but on control algorithms using programmable electromagnetic actuators,
which were demonstrated to reduce electromagnetic interference with the use of adaptive
Nelder–Mead or Fuzzy Logic valve control algorithms, especially in the actuator start-up
phase. The efficiency of an internal combustion engine with its valve train equipped with
electromagnetic actuators was highlighted in paper [6], which features a comprehensive
study of its duty cycle for a homogeneous charge compression ignition (HCCI) with fuel
direct injection and a turbocharging system. Internal combustion engines of this type are
still in the advanced testing phases, but the engine’s tests at full load and with turbocharging
at 400 to 650 kPa demonstrated a 6% deterioration in the cylinder’s indicated mean effective
pressure (IMEP) and an increase in nitrogen oxide emissions to approx. 8 g/kWh. During
testing, attention was paid to the engine’s lower load ranges, where fuel injection combined
with extended intake valve opening time, affecting the negative charge exchange loop,
will have a beneficial effect on the engine’s operating stability and uniformity. In our own
research [1], attention was paid to the possibility of controlling combustion pressure using
a solenoid valve in the engine’s operating field, reducing fuel consumption in the engine’s
low-load range and speed of no more than 1250 RPM by up to 12%.

Nevertheless, the field for improving the overall efficiency of internal combustion
engines is not yet closed and opportunities to improve them should be sought in many
areas, one of which is, for example, reduction in friction losses in internal combustion
engines. New lubricants [7] or the design of the elements of the piston–rings–cylinder
system is of great importance [8]. In these two works, the authors noted that increased
engine torque at low crankshaft angular velocity gives a consequence of an increase in the
mean unit pressure distribution of the piston rings. This effect applies especially to the
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upper sealing ring as the expansion stroke starts. It affects the formation of an oil film by
slip reduction. Improving the cooperation of these elements also means improving the
overall efficiency of the internal combustion engine by reducing its mechanical losses. One
of the key technological challenges of using electromagnetic actuators is a current efficiency
that enables such a system to operate on the vehicle’s power. Therefore, this paper presents
a hybrid system that is a combination of a classic valve train with an electromagnetic
actuator to control the cylinder’s combustion pressure, but for an internal combustion
engine with an increased compression ratio compared to a factory engine.

2. Motivation for Taking Up the Topic

The information presented demonstrates that the use of electromagnetic actuators
in the engine’s valve train provides additional freedom into the engine’s power control
system—particularly under the conditions of the engine’s forced operation resulting from
the vehicle’s implemented speed profile, where the internal combustion engine operates
in conditions that are far from optimal. The work [9] describes the benefits of using
power-controlled engines with a variable compression ratio tested in NEDC and real
WLTP synthetic driving cycles. Significant benefits have been demonstrated from these
systems, resulting in a 7.5% reduction in fuel consumption. The research described in [10]
also indicates a great potential for the use of variable compression ratio engines; it even
indicates the potential to compete with electric motors used to drive passenger cars. For the
tested engine, when the compression ratio was increased from 9.5 to 10.1, fuel consumption
(FC) was reduced by 6–8%, and efficiency increased by 3.5% at 75% engine power load.
An internal combustion engine’s optimal operation is in the range of 80–90% of its torque
load and 20–40% of its crankshaft speed range, which is most often in the range of 2000
to 3000 RPM. At the same time, the internal combustion engine should operate at its
set crankshaft speed, which usually translates into the vehicle’s driving speed of 70–90
km/h [1,11]. The internal combustion engine’s highest efficiency is achieved under such
conditions and these values exceed the 44% limit in modern engines [12]. For this reason,
the vehicle’s mileage fuel consumption is lowest, and its consumption is higher for both
lower and higher driving speeds in the rest of the range. However, engine efficiency is
in the range of 12–19% under everyday operating conditions, especially in the city, when
driving speeds are significantly lower and generally do not exceed 40 km/h [1]. At the same
time, under such operating conditions, the internal combustion engine runs for around 60%
of its operating time, assuming a normal driving style. In the rest of the car’s speed range,
both lower and higher speeds result in an increased fuel consumption. The key solution is
to increase the engine’s efficiency, which is simple in theory, because definition (1) states
that its efficiency depends on the compression ratio.

ηt Otto = 1− 1
εk−1 (1)

where ε is the compression ratio, k is the specific heat ratio [1].
Higher efficiency results in lower fuel consumption; therefore, paper [13] presents

the desired compression ratio variability compared to the engine’s overall characteristics.
Hence, many research facilities work on variable compression ratio engines; however, such
engines are still being tested, as in the case of HCCI engines. The work [14] presents a
study on a single cylinder direct injection CI engine’s work, while varying the compression
ratio (at the values of 18, 17, and 16) and varying the load. The influence of the reduction in
the compression ratio on performance and combustion parameters was analyzed. As the
compression ratio was reduced, the following occurred:

- a decrease in break thermal efficiency and peak cylinder pressure was noted,
- an increase in break specific fuel consumption, ignition delay period, and exhaust gas

temperature was observed.
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The authors of the article [15] present two Saab concepts: Saab Variable Compression
(SVC) and Saab Combustion Control (SCC). The aim of both new systems is the reduction
of fuel consumption and parasitic losses.

In paper [16], the technology, working principle, and advantages of the VC-T (Variable
Compression Turbo) engine are presented. The VC-T engine’ s compression ratio (CR) is
adjustable between 8:1 and 14:1, which makes it possible to increase the efficiency by using
high CR at idle and low driving velocities and increase the performance by lowering the CR
while driving with high acceleration dynamics or heavy engine loads. In [17], a new variable
compression (VCR) engine with a multiple-link piston-crank system was proposed. The
desired CR in given operating conditions is set by varying the motion of the piston at TDC.
This mechanism is installable without generally changing the size and weight of the engine.
The authors prove that fuel consumption can be decreased and the engine’s power can be
increased simultaneously by using high CR and exhaust gas recirculation (EGR) in low-load
conditions and low CR and high boost pressure in high-load conditions. The impact of the
change in the piston movement has on fuel economy and maximum power at partial load
is presented. Furthermore, the use of higher compression ratios involves a disruption in
the combustion process in the cylinder through the occurrence of engine knocking. Engine
knocking is detrimental due to toxic gas emissions derived from combustion, but it is also
detrimental for the engine’s durability. A very important technical solution used in the
world of technology to control the operation of internal combustion engines is the concept
described in paper [18], involving a significant increase in the intake valves’ opening angle
in the intake stroke, which affects the negative charge exchange loop. This allowed for
making a reference to Atkinson’s work [19], who improved the engine’s efficiency by
changing the negative charge exchange loop. Keeping in mind the technical solutions
outlined above, the authors of this paper focused on an internal combustion engine with
a higher compression ratio by design, i.e., a permanently increased compression ratio in
its entire operating area, adapting the combustion pressure in the cylinder to the engine’s
current load via an electromagnetic actuator powering a single intake valve. This enabled
achieving a combustion pressure in the cylinder that corresponded to a high compression
ratio at low loads and an increased intake valve opening angle at higher loads. The opening
angle increase reduces the volume of the stoichiometric mixture that takes an active part
in the combustion process, lowering the combustion pressure and preventing engine
knocking. The combustion pressure reduction is comparable to the combustion pressure of
an internal combustion engine with a factory compression ratio, thereby achieving effective
compression control in the cylinder. Therefore, the authors assumed the main goal of
the work in the form of carrying out the electromagnetic actuator modelling process, was
mounted downstream of the single-cylinder engine’s intake system’s modified camshaft
to control the effective compression pressure build-up. Field calculations were carried
out for the electromagnetic actuator’s design variants and its current characteristics were
determined for the designed actuator. The width and height of magnetic field coils and
the dimensions of the stator poles were changed, while maintaining the same external
dimensions of the actuator to enable its mounting in the cylinder head system. The entire
research was to lead to improving the internal combustion engine’s efficiency at the low
load range, where it has low efficiency.

This manner of engine operating cycle control required implementing a modification
of the valve train through its hybridization, combining a classic cam valve train with an
electromagnetic actuator. This reduced the actuator’s current demand but, at the same time,
necessitated the designing and selection of the tested actuator’s design parameters, which
is described below.

3. Effective Compression Ratio

The maximum compression ratio increase is a basic indicator of an internal combustion
engine’s operation that characterizes its operating capacity and is often related to the
engine’s compression ratio. In internal combustion engines, the maximum compression
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ratio not only depends on its compression ratio, but also on the throttle valve opening
angle, which determines the cylinder’s supply of fresh charge in the compression stroke.
The compression ratio defined this way can be demonstrated in the form of the equation
provided below (2):

γ =
pe max

pmin
(2)

where pe max—maximum effective pressure [Pa], pmin—intake pressure [Pa] [1].
The effective compression ratio can be adjusted in a number of ways, including

changing the throttle valve opening angle or using a turbocharger. However, in order to
maximize the engine’s efficiency, it is advantageous to have the additional effect of pump
loss reduction during the intake stroke. This combination allows for achieving the engine’s
maximum efficiency at the given design parameters. In this case, the authors used an
internal combustion engine with a structurally increased compression ratio and a valve
train modified by the addition of an electromagnetic actuator to control one of the intake
valves. The basic characteristics of the effective compression ratio for a single-cylinder
internal combustion engine are shown in Figure 1.
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Figure 1. Basic characteristics of the test engine’s effective compression ratio: (a) ignition switched
off, (b) normal operation.

A comparison of the engine’s efficiency characteristics with the ignition switched off
(Figure 1a) and with its efficiency with the ignition switched on (Figure 1b) shows signifi-
cant qualitative and quantitative differences. Figure 1b demonstrates that the efficiency
increases significantly above 2500 RPM. At low engine speeds and engine loads, the new
electromagnetic actuator is synchronized with the second intake valve. In this way, in the
timing system of the internal combustion engine, there are no changes in its work cycles
(valves opening and closing) [1,20]. Under these conditions, the internal combustion engine
has a high compression ratio, and the effective compression ratio is only controlled by
the throttle in the intake manifold. As the engine’s load increases, the electromagnetic
actuator takes longer to open the intake valve, thereby controlling the effective compres-
sion ratio [1,20]. Such electromagnetic actuators are used in many applications, e.g., for
transportation [21,22], wave–energy conversion [23], and linear engines [24,25]. Their
application eliminates the conversion of rotary motion into linear motion in many drive
units, i.e., in combustion engines [26], pumps [27], and high-compression engines [28].
Linear electromagnetic actuators are used due to their high reliability, dynamic properties,
and electro-mechanical parameters [29,30]. In case of the electromagnetic actuators for
valve driving, there are different solutions investigated in the literature. In [31] the hybrid
construction consisting of two different permanent magnet actuators is presented. The
composite construction is relatively complicated. In [32], an electromagnetic linear actuator
connected in series with the magnetorheological buffer is investigated. The buffer is used
to reduce the seat velocity, but it also increases the switching time. A hybrid permanent
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magnet electromagnetic valve is presented in [33]. It is characterized by a simple construc-
tion and relatively low energy consumption. However, its disadvantage is a relatively
long switching time. In [34], a bi-stable actuator with permanent magnets was presented.
It is characterized by a good dynamic properties, simple construction, and low energy
consumption. Its disadvantage is the use of permanent magnets, which could suffer under
relatively high temperature arising in the combustion engine.

In the presented work, a four-stroke single-cylinder test engine was equipped with an
electromagnetic actuator and its control system, allowing for valve train-independent inlet
valve action (Figure 2). As an actuator, a novel construction without permanent magnets
was implemented. The elimination of permanent magnets is important due to the reliability
of the actuator.
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4. Electromagnetic Actuator Parameters

Technical literature features many elaborations on electromagnetic actuators used for
powering valves in an internal combustion engine, including patented solutions [35,36]
and commercial solutions for direct application [37]. However, electromagnetic actuators
are still characterized by multiple properties, a varied selection of parameters, and are the
subject of many studies carried out in different research centers. The presented papers are
multi-faceted and, for example, concern the selection of design parameters [38], describing
the theoretical issues with regard to the designing of such an actuator, which were verified
during tests on a single-cylinder internal combustion engine’s valve train, with attention
being paid to the issue of the solenoid valve’s needle protrusion, determining the opening
cross-section in the valve seat during the suction stroke. The main, priority goal of the
designed actuator was to obtain high dynamics, high force, and low dissipation power loss,
and thus geometric dimensions at this stage of the work had less priority. The non-linear
model was used to present and discuss the control strategy based on computer simulations
and empirical studies to further improve the actuator’s design. In paper [39], attention was
paid to the dynamics of linear electromagnetic actuators and the authors presented a simple
model to study the effect of eddy currents on the dynamics of the protrusion of the needle
that moved the valve. The dynamics were modelled using the finite element method, which
implements the non-linear properties of the magnetic material with a modified Weibull
distribution. The model is voltage-controlled. The results of the finite element method
(FEM) simulation were compared to laboratory tests, thereby achieving comparative needle
acceleration at real-life loads. One of the challenges of electromagnetic actuators used in
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an internal combustion engine’s valve train is the robust valve needle movement control
to achieve smooth closure under different operating conditions. This issue was addressed
in paper [40], which describes laboratory tests of the effects of different algorithms on the
valve stalling and valve seat impact. The study involved testing of two valve movement
controllers in a single-cylinder internal combustion engine. The controllers were compared
in their state of transition from an open exhaust valve to a closed exhaust valve at large
combustion pressure fluctuation. A new control algorithm that operates reliably over
a wide range of operating conditions was presented. The analysis demonstrated that
the electricity consumed by the cam-less valve train is comparable to the energy of an
equivalent conventional valve train based on low-friction camshafts. Papers [33,41] describe
a hybrid electromagnetic actuator design with a permanent magnet and electromagnetic
coils installed together, which differs significantly from existing electromagnetic actuators
that are used in valve trains; the actuator’s strength is the reduced force required for
actuation. A magnetic flux density simulation was carried out to optimize the actuator,
and its results show that such an actuator with soft-closing control can fully satisfy the
valve dynamics of spark-ignition engines. In paper [38], an attempt was made to design
an electromagnetic actuator with an unusual cuboid structure, in which the movable pin
consists of flat permanent magnets arranged alternately with ferromagnetic spacers. The
construction of the stator includes six coils forming three pairs of poles, which makes
this electromagnetic actuator similar to a linear reluctance motor. At the same time, it is
an actuator that generates zero force from the neutral position and the rated force varies
in the range of 600–650 N. This is a typical value for this actuator and the advantage of
this solution is the low mass of the moving pin ensuring high dynamics and low energy
consumption. The disadvantage is the durability of the pin due to the material used
(magnets lose their properties under the influence of vibrations).

The above considerations and the authors’ experience in building linear actuators led
them to work on the design of an actuator dedicated for a single-cylinder spark-ignition
engine operating in a hybrid valve train with three cam-driven valves and one electrically
driven valve. A construction of an axisymmetric electromagnetic actuator with a moving
spindle in the form of a ferromagnetic cylinder was proposed, and two-state operation
was assumed. This is of great importance in the design of the actuator because it can
generate force in both directions of movement, as well as in the technology of the actuator.
Two structures were considered: one solution based on coils [42], and one on coils with a
permanent magnet [36]. The basic calculations for the actuator without permanent magnets
are presented below. The authors chose a tubular design for the actuator. It is the most
effective design in terms of the ratio of electromagnetic force to the movable component’s
mass [43]. Figure 3 shows the actuator’s main dimensions. This model was used in the
simulation program.

The actuator consists of a stator and drive unit. A preliminary number of winding
turns was assumed in the first phase of calculations. The polarization field is excited by
the currents in the external coils (DC coils). Their main task is to keep the drive unit in
stable extreme positions (valve opened and closed). Each coil has N1 = 72 turns and are
wound separately. The control electromagnetic field is excited by two internal coils with
N2 = 118 turns each. The coils are connected in series. The main task of these coils is to
create a magnetic field to move the drive unit to a different stable position. The number of
turns was calculated based on the coils’ dimensions and the assumed non-insulated wire
cross-section (3 mm2).

The stator consists of the main tube-shaped external part as well as the bottom and
upper covers, which form the main magnetic circuit. The drive unit consists of two parts:
the magnetic core’s movable part and shaft. In the magnetic field analysis, the authors took
into consideration the Austenitic steel shafts. Table 1 presents the initial dimensions for the
actuator’s variant calculations.
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Table 1. The actuator part’s initial dimensions (in mm).

Parameter Rs Ro Rz Ri hz hg hp hr

Value 42 8.5 8 3 8 6 8 40

Parameter g hc wc1 wc2 ws hs

Value 0.5 27 16.5 10 4 29

4.1. Mathematical Model for the Magnetic Field Analysis

The magnetic field distribution was obtained with the aid of an FEM software. To
simplify the field analysis, the mathematical model omitted the eddy currents, and the
magnetic field was considered as stationary. Furthermore, the authors omitted the fact that
the manufacturing process slightly changes the magnetic properties of the core material.
Thus, the magnetic air gap value was slightly increased in the calculated model. On the
other hand, the authors took into account the non-linear nature of the flux density changes
in field intensity function.

The analysis was performed with the assumption that the 3D magnetic field issue
can be reduced to a 2D issue, thereby significantly simplifying the model’s mathematical
description and reducing the calculation time. This is due to the symmetry of the designed
electromagnetic actuator because construction details do not significantly affect the dis-
tribution of the magnetic field. This results from the studied object’s geometry, because
the design details are not considerably affecting the magnetic field’s distribution. This
allows the two-dimensionality to ensure that the calculations are much more economical
and convenient.
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As in paper [43], the author assumed the non-linear nature of the ferromagnetic core’s
fragmentary magnetization, which allowed them to describe the magnetic field by using
the following formula:

∇×
(

1
µ(B)

∇× A
)
= J. (3)

The field analysis was based on calculating the magnetic vector potential A [23], which
only consists of the vector’s polar component (Aϕ). Due to the cylindrical symmetry of the
proposed tubular actuator, the authors used the polar coordinate system. The use of the
vector potential’s polar component is used (as a find function) [43], and the magnetic field
can be described by using the following partial differential equation (PDE):

∂

∂r

(
1

µ(B)
∂Aϕ

∂r

)
+

1
r·µ(B)

∂Aϕ

∂r
+

∂

∂z

(
1

µ(B)
∂Aϕ

∂z

)
− 1

µ(B)
Aϕ

r2 = Jϕ (4)

where µ(B) is the magnetic material’s non-linear permeability; J is the current density in
the excitation windings [43].

Taking into account the potential’s rotation operator, it is possible to calculate the
components of the magnetic flux density vector

B = −
∂Aϕ

∂z
1r +

1
r

∂
(
rAϕ

)
∂r

1z (5)

Based on the knowledge of magnetic field distribution, it is possible to determine
the field’s integral parameters, especially including the magnetic force generated by the
actuator. When the ferromagnetic component is moving, the force can be calculated from
the changes in the energy or the magnetic stress tensor. The force is determined by using
Maxwell’s stress tensor on the edge of the moving ferromagnetic area [43]:

Fe =
∫

Ω
f dΩ =

∮
Γ

↔
T ·dΓ, (6)

where,
↔
T =

µ
(

H2
r − 1

2 H2
)

µHr Hz

µHr Hz µ
(

H2
z − 1

2 H2
) (7)

For non-linear characteristics B(H) of the core elements, the magnetic force can be
determined using the scalar product of the magnetic intensity vector and the corresponding
magnetic flux density vector, at each point of the core.

Fe =
1
2

∮
Γ
(H(B·n) + B(H·n)− (H·B)n)·dΓ (8)

Another important integral parameter that affects the actuator’s inductance is the
magnetic flux Ψ related to all coil windings. It is possible to calculate the product of the
normal component Bn and the surface area of each component in the area enclosed by the
winding’s contour for the kth coil winding. The integration of such products over each coil
winding and summation of the integrals allow for the determination of the flux linkage

Ψ = ∑N
k=1

∫
S

BndSk, (9)

where Sk—area enclosed by the kth coil [43].
The coil’s dynamic inductance was calculated based on the definition as a partial

derivative of the flux linkage associated with the coil in relation to the current

Ld =
∂Ψ
∂i

(10)
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This software utilized formulas 3 to 10 in order to inspect the field at arbitrary points,
and to evaluate a number of different integrals and determine various quantities of interest
along the user-defined contours (Figure 2). The non-linear curve B(H) was included in
the model. The Dirichlet boundary condition was assumed for the calculation area’s outer
boundaries

Aϕ = 0 (11)

4.2. Results of the Variant Calculations

With additional cooling of the actuator’s main body (external magnetic core), the
authors assumed relatively high current densities J = 10 A/mm2 for all coils. The initial
height hc was the same for both the polarization and control coils. The initial widths of the
control coil wc1 and of the bias coil wc2 are presented in Table 1. The same current intensity
I = 30 A in the bias and control coils was assumed for the preliminary dimensions. The
number of coil windings was changed depending on the wire dimensions (a copper wire
with 1 mm by 3 mm cross-section was assumed).

4.2.1. Influence of the Coil Width on the Magnetic Force

Different winding cross sections were assumed for the variant calculations. Specific
magnetic forces were calculated with the assumption of constant current density in the
coils. These forces included the average value FAV, maximal value Fmax, and density fm
[N/kg] of the maximal force, based on the drive unit’s mass.

Figure 4 shows graphs comparing two of the above-mentioned forces with the ratio of
wc2 and wc = wc1 + wc2. The remaining dimensions are given in Table 1. It is evident that
the forces achieve their maximum values when the width wc1 approaches wc2 and reaches
half of the core window.
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The peak value in the graph presenting the maximum thrust versus the wc2/wc
ratio (Figure 4a) is achieved when the ratio is in the range of 0.5 and 0.6. For this range,
the average dynamic inductance Ldav is between 1.7 mH and 1.4 mH (Figure 4b). The
inductance decreases along with an increase in the wc2/wc ratio. Its smallest value is the
most advantageous for the actuator’s dynamics. Taking into account the magnetic force,
the optimum condition is when the widths of the polarization and the control coils are
nearly the same.

4.2.2. Optimum Height hz of the Extreme Poles

The optimum height hz of the external ferromagnetic core is very important for the
actuator’s thrust force and dynamics. This was the reason for studying the impact of height
on the maximum force (Fmax) and average dynamic inductance value—Ldav (Figure 5). The
graphs show the dependence of the force and inductance changes on height hz (Figure 5).
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A height ranging from 5 to 15 mm is best for the design. An increase in height in the afore-
mentioned range does not considerably affect the maximum force or the average dynamic
inductance Ldav (Figure 5b). Taking into account the optimum force value (Figure 5a), the
optimum height is hz = 10 mm.
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4.2.3. Impact of the Drive Unit’s Radius (Rz)

Very strong changes in the magnetic field’s integral parameters occur when the moving
ferromagnetic core’s volume increases. The graphs in Figures 6 and 7 show the impact
of changes in the drive unit’s radius Rz on the actuator’s selected parameters. Due to the
constancy of the actuator’s volume, it is evident that an increase in the radius causes a
decrease in the coils’ width.
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Taking into account the actuator’s real dimensions, the radius Rz was being changed
within the range from 6 mm to 15 mm. The maximum force Fmax [N] and the maximum
force density fm [N/kg] are presented in Figure 6. A five-fold increase in maximum force
is achieved at a two-fold increase in the radius. On the other hand, a 1.5 increase in force
density is achieved at a two-fold increase in the radius (Rz = 14 mm) (Figure 6b). This is a
result of the simultaneous increase in the force and the drive unit’s mass.

The obtained results show that the drive unit’s radius significantly affects the average
dynamic inductance Ldav (Figure 7). An increase in the radius Rz causes an increase in
inductance Ldav (Figure 7). However, an increase in the radius causes a reduction in
magnetic flux density, which results in a smaller increase in the coil-linked flux (for the
greater Rz) and a smaller increase in inductance.

4.2.4. Impact of the Central Pole’s High hp

Figure 8 shows the dependency of the maximum force Fmax and the average dynamic
inductance Ldav on the various dimensions (hp) of the central pole. The ferromagnetic pole
is an important part of the magnetic circuit. Its dimension was changed in the range from
8 mm to 16 mm. The height of the coils should also be changed based on height hp because
the actuator’s external dimensions should be constant. Figure 8 shows that the thrust and
dynamic inductance are slightly reduced depending on the central pole’s height hp.
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The actuator’s designing phase featured measurements of the inlet valve spring force,
which amounted to around 400 N. Moreover, as the valve is opened by the actuator,
additional air pressure is applied during the compression stroke. Hence, the focus was
placed on achieving the actuator’s maximum force and high dynamics. The final assumed
dimensions of the actuator are given in Table 2.

Table 2. The actuator final dimensions (in mm).

Parameter Rs Ro Rz Ri hz hg hp hr

Value 50 13,5 13 3 10 10.5 8 38

Parameter g hc wc1 wc2 ws hs

Value 0.5 28 12.5 12.5 8.5 30

5. Test Results

The first step in the development of the control system was the identification of signals
from the crankshaft, camshaft, fuel injection control, and cylinder pressure sensors. The
recorded data are presented in Figure 9.
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Figure 9. Signals recorded from the test engine, blue—crankshaft, orange—camshaft, green—ignition,
violet—fuel injector, red—cylinder pressure.

The pink line shown in the above Figure marks the piston’s bottom dead center and is
the point at which the air compression in the cylinder begins, and at which the designed
valve begins opening (Figure 9).

The control system was built based on a modular platform, the heart of which was
a 1.33 GHz Dual-Core CPU processor operating with 2 GB DRAM memory and on the
Kintex-7 160 T FPGA chip. The advantage of this system, in addition to its high operating
speed, is also the possibility of constant and simple correction of the control parameters.
The system reads the signals from the engine, camshaft, and crankshaft signals, and uses
them and the program variables to generate the control signal for the actuator. For easy
management and preview of the current operating parameters of the engine and actuator,
a dedicated control and measurement application was designed. The application reads
the control system’s signals (the position of the crankshaft and camshaft, the position of
the accelerator pedal, and others) and displays them on the screen, but it can also be used
to change the engine valve’s opening and closing times (Figure 10). The essence of the
variable compression ratio is the proper opening and closing of the controlled valve. Tests
verifying the system’s operation were carried out on an electrodynamic dynamometer,
which is an equipment owned by the Department of Vehicles at the Opole University of
Technology (Figure 11).
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A single cylinder engine type ProStar with indirect injection, spark-ignition engine
of 567 cc displacement, 4-stroke, DOHC timing system was used for research purposes.
The engine reaches a maximum power of 44 HP at 6700 1/min and generates a maximum
torque 49 Nm at 5900 1/min. The basic compression ratio is 9.2:1.

The correct operation of the valve control system was also checked by recording the
waveforms from the sensors and the control system with an oscilloscope (Figure 11b). The
tests have proved that the proposed electromagnetic actuator, operating with a permanently
increased compression ratio, is a good solution, especially at lower crankshaft speeds and
engine loads. The electromagnetic actuator’s introduction not only increases the engine’s
power (as shown in Figure 12), but also improves the engine efficiency.
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Figure 12. Efficiency characteristics for the tested engine: (a) standard engine power, (b) modified
engine power.

The greatest improvement in power and efficiency is in the part load range of the
engine at low engine speed. Engine power in this range increases from 4 kW to 8 kW and
fuel consumption is reduced by about 12%. Figure 11b shows the working area in the
low-load range and the speed is limited to 5000 rpm. Such changes affect the efficiency of
the combustion engine, which is shown in Figure 13.



Energies 2023, 16, 5355 15 of 17

Energies 2023, 16, x FOR PEER REVIEW 15 of 18 
 

 

A single cylinder engine type ProStar with indirect injection, spark-ignition engine 
of 567 cc displacement, 4-stroke, DOHC timing system was used for research purposes. 
The engine reaches a maximum power of 44 HP at 6700 1/min and generates a maximum 
torque 49 Nm at 5900 1/min. The basic compression ratio is 9.2:1.  

The correct operation of the valve control system was also checked by recording the 
waveforms from the sensors and the control system with an oscilloscope (Figure 11b). The 
tests have proved that the proposed electromagnetic actuator, operating with a perma-
nently increased compression ratio, is a good solution, especially at lower crankshaft 
speeds and engine loads. The electromagnetic actuator’s introduction not only increases 
the engine’s power (as shown in Figure 12), but also improves the engine efficiency. 

(a) (b) 

  
Figure 12. Efficiency characteristics for the tested engine: (a) standard engine power, (b) modified 
engine power. 

The greatest improvement in power and efficiency is in the part load range of the 
engine at low engine speed. Engine power in this range increases from 4 kW to 8 kW and 
fuel consumption is reduced by about 12%. Figure 11b shows the working area in the low-
load range and the speed is limited to 5000 rpm. Such changes affect the efficiency of the 
combustion engine, which is shown in Figure 13. 

(a) (b) 

  
Figure 13. Efficiency characteristics for the tested engine: (a) standard engine power with a factory 
compression ratio (CR 9.2:1); (b) modified engine power with an electromagnetic actuator and in-
creased compression ratio (CR 11.5:1). 

The presented efficiency characteristics are desirable and efficiency gains are 
achieved by increasing the effective pressure at constant engine speed and cubic capacity, 
which are external factors that determine its overall efficiency (highlighted with a square 
in Figure 13b). In the highlighted area, the engine efficiency increases to 25% and is pri-
marily derived from an improvement in the effective compression ratio in the low-load 

Figure 13. Efficiency characteristics for the tested engine: (a) standard engine power with a factory
compression ratio (CR 9.2:1); (b) modified engine power with an electromagnetic actuator and
increased compression ratio (CR 11.5:1).

The presented efficiency characteristics are desirable and efficiency gains are achieved
by increasing the effective pressure at constant engine speed and cubic capacity, which are
external factors that determine its overall efficiency (highlighted with a square in Figure 13b).
In the highlighted area, the engine efficiency increases to 25% and is primarily derived from
an improvement in the effective compression ratio in the low-load range, and as the rotational
speed increases, the ratio is controlled by the electromagnetic actuator. The analyzed efficiency
differences for the electromagnetic actuator constitute a basis for the development of a new
ECU engine control algorithm by freeing an additional control space.

6. Conclusions

The first challenge described in this paper was to design an electromagnetic actuator
adapted to working in the timing system of internal combustion engines, taking into
account its vibrations, temperature and, above all, frequency. The work carried out shows
the following:

1. It is advantageous to design DC and control coils with the same widths for the
proposed actuator.

2. The desired holding force actuator was ensured by applying a certain current.
3. It is preferable to use the ferromagnetic poles in the form of upper and lower rings

with the height hz = 10 mm. The drive unit’s radius should be within the range of
Rz = 12 ÷ 14 mm.

4. A ferromagnetic pole should be placed between the upper and lower coils. In the
proposed solution, its pole’s minimum height should be hp = 8 mm.

The second challenge was to implement the designed actuator in a combustion engine
including its proper controlling. The analyzed electromagnetic actuator is characterized by
a new functionality that allows achieving gains in the spark-ignition engine’s operating
parameters without the need to change its design parameters. The solution also has its
limitations related to operating frequency and power consumption. In the case of the
proposed effective compression ratio, it is advantageous to increase the ratio at low engine
loads. This cannot be achieved through throttles or turbocharging due to the limitations of
the combustion process, hence the solution proposed in the paper.

The next important element of the work supplementing its content was the presen-
tation of the effect of using an electromagnetic actuator designed to work in the timing
system of an internal combustion engine. In this solution, the modified internal combustion
engine is characterized by improved operating parameters at partial loads, including a
power increased with simultaneous reduction in fuel consumption, thereby improving
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the engine’s efficiency by up to 25%. Further work is needed in this regard. The achieved
gains translate directly to an improvement in the engine’s overall efficiency. It is also worth
noting that no engine knocking was observed during the empirical tests. The advantage of
using the electromagnetic actuator is its safety and reliability: there is no risk to damage the
actuator by the cylinder, which is due to the absence of the mechanical connection between
mover and stator.

Further work is needed in this regard. The achieved gains translate directly to an
improvement in the engine’s overall efficiency. It is also worth noting that no engine
knocking was observed during the empirical tests.
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