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Abstract: The process of urbanization resulting from population growth is causing a transformation
of natural landscapes into built environments, and contributing to a significant rise in air and surface
temperatures in urban areas, resulting in what is known as the urban heat island (UHI). Ignoring the
UHI effect and use of weather data from open fields and airport locations for energy and thermal
comfort analysis can lead to over- and underestimation of heating and cooling loads, improper sizing
of equipment, inefficiencies in the mechanical systems operation, and occupants’ thermal discomfort.
There is a need for computationally efficient urban canopy temperature prediction models that
account for the urban morphology and characteristics of the study area. This paper presents the
development and application of an artificial neural network (ANN)-based method for generating
hourly urban canopy temperature and local wind speed for energy simulation. It was used to predict
the urban canopy temperature of a neighborhood in downtown Vancouver and the resulting building
energy consumption and indoor temperature in a typical building in the area. The results showed
that the UHI effect increased the total cooling energy demand by 23% and decreased the total heating
energy consumption by 29%, resulting in an overall negative effect on the total energy demand of
the building, which was 18% higher in the urban area. The UHI effect also increased the number of
hours of indoor temperature above the cooling set point by 7.6%. The methodology can be applied to
determine the urban canopy temperature of neighborhoods in different climate zones and determine
the varying urban heat island effects associated with the locations.

Keywords: building energy modeling; building energy simulation; urban heat island; urban canopy
temperature

1. Introduction

Population growth is leading to the rapid urbanization of towns and the densification
of cities, resulting in the transformation of natural landscapes into built environments.
Unfortunately, this process also means that vegetation-covered and water-permeable land-
scapes are being replaced with heat absorbing and impermeable surfaces. The thermal
characteristics of the materials [1], the absence of evapotranspiration [2], and the anthro-
pogenic heat release to air [3,4] contribute to a significant rise in air and surface temperatures
in urban areas, resulting in a phenomenon known as the urban heat island (UHI). The
effects of the urban heat island are local and have a direct impact on the citizens, dwellers,
and pedestrians who live and work in these areas [5]. According to Akbari et al. [6], a city
with a population of over one million can have an annual air temperature that is 1 ◦C to
3 ◦C warmer than its surrounding areas. During summer nights, the temperature difference
can be as much as 12 ◦C. This higher urban canopy temperature has a variety of impacts on
urban areas, including pedestrian thermal comfort and building energy consumption.

Researchers have shown a direct relationship between the demand for air conditioning
and the urban canopy temperature increase caused by the UHI effect. Akbari et al. [6]
reported an increase of 5% to 10% in the peak electric demand for air conditioning in urban
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areas. Similarly, Li H. [5] reported that the demand for building air conditioning increased
by 1.5% to 2% for every air temperature increase of 0.6 ◦C in the temperature range of 20 ◦C
to 25 ◦C. Li et al. [7] stated that the UHI effect could increase the average consumption of
cooling energy by 19% and decrease the average heating energy by 18.7%. Despite the need
to consider the different urban microclimate conditions when calculating urban buildings’
energy consumption, current building energy simulation (BES) tools calculate the annual
demand for cooling and heating of buildings in urban areas using a weather data file that
is typically recorded at weather stations located in rural areas (parks and airports) [8]. This
approach can lead to a significant error in the design and operation of buildings in urban
areas. This is particularly important in big cities where 20% to 40% of the total energy
consumption is attributed to the building sector [9].

Researchers use different methods to establish the urban weather file, and more im-
portantly, the urban air temperature and wind speed, for building energy simulations and
pedestrian thermal comfort analysis. One of the methods is an in situ urban weather mea-
surement [8–11]. Although this method is straightforward for capturing the urban microcli-
mate, it requires the deployment and maintenance of a large number of weather stations
in different urban spaces with acceptable measurement uncertainty. Emamifar et al. [12]
and Ho et al. [13] used statistical regression methods to predict urban air temperature from
land surface temperature satellite images and field observations. The researchers used
an M5 decision tree, least squares regression, support vector machine, and random forest
regression algorithm to predict the daily and monthly average urban air temperatures and
map the maximum summer temperatures in a city. However, accurate measurement of land
surface temperature remotely can be challenging, as satellite images can be influenced by
the uncertainty in the atmospheric conditions and the surface emissivity. The Town Energy
Balance (TEB) model [14] and the Square Prisms Urban Canopy (SPUC) model [15] predict
urban air temperature using principles of conservation of energy. In these methods, the heat
and moisture fluxes from buildings, roads, and roof surfaces released into the urban canopy
are linked using a network of thermal resistances [14,16,17] or both thermal resistances and
capacitances [18–20] in consideration of urban heat storage. For whole-year energy simula-
tions, Bueno et al. [21–23] developed an urban weather generator (UWG) by combining
the hourly urban temperature generated using their resistance–capacitance network model
with data from a metrological weather station at an airport or open field outside the city.
In these energy balance-based models, buildings are represented as 2D entities or rows of
square prism blocks of the same height, and their heterogeneous characteristics—including
shape, height, construction type, wind-blockage effect, and variability in land surface
coverage—are not explicitly accounted for.

Computational fluid dynamics (CFD)-based microclimate modeling can account for
heterogeneous building characteristics and yields high-resolution urban canopy tempera-
ture and wind speed profiles. Allegrini et al. [24,25] investigated the influence of different
urban morphologies on urban microclimates using CFD. They found that the morphology
with cubical buildings and uniform heights had higher surface temperatures compared to
buildings with complex geometry due to shadow effects, and morphologies with a lower
wind flow obstruction had 2.5 ◦C lower temperatures compared to other morphologies. Re-
searchers used different CFD simulation software for microclimate modeling, including the
most commonly used ENVI-met [26,27] ANSYS Fluent [28,29], Phoenics [30,31], and Open-
Foam [32,33]. Although the CFD tools have the capability of providing high-resolution
microclimate information, their applicability is limited to short simulation periods and case
studies involving the evaluation of the UHI effect mitigation measures and identifying
UHI hot spots in urban areas. Due to the high computational time and resources required,
these models are not currently being used to generate hourly urban temperatures and
wind speeds for whole-year building energy simulations. Table 1 provides a summary of
the urban weather data, energy simulation tools, simulation periods, and UHI effects on
building energy consumption, as reported by various researchers.
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Table 1. Summary of the literature on urban weather file and UHI effect on building energy con-
sumption.

Researcher
Location

Urban Weather Data
Determination

Method

Building Energy
Simulation Software Duration Findings and

Variables

Chan (2011) [34]
Hong Kong Field Measurements EnergyPlus 6 months

10% cooling energy
increase with UHII

of 1.4 ◦C

Salvati et al. (2017) [35,36]
Barcelona Field Measurements EnergyPlus 3 days

18–28% cooling energy
increase with UHII of
2.8 ◦C in winter and

1.7 ◦C in summer

Liu et al. (2017) [11]
Singapore Field Measurements EnergyPlus Whole year

7% average cooling
energy increase with

UHII of 1–2 ◦C

Ma and Yu (2020) [9]
Hong Kong Field Measurements EnergyPlus Whole year

8% and 3% summer
and winter energy

consumption increase
by every 1 ◦C

Magli et al. (2015) [8]
Italy Field Measurement TRNSYS Whole year

8% cooling energy
increase, 20% heating

energy decrease, and 7%
CO2 emission increase

by UHII of 1.4 ◦C

Guattari et al. (2018) [10]
Italy Field Measurement TRNSYS Whole year

30% cooling energy
increase and 11%
heating energy

decrease by UHII of
1.4 ◦C at night and

0.84 ◦C during
the daytime

Palme et al. (2017) [37]
South America

Urban Weather
Generator TRNSYS Whole year

15% to 200% cooling
energy increase by

different UHII

Litardo et al. (2020) [38]
Ecuador

Urban Weather
Generator TRNSYS Whole year

30% to 70% cooling
energy increase for

residential by UHII of
0.6 ◦C in September

and 1.25 ◦C in February

Castaldo et al. (2018) [27]
Italy

ENVI-met
and

Meteonorm
EnergyPlus July 19

and January 3

10% HVAC energy
reduction by 1.5 ◦C

reduction in air
temperature in summer

Aboelata and Sodoudi
(2019) [26]

Egypt
ENVI-met DesignBuilder 24 h

4% (1.252 Euros/day)
cooling energy decrease
by 1 ◦C reduction in air
temperature by adding

50% trees

Toparlar et al. (2018) [29]
Belgium ANSYS Fluent EnergyPlus 1 month (July)

90% cooling energy
increase in July by

UHII of 3.3 ◦C

Fatima and Chaudhry
(2017) [28]

Dubai
ANSYS Fluent Newton’s law

of cooling 1 h
19% cooling energy
increase for every

1.22 ◦C temperature rise
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As such, for urban areas where in situ measurements are not available or expensive to
install and operate, there is a need for prediction models that are computationally efficient
and that account for the urban morphology and characteristics of the study area. This paper
presents an artificial neural network (ANN)-based method for generating the urban canopy
temperature and local wind speed for energy and hygrothermal simulation. The method
makes it possible to generate hourly urban weather data that accounts for the surrounding
landscape, morphological factors, and urban heat island effects, and therefore enable a
more accurate performance assessment of buildings in urban settings. The paper depicts
the methods employed in the development of the ANN models, as well as their application
for calculating the annual heating and cooling energy consumption of a building in a typical
urban neighborhood in Vancouver, Canada.

2. Approach

In this work, an artificial neural network (ANN)-based statistical method was used
to relate measurements at designated metrological weather stations such as an airport
or open field to urban climate conditions. Two ANN models were developed, one for
predicting urban air temperature and the other for local wind speed. The data from a
metrological weather station and the ENVI-met simulation outputs form the input and the
output datasets required to train and create the ANN models. A neighborhood in the city of
Vancouver was identified as the study area for the development and implementation of the
approach. Given that a microclimate simulation of the neighborhood using CFD for a whole
year (8760 h) was not practical, six days from each month that represented the weather
variability of the month were selected and simulated. The days were selected to represent
the extreme and average conditions. Based on analysis of the daily maximum, minimum
and median air temperature and global solar radiation, a total of 72 representative days
were identified using data from a weather station near the study area. The ANN models
will predict the local temperature and wind speed in the study area considering the effects
of the local urban landscape, morphology, building shape, size, aspect ratio, and the albedo
and emissivity of buildings and landscape surfaces. The hourly local temperatures and
wind speeds generated by the ANN models were combined with other weather data
obtained from a metrological weather station to create an urban weather file. Finally, the
urban weather file, which incorporated the effect of UHI, was used for the building energy
simulation of an office building in the study area.

2.1. Study Area

Urban neighborhoods are generally characterized with dense buildings and low
vegetation cover. Accordingly, an urban area with these features and high urban surface
temperature readings was chosen for this work. Figure 1a shows the urban heat islands
in a section of Vancouver; the purple and red areas have higher temperatures compared
to their surroundings. Based on the temperature distribution and taking the surrounding
landscape into consideration, a study area in the Mount Pleasant neighborhood, shown in
Figure 1b, was selected for the study. The study area is 172 m × 214 m and bounded by
Manitoba Street and Columbia Street in the east and west and by West 5th Avenue and
West 7th Avenue in the north and south, respectively.

The buildings in this area are concrete buildings with similar heights, 4 m to 5 m. The
tallest building is 17 m tall, and the width of the street is around 20 m. The vegetation cover
is negligible in the area and the color of the pavement is mostly dark.

2.2. Representative Days

As mentioned earlier, part of the datasets required for training and testing the ANN
models was generated from the microclimate model simulation results and given that
an hourly simulation of a full year is not practical due to extensive simulation time and
calculation costs, some days in each month were selected to be representative of that month.
This selection was based on different weather parameters, including air temperature, solar
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radiation, and wind speed. Since the effect of cloud cover is already considered in solar
radiation, this parameter is not included. As a result, the selected days represented the
hottest and the coldest days, the days with the highest and the lowest solar radiation,
and the days with median daily average temperature and daily total solar radiation for
each month. These days were selected by ordering the days by daily average temperature
and daily total solar radiation and identifying the days with the extreme and average
temperatures and solar radiation. Inclusion of extreme values is essential in the training
and application of the ANN models in the wide range. The same selection procedure was
implemented for each month, and a weather dataset with a total of 72 days was established
for the study. Figures 2 and 3 illustrate the maximum, median, and minimum of daily air
temperature and daily total global solar radiation, respectively, for the study area in the
year 2020.
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The six days that were selected from each month are presented in Table 2. The
numbers in the table represent the day of the month; for example, the weather in January is
represented by the combination of the January 3, 22, 14, 28, 25, and 10 data.
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Table 2. Selected days in each month.

Months T_Max T_Ave T_Min Rad_Max Rad_Ave Rad_Min

January 3 22 14 28 25 10

February 20 12 4 24 16 7

March 21 12 2 15 8 5

April 16 12 3 18 23 22

May 28 12 2 27 1 30

June 23 11 15 7 27 9

July 21 17 1 18 13 11

August 16 10 7 4 25 21

September 10 22 26 3 2 23

October 2 16 23 3 17 9

November 2 6 9 1 13 24

December 5 12 29 2 10 21

Figure 4 illustrates the hourly air temperature and global radiation of the monthly
representative days assembled for the whole year. Figure 4a–c shows the hourly air temper-
ature and solar radiation of the days selected from each month based on maximum, median,
and minimum daily average air temperature, whereas the data shown in Figure 4d–f are
for days with the highest, median, and lowest daily total solar radiation. The lowest and
highest hourly temperatures in the assembled dataset are −8.05 ◦C in January and 35.55 ◦C
in August. The highest solar radiation is 938 W/m2 in June and the winter months in
general have lower solar radiation. Having a dataset with a mix of extreme and average
weather conditions is essential to develop a robust ANN model.

For model warm-up and better initialization, the ENVI-met simulations were con-
ducted for 48 h instead of 24 h; as a result, the meteorological data of the previous days
were extracted and used in the simulation.
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3. Microclimate Modeling (ENVI-met)

The next step in the development of the ANN-based urban climate model was to
generate the urban canopy temperature and windspeed (output dataset) for the weather
conditions presented in the previous section (input dataset). To achieve this objective, a 3D
microclimate model called ENVI-met was used. The software can simulate the microclimate
conditions in an urban environment, including air temperature, relative humidity, wind
speed, and radiation. ENVI-met includes features such as a 3D vegetation model capable
of describing trees with different shapes and shading patterns and a feature that considers
the thermal inertia of building materials. These features allow for a detailed reconstruction
of an urban environment. Prior to using the tool, it was validated with measured data.

3.1. Simulation Setup

To create the computation domain, an aerial image of the study area (214 m by 172 m)
was exported from Google maps, and then imported into ENVI-met’s Space Module. Based
on the imported image of the area and the position and dimension of the buildings, the
urban geometry and the computational domain were created (see Figure 5). To reduce
computational time and resources, some simplifications were made to building geometries,
such as omitting windows, balconies, and architectural details, which are considered to
have a small effect in the relatively large-scale urban climate modeling. The physical
properties of each building and surface were defined by thermal conductivity and heat
capacity, as well as the surface radiation properties, emissivity, and absorptivity. All the
buildings in the area are concrete buildings with assumed construction layers of 1 cm
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plaster on the exterior, followed by 12 cm insulation, and 18 cm concrete wall in the
interior to satisfy the minimum R value of the building code, and the pavement between
the buildings is asphalt. Using an albedo meter, the solar absorptivity of the buildings’
surfaces and the pavements was determined and assigned to each surface in the ENVI-met
model. The indoor temperature of the buildings was assumed to be 23 ◦C (average of
the National Energy Code of Canada heating and cooling setpoints, 22 ◦C and 24 ◦C,
respectively). The temperature, humidity, and wind speed at each grid cell were computed
from the conservation of mass, momentum, and energy equations, considering the grid
cells’ thermal properties and exposure to convective, short-, and longwave radiation fluxes,
as well as latent heat fluxes. Detailed discussion on the governing equations implemented
in the model can be found in the ENVI-met user manual [39,40]. While the inlet boundary
conditions are defined by the hourly varying air temperature, relative humidity, and
wind speed, an outflow and zero pressure were specified at the outlet boundaries. Short-
and longwave radiation were directly applied on the cells’ surfaces based on their sky
view factor.

Energies 2023, 16, x FOR PEER REVIEW 8 of 23 
 

 

speed, an outflow and zero pressure were specified at the outlet boundaries. Short- and 
longwave radiation were directly applied on the cells’ surfaces based on their sky view 
factor. 

 
Figure 5. Created model in ENVI-met for the Study Area. 

3.2. Sensitivity Study 
After creating the computational domain, the various ENVI-met model settings were 

determined based on the sensitivity analysis results of the parameters in question, which 
included time step, mesh sizes, and a turbulence model. ENVI-met requires the user to 
specify the solver time step based on solar angle. To investigate the effect of the simulation 
time step on simulation results, three simulations with 2-2-1 (2 s for t0 and t1, 1 for t2), 4-
4-2, and 6-6-3 values for time steps were conducted. It was determined that increasing the 
time step from the first setting to next had a negligible effect on air temperature values, 
but it reduced the simulation time by around 12% (5 h). However, increasing the time step 
to 4-4-2 and 6-6-3 made the simulation unstable, and resulted in the model failing. As 
such, a 2-2-1 solver time step and flow field, shadow and surface data update every 900 s, 
600 s, and 300 s, respectively, was used. 

A grid sensitivity analysis was conducted to determine the optimal space discretiza-
tion beyond which further mesh refinement will not change the simulation results and 
will have minimal extra computation time. As such, this sensitivity study examined the 
grid-size impact on the simulation time and the sensitivity of the simulation results to 
grid-size changes. The computational domain was discretized with three different grid 
sizes: 1 m × 1 m (with the grid size of 1,196,208 elements), 1.5 m × 1.5 m (with the grid size 
of 531,648 elements), and 2 m × 2 m (with the grid size of 300,456 elements). The corre-
sponding simulation results were compared. In these simulations, the grid size in the Z 
dimension was kept the same (1.2 m). The simulation results suggest that the air temper-
atures from the three meshes were comparable (the difference in air temperature was 
within ±0.1 °C); however, the simulation time was noticeably reduced when the mesh size 
increased. The computational time for a 24-h simulation period (using one Core proces-
sor) was reduced from 16 days to 9 days and then to 5 days as the mesh size increased 
from 1 m × 1 m, to 1.5 m × 1.5 m, and to 2 m × 2 m, respectively. Based on the simulation 
results and simulation time, a 2 m × 2 m grid size was adapted for this work, which 

Figure 5. Created model in ENVI-met for the Study Area.

3.2. Sensitivity Study

After creating the computational domain, the various ENVI-met model settings were
determined based on the sensitivity analysis results of the parameters in question, which
included time step, mesh sizes, and a turbulence model. ENVI-met requires the user to
specify the solver time step based on solar angle. To investigate the effect of the simulation
time step on simulation results, three simulations with 2-2-1 (2 s for t0 and t1, 1 for t2),
4-4-2, and 6-6-3 values for time steps were conducted. It was determined that increasing
the time step from the first setting to next had a negligible effect on air temperature values,
but it reduced the simulation time by around 12% (5 h). However, increasing the time step
to 4-4-2 and 6-6-3 made the simulation unstable, and resulted in the model failing. As such,
a 2-2-1 solver time step and flow field, shadow and surface data update every 900 s, 600 s,
and 300 s, respectively, was used.

A grid sensitivity analysis was conducted to determine the optimal space discretiza-
tion beyond which further mesh refinement will not change the simulation results and
will have minimal extra computation time. As such, this sensitivity study examined the
grid-size impact on the simulation time and the sensitivity of the simulation results to
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grid-size changes. The computational domain was discretized with three different grid
sizes: 1 m × 1 m (with the grid size of 1,196,208 elements), 1.5 m × 1.5 m (with the grid
size of 531,648 elements), and 2 m × 2 m (with the grid size of 300,456 elements). The
corresponding simulation results were compared. In these simulations, the grid size in
the Z dimension was kept the same (1.2 m). The simulation results suggest that the air
temperatures from the three meshes were comparable (the difference in air temperature was
within ±0.1 ◦C); however, the simulation time was noticeably reduced when the mesh size
increased. The computational time for a 24-h simulation period (using one Core processor)
was reduced from 16 days to 9 days and then to 5 days as the mesh size increased from
1 m × 1 m, to 1.5 m× 1.5 m, and to 2 m× 2 m, respectively. Based on the simulation results
and simulation time, a 2 m × 2 m grid size was adapted for this work, which consequently
resulted in 230,050 elements for the 214 m × 172 m × 49 m computational domain.

Four additional simulations were carried out to assess the impact of turbulence model
choice on the simulation results, comparing the four turbulence models available in ENVI-
met. The results of the simulations show that the differences in air temperature were less
than 0.1 ◦C when using different turbulence models. The newest model, Standard TKE,
which is the default for the software, showed the best stability compared to all models and
the Mellor and Yamada 1982 was the least stable. As a result, the latest model was used in
this study.

3.3. Validation

Prior to using the ENVI-met model, its accuracy was assessed by comparing the
simulation results with onsite measured data. In the field, the temperature and relative
humidity measurements were collected at 0.6 m, 1.8 m, and 3 m high from the ground
(see Figure 6) using HOBO U10-003 data loggers. The data loggers have ±0.5 ◦C and
±3.5% accuracy of temperature and relative humidity, respectively. They were positioned
in opaque cylindrical tubes that were wrapped with reflective tape for radiation shielding,
open on both sides for ventilation, and attached at the end of square wooden sticks. A
point close to building façade with an electric post was selected to attach these HOBOs.
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and 3 m).

Site measurements were taken on 9 September 2021, starting from 7 a.m. to 5 p.m.
After 5 p.m., the setup was removed and the measured data from the HOBOs were extracted.
For the ENVI-met simulation, the hourly weather data for the same day measured at the
nearby weather station were used to establish the boundary conditions. Figure 7 shows
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the air temperature and airflow patterns obtained from the ENVI-met simulation at the
time the field measurement was conducted. The asterisk (*) marks the temperature probe
point, and the building blocks are denoted as 1, 2, and 3. In general, as the air flows
from left to right, its temperature increases, as shown in the air temperature contour plots
at 10 a.m. and 4 p.m. in Figure 7a. The air heating effect can be attributed to the heat
transfer from the building façades and the ground, which are being heated by the solar
radiation. The temperature contour plots also show relatively higher air temperatures at
the section of the block where the buildings are in close proximity, 1 and 3 in contrast to 1
and 2. Moreover, the air temperature close to the south-facing façade is relatively warmer
than the air temperature at the middle of the street and the air temperature close to the
north-facing façade. Figure 7b shows the air temperature distribution across the street
(horizontally) at 1.8 m high from the ground, and vertically 1 m away from the south-facing
façade of Building 1. As can be shown in the figure on the left, the air temperature near
the south-facing façade of Building 1 is consistently higher from 8 a.m. to 5 p.m. when
compared to that of the north-facing façade of Building 2. The temperature difference is
associated with differences in the solar heating effect of the façades due to each façade’s
solar orientation and shading effects. The figure on the right presents the hourly air
temperature at different heights in front of the south-facing façade of Building 1. The
results show vertical temperature variations along the height during the daytime. Due to
the ground heating effect, the air temperature close to the ground is higher and decreases as
the distance from the ground increases. At noon time, for example, the air temperature near
the ground level (0.6 m) is 1.7 ◦C higher than the air temperature at 12 m from the ground.
Figure 7c shows the airflow patterns around the buildings and the air velocity over the
buildings’ façades. As can be seen in the left figure, the building blocks created a Venturi
effect at the beginning of the canopy and resulted in an increase in the air velocity by 40%
from 1.4 m/s to 1.9 m/s. The influence of wind on the urban canopy temperature depends
on the magnitude and direction of the wind. The influence of wind flowing perpendicular
to the building blocks is marginal, as the air velocity within the canopy remains nearly
zero. The figure on the right shows the velocity contour plots on the buildings’ façades.
The air velocities vary from 0 m/s (stagnation region) to 1.9 m/s around the edges of the
windward surface. Establishing wind velocity distribution on building surfaces allows for
proper accounting of the heat exchanges between the surrounding air and the building
surfaces [41,42].

The data collected from the field measurement were used to assess the accuracy of
the ENVI-met simulation. For comparison, the measured and simulated air tempera-
ture and relative humidity at the three locations was superimposed and are presented in
Figure 8 and Figure 9, respectively. In general, the temperatures at all the three levels were
lower in the morning for the simulation when compared to the measured values. The under
predication can be associated with not accounting for anthropogenic heat releases associ-
ated with vehicles and air conditioning units, and the over prediction in late afternoon can
be related to differences in the thermal mass and surface radiation properties of the mod-
eled and actual components. Measurement and installation errors of the HOBOs could also
contribute to the differences. As expected, a reverse trend is observed for relative humidity.

The performance of the model was assessed using two error-measuring indices: Root-
Mean Square Error (RMSE) and Mean Absolute Error (MAE), which were calculated using
Equations (1) and (2), respectively. Table 3 provides the MAE and RMSE of the ENVI-met
model for the validation case:

RMSE =

[
1
n

n

∑
i=1

(Si −Mi)
2

]1/2

(1)

MAE =

[
1
n

n

∑
i=1
|Si −Mi|

]
(2)
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where n is the number of points; Si is the model predicted value; and Mi is the measured
value corresponding to the ith point.
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Figure 7. Air temperature and airflow profiles during the field measurement obtained from ENVI-
met simulation. (a) Air temperature profiles at 1.8 m above ground at 10 a.m. (left) and 4 p.m.
(right); (b) Hourly air temperature across the street at 1.8 m high from the ground (left); vertical
air temperature distribution near the south-facing façade (right); (c) Airflow pattern around the
buildings (left); Airflow speed along the buildings’ façades (right).

As presented in Table 3, the highest RMSE and MAE values were calculated at near
ground level (0.6 m from the ground), while the lowest errors were calculated at the upper
position (3 m from the ground). The overall RMSE and MAE values of the simulation were



Energies 2023, 16, 5335 12 of 23

1.35 ◦C and 1.1 ◦C for temperature, respectively, and 5.12% and 4.17% for relative humidity,
respectively.
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Table 3. MAE and RMSE of the ENVI-met model.

Air T

Height Mean Absolute Error Root Mean Square Error

Overall: MAE: 1.1 ◦C RMSE:1.35 ◦C

0.6 m: MAE: 1.15 ◦C RMSE:1.41 ◦C

1.8 m: MAE: 1.1 ◦C RMSE:1.34 ◦C

3 m MAE: 1.05 ◦C RMSE:1.31 ◦C

RH

Overall: MAE: 4.17% RMSE: 5.12%

0.6 m: MAE: 4.39% RMSE: 5.2%

1.8 m: MAE: 4.14% RMSE: 5.18%

3 m MAE: 4% RMSE: 4.96%

Tsoka et al. (2018) [43] conducted a comprehensive literature review on the ENVI-met
model’s performance by reviewing more than 50 papers. They found that for simulated air
temperature, the RMSE varied from 0.5 ◦C to 4.3 ◦C with a median value of 1.51 ◦C and
the MAE varied from 0.3 ◦C to 3.67 ◦C with a median value of 1.34 ◦C. Regarding relative
humidity predictions, they reported that the RMSE ranged from 2% to 10% and the MAE
ranged from 2.5% to 7.78%. The RMSE and MAE values obtained in this ANN model study
fall within the ranges reported in [43]. Accordingly, it can be concluded that the accuracy
of the ENVI-met model created in this work is acceptable and can be used to simulate the
temperature and relative humidity conditions around the study area.
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4. ANN Models and Urban Canopy Temperature Generation
4.1. ANN Models for Urban Air Temperature and Wind Speed Prediction

The ANN models were developed from known input and output datasets. The outputs
were air temperature and wind speed extracted from the ENVI-met simulation results for
those 72 representative days (1728 hourly datasets). The inputs were the corresponding
meteorological data from the Vancouver International Airport (YVR) weather station. This
Input–Output dataset was used for training, testing and developing the ANN models. The
inputs include direct and diffuse shortwave and longwave radiation, air temperature and
RH, wind speed and wind direction, and precipitation from the YVR weather station. For
model warm-up and initialization, the ENVI-met simulations were conducted for 48 h
instead of 24 h, and as a result the meteorological data of the previous days of 72 selected
days were extracted as well. The first 24 h simulation hours were designated as warm-up
periods. Results during the warm-up periods were not used for analysis, but rather to
help establish better initial conditions for the day of interest (later 24 h). In general, longer
warm-up periods help to reduce the impact of initial conditions on the simulation results of
interest. Simulations were performed on a Dell Precision 7920 Tower PC with 192 GB RAM
and 26 Core Intel Xeon Gold 6254 CPU with 3.1 GHz CPU power and each simulation
(the 48-h simulation) took around 4 to 6 days. On the research PC, it was possible to run
26 simulations at the same time, as a result all 72 simulations were completed in 3 batches.

The Input–Output dataset needed to be normalized to allow all parameters to interact
with one another proportionately. Normalization typically requires data to be scaled down
to a range of values between 0 and 1. Here, the more conventional normalization approach,
Equation (3), is used:

X =
x−mean

Std
(3)

where x is the original value in dataset; mean is the mean of the original dataset; Std is the
standard deviation of the original dataset; and X is the normalized value.

The normalized dataset would have a mean of 0 and a standard deviation of unity.
Given that the ANN was generated using normalized data, its outputs would also be in
the form of normalized data, and to transform them to the original data scale they needed
to be denormalized using the corresponding mean and Std values of each parameter:
x = (X× Std) + mean. After normalization, the dataset was partitioned into a 75%/25%
ratio for training and testing following common practice. The Latin hypercube sampling
(LHS) method, which allows uniform sampling of data in the full parameter range, was
used for data partitioning. In this manner, 432 data points were selected to be used for
testing the performance of the ANN model, and the rest of the 1296 data points were used
to train the ANN model.

In this study, feed-forward neural network types with one hidden layer were created
in MATLAB. For training the ANNs, the Levenberg–Marquardt (LM) backpropagation
learning algorithm was used. While a log sigmoid function was used as an activation
function in the hidden layer, in the output layer, a linear function was used. The neural
network training was considered to be completed when either the maximum number of
training epochs was reached, or the validation performance of the neural network did not
improve after six sequential epochs, which is a default setting in MATLAB. A summary of
the ANN’s features and the corresponding MATLAB functions is provided in Table 4. The
ANN architecture adapted in this paper is similar to that of other researchers working on
similar problems. The Levenberg–Marquardt (LM) backpropagation learning algorithm
(trainlm) was used for training the ANN. Mohandes et al. (2019) [44], in a comprehensive
review on the application of artificial neural networks in building energy analysis, stated
that around 86% of reviewed papers used one hidden layer and used RMSE to evaluate
the accuracy of ANN models. They also mentioned that the most used network type and
training function were feed-forward neural network and LM backpropagation, respectively.
The two ANNs for predicting urban air temperature and urban wind speed (which hereafter
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are called ANN-AirTemperature and ANN-WindSpeed, developed following the stated
procedure and ANN architecture) are discussed in the next section.

Table 4. ANN architecture.

Applied ANN Features

Network Type: Feed-forward backpropagation

Training Function: Levenberg–Marquardt (Trainlm)

Performance Function: RMSE

Number of Hidden Layers: 1

Activation Function: logsig (hidden layer) and Purelin (output)

In order to determine the number of neurons in the hidden layer, six ANNs with 1, 8,
15, 17, 20, and 100 hidden neurons were evaluated. The neural network training process
is inherently randomized. This means that even when they are provided with exactly the
same training data, the resulting neural network model will not be identical. Accordingly,
in this study, the neural networks were trained five times with the same training data
and their accuracy was assessed based on their RMSE values. Table 5 provides the RMSE
values of the six ANNs for the five runs. As can be seen in the table, the ANNs with
hidden neuron numbers from 8 to 17 had a very similar performance and by increasing
the number of hidden layers the performance of the ANN will be reduced. This is in
accordance with the findings of Dong et al. (2018) [45], who proposed that the maximum
number of hidden-layer neurons is to be specified as (2× No. inputs + 1). Given that the
ANN with eight hidden layers yielded the lowest overall RMSE and the lowest average
RMSE of all the considered ANNs, it was adapted in the ANN-AirTemperature model used
in this study. The RMSE and MAE of the created ANN-AirTemperature were 1.217 ◦C and
1 ◦C, respectively. The schematic of the ANN model with eight inputs, one output and
eight hidden neurons is illustrated in Figure 10. In this figure, the numbers under Input
box and Output box show the number of inputs and outputs and the number under the
Hidden box shows the number of neurons.

Table 5. RMSE values for different hidden-layer neuron numbers.

Number of Neurons in Hidden Layer

Runs 1 8 15 17 20 100

1 1.2904 1.2121 1.2171 1.2219 1.2350 1.4055

2 1.2930 1.2190 1.2201 1.2284 1.2319 1.5064

3 1.2693 1.2170 1.2190 1.2181 1.2399 1.4118

4 1.2815 1.2191 1.2195 1.2201 1.2339 1.6395

5 1.2721 1.2184 1.2190 1.2174 1.2460 1.5508
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To put the performance of the created ANN in perspective, Sahin’s (2012) [46] ANN 
model for predicting monthly mean air temperature using remote sensing had an RMSE 
of 1.254 °C and Schuch et al.’s (2017) [47] ANN model had an MAE in the range of 1.3 °C 
to 2.3 °C. Moreover, regression models used to map the air temperature of hot summer 
days [13] and daily mean air temperature [12] had an RMSE of 2.31 °C and an RMSE in 
the range between 1.5 °C and 3.2 °C, respectively. As such, it can be said that the perfor-
mance of the ANN model created for this study is acceptable and the method described 
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To put the performance of the created ANN in perspective, Sahin’s (2012) [46] ANN
model for predicting monthly mean air temperature using remote sensing had an RMSE
of 1.254 ◦C and Schuch et al.’s (2017) [47] ANN model had an MAE in the range of 1.3 ◦C
to 2.3 ◦C. Moreover, regression models used to map the air temperature of hot summer
days [13] and daily mean air temperature [12] had an RMSE of 2.31 ◦C and an RMSE in the
range between 1.5 ◦C and 3.2 ◦C, respectively. As such, it can be said that the performance
of the ANN model created for this study is acceptable and the method described can be
used to generate the air temperature in the urban area using weather data from an airport
weather station.

Another factor that contributes to the creation of UHI is the reduced wind speed in
urban areas. Urban structures block wind speed and, as a result, the air temperature in
urban areas will increase. In order to predict the urban wind speed, another artificial neural
network was created to predict the hourly urban wind speed from YVR weather station
data. The architecture and the procedure followed creating the ANN-WindSpeed is similar
to what was described for urban air temperature. The MAE of the ANN-WindSpeed was
found to be 0.44 m/s. In the Beaufort scale, a wind speed of less than 1 m/s is considered
calm air. Based on this scale, it can be said that the performance of the created ANN-
WindSpeed model is acceptable in predicting the wind speed in urban areas using YVR
weather data.

4.2. Urban Canopy Temperature

The hourly urban canopy temperature for a whole-year period can be generated
from the YVR airport weather station data using the created ANN model. First, the YVR
weather parameters are normalized using the mean and standard deviation values that
were established for the input parameters in Section 4.1. The process of generating the
canopy air temperature is summarized in Figure 11. The urban canopy wind speed can also
be generated in a similar fashion. The normalized 8760 dataset is then introduced into the
ANNs as input, and the corresponding urban air temperature and wind speed are obtained
as an output of the ANN models. Finally, the ANN outputs are denormalized using the
mean and Stds of the outputs of the training dataset.
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Figure 12 presents the hourly predicted urban canopy air temperature for the study’s
urban area and the air temperature recorded at the YVR weather station for the month of
July as an example. The urban canopy temperature in general is 3 ◦C to 5 ◦C higher than
measurements at the YVR airport during daytime and 1 ◦C to 2 ◦C higher at nighttime.
Figure 13 shows the daily maximum and minimum air temperatures in the study area and
the YVR weather file for the full year. As can be seen in the figure, the daily maximum and
minimum temperatures are consistently higher in the urban area, and the differences in
comparison to that of the airport weather station are much higher in the period from April
to September. The higher temperatures in the study area are associated with the urban heat
island effect. For the location, the annual average urban heat island intensity (UHII), which
is defined as the average of the urban and the metrological weather station air temperature
differences, is 1.7 ◦C. Figure 14 illustrates the maximum UHII values for each month. The
highest UHII value is 7.3 ◦C, which is during the month of April, and the lowest monthly
maximum UHII is in December. The UHII values in the winter months can be attributed
mainly to the anthropogenic effect associated with heat release from vehicles and buildings
and the wind-blocking effect.
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The monthly and hourly UHII distributions for the simulated year, categorized into
two groups based on the hourly temperature differences, are presented in Figures 15 and 16,
respectively. The highest percentage of occurrences with a temperature difference greater
than 4 ◦C happen in the month of August, 22.2%, followed by 16.8% in the month of July.
The high percentage of modest temperature differences (2 ◦C and 4 ◦C) are similarly found
in the warmer months; August, 15% and July, 14%. Figure 16 presents the temperature
difference distribution with respect to the time of day. As can be seen from the distribution,
the difference in the urban and the YVR temperatures peaks at 1 p.m. About 55% of
the temperature differences above 4 ◦C are observed between 11 a.m. and 2 p.m., and
temperature differences between 2 ◦C and 4 ◦C are observed uniformly between 8 a.m. and
8 p.m.
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5. Building Energy Consumption for Heating and Cooling with UHI Effect

As has been shown in the previous section, due to the UHI effect, the air temperature in
the urban area is different from the temperature measurements at the metrological weather
stations in the airport or rural areas. Consequently, buildings of the same type and operation
in an urban and a rural environment may have different heating and cooling energy
demands. To quantify the effect of the UHI effect on the energy consumption of buildings
in the Vancouver region, two office buildings with an identical design and operation
were simulated in urban and rural environmental settings using the DesignBuilder energy
simulation tool (software with EnergyPlus simulation engine), and their heating and cooling
energy were compared. For the rural building, the YVR weather file was used, whereas
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for the urban building, the air temperature and wind speed in the YVR weather file was
replaced with the hourly urban canopy temperature and wind speed generated by the
ANNs. As such, while the urban weather file incorporated the effect of UHI effects, the
rural weather file did not.

The building type considered for the study was a two-story concrete office building
with a floor area of 1216 m2 (see Figure 17). As per the ASHRAE 90.1 requirements for
non-residential mass buildings, the exterior walls, which are composed of 0.18 m concrete
followed by 0.07 m EPS and 0.01 m plaster on the exterior, have an overall U value of
0.5 W/m2K. The metal deck roof has an overall U value of 0.18 W/m2K. The ground floor
is composed of 0.15 m EPS at the bottom followed by 0.1 m concrete and 0.03 m ceramic
tiles on the top, and has an overall U value of 0.25 W/m2K. The SHGC and U values of the
windows are 0.38 and 1.76 W/m2K, respectively. The physical and thermal properties of the
materials of different layers of the building envelope are summarized in Table 6. Following
the Canadian National Building Energy Code (NECB), the building airtightness is set to
0.2 L/s/m2. The buildings’ internal loads including occupancy, lighting, equipment, and
ventilation, and their respective operating schedules are adapted from the NECB. The
cooling and heating set points are set at 24 ◦C and 22 ◦C, respectively, during the weekdays
between 6 a.m. and 8 p.m. During all other times, the cooling system is off and a setback
temperature of 18 ◦C is enforced during the heating season.
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Table 6. Physical and thermal properties of the building envelope materials.

Material
Property

Thickness (m) Density (Kg/m3) Conductivity (W/mK) Specific Heat (J/KgK)

XPS 0.18 35 0.034 1400

Concrete 0.18 and 0.1 2220 1.6 850

EPS 0.07 and 0.147 15 0.04 1400

Plaster 0.01 1500 0.6 850

Ceramic Tile 0.03 1700 0.8 850

Figure 18 shows the monthly heating, cooling, and total energy consumption of the
buildings in the study area (urban environment) and the YVR airport (rural environment).
As the buildings are office buildings with significant internal gains, the cooling energy
demand in the summer months is much higher than the heating energy demand in the
heating season (roughly one-to-ten ratio), as illustrated in Figure 18a. During the colder
months, the heating energy consumption of the building in the study area was consistently
lower than that of the building at YVR (Figure 18b). The reduction in energy consumption
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during the months of December, January, and February was 26%, 20%, and 33%, respectively.
The decrease in heating energy in the study area is associated with the higher canopy air
temperature as the result of the urban heat island effect, as well as the reduction in air flow
speed due to the wind-blockage effect of buildings. Due to the same effects, the buildings’
energy consumption in the warmer months was in inverse order (Figure 18c). The highest
cooling demands were in July and August, and during these months the buildings in the
urban environment had a cooling energy demand of 17% and 18% more, respectively, than
that of the building at YVR airport. In Table 7, the annual heating, cooling, and total energy
demands of the buildings are presented. As was expected, the urban heat island effect
increased the total cooling energy demand by 23% and decreased the total heating energy
consumption by 29%. Although the percentage change for heating is higher, the magnitude
of the cooling energy difference is much higher. As such, the total energy demand of the
building in the urban area is 18% higher, which points to the overall negative effect of the
urban island effect in that significant increases in cooling counteract the benefit obtained in
the reduction in heating in the winter season.
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Figure 18. Cooling, heating, and total energy consumption (kWh) using urban and YVR weather file.
(a) shows the total HVAC energy consumption in each month; (b) shows the energy consumption
required for heating in each month; (c) shows the energy required for cooling in each month.

Table 7. Building energy consumption comparison for Vancouver city.

Percentage of Change (UHI Affected—Baseline (YVR))

Total Heating: −29% (−1.08 kWh/m2)

Total Cooling: 23% (8.09 kWh/m2)

Total Energy: 18% (7.01 kWh/m2)

Figure 19 illustrates the distribution of the indoor air temperature presented as the
number of hours at or above the specified temperature values. The number of hours of
indoor temperature above the cooling set point, 25 ◦C and above, for the building at YVR is
2165 h, while in the presence of the urban heat island, the number of hours would increase
to 2330 h, which is an increase of 7.6%. These results suggest that the UHI effect increases
the overheating potential of buildings in the urban setting, and the use of airport weather
data underestimates the thermal discomfort that may exist in the urban buildings.
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6. Conclusions

The urban heat island phenomenon is a reality in cities worldwide and has been
reported in several studies. It is essential to know the level to which the urban canopy
temperature rise due to the UHI effect and its consequences on urban thermal discomfort
and buildings’ energy consumption. Ignoring the UHI effect on the local temperature
and the use of weather data from open fields and airport locations leads to over- and
under-estimation of heating and cooling loads and improper sizing of equipment. Im-
proper sizing leads the mechanical systems to operate outside their ideal range on their
performance curves resulting in higher energy consumption (inefficiency) and occupants’
thermal discomfort.

In this paper, a method to estimate urban canopy temperature was presented. In this
method, the urban temperature was predicted from weather data collected at an airport or
open field using an artificial neural network model. The method enables the generation of
hourly urban weather data for a whole-year building energy simulation. In this work, it was
used to predict the urban canopy temperature of a neighborhood in downtown Vancouver
and the resulting building energy consumption and indoor temperature. The predicted
daily maximum and minimum temperatures in the neighborhood were consistently higher
than at the airport weather station. For the location and the time period considered in
this study, the annual average urban heat island intensity (UHII), which is defined as the
average of the urban and the metrological weather station air temperature differences, was
1.7 ◦C. The highest percentage of UHII occurrences with a temperature difference greater
than 4 ◦C happened in the month of August, 22.2%, followed by 16.8% in the month of
July. The urban heat island effect increased the total cooling energy demand by 23% and
decreased the total heating energy consumption by 29%. Although the percentage change
for heating is higher, the magnitude of the cooling energy difference is much higher. As
such, the total energy demand of the building in the urban area is 18% higher, which points
to the overall negative effect of the urban heat island effect in that significant increases in
cooling counteract the benefit obtained in the reduction in heating in the winter season.
The urban heat island effect in the study area increases the number of hours of indoor
temperature above the cooling set point by 7.6% when compared to a building in a rural
environment. These results suggest that the UHI effect increases the overheating potential
of buildings in the urban setting, and the use of airport weather data underestimates the
thermal discomfort that may exist in the urban buildings. The methodology provided in
this paper can be applied to determine the varying, urban heat island effects in different
climate zones.
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