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Abstract: The integrated energy system is a complex energy system that involves multi-stakeholder
and multi-energy coordinated operations. The key to improving its scale and sustainable development
is to construct a better-integrated energy system dispatching method which is suitable for the power
market. However, the randomness of the supply side and load side of the integrated energy system
brings further challenges to system planning and scheduling. Therefore, the optimal scheduling
method of an integrated energy system considering the uncertainty of supply and demand in the
market environment is studied in this paper. Firstly, the uncertainty models of the supply side
and load side of the integrated energy system are established. Then, the optimal scheduling model
based on robust chance constraint is established. The reserve capacity constraint is set as a chance
constraint with a certain confidence level to maximize the system profit in the power market. Finally,
simulations show that the proposed method not only guarantees the robustness of the system but
also improves the economy of the system. The method provides ideas for exploring the development
mechanism and strategy of integrated energy systems in the electricity market environment.

Keywords: integrated energy system; uncertainty; chance constraint; robust optimization

1. Introduction

With the continuous development of multi-energy grid-connected technology and the
continuous improvement of renewable energy penetration, the integrated energy system
involving multi-stakeholder and multi-energy coordinated operations has been widely
applied. The key to the scale and sustainable development of integrated energy systems in
the future is to construct an integrated energy trading strategy and dispatching method
suitable for the power market [1–3].

Among them, the power-gas coupling system, which realizes bidirectional coupling
between the power system and natural gas system through Power to Gas (P2G), is ex-
pected to become a basic form of modern energy supply. Compared with the traditional
power system, the electric-coupled system can provide a new way for the consumption
of renewable energy such as wind power and enhance the peak cutting and valley filling
capacity of the system. However, the high proportion of renewable energy has changed the
characteristics of resource allocation in the electricity market. The strong uncertainty of
renewable energy makes the boundary of the market gap blurred. This is different from
the traditional thermal power unit. With the existing deterministic market gap model, it is
difficult to calculate the elastic resource cost required to smooth the uncertainty of renew-
able energy. This results in the uneven distribution of system resources. The unreasonable
allocation of spare capacity leads to the uneven distribution of system resources [4–6]. Load
demand response in the market environment has an impact on power grid stability and
power quality [7,8]. Meanwhile, in the context of demand response policies and measures,
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uncertainty on the load side also affects the economy of the system [9–11]. Therefore,
it is important to establish a mathematical model that reflects the uncertainty of power
side and load side. An accurate model is helpful to realize the planning, distribution and
coordinated operation of integrated energy system in market environment.

There have been some studies on the uncertainty in the process of integrated energy
system optimization. Sperstad et al. presented a framework to describe distributed wind
and photovoltaic power generation with energy storage devices. The method can account
for uncertainties beyond the planning horizon [12]. Liang et al. proposed a two-stage
adaptive robust optimization method for wind power uncertainties. By comparing simula-
tion results, it is verified that the robust optimization method is conducive to improving
wind power output and system economy [13]. Bai et al. analyzed the potential risks of
wind power uncertainty. A robust transmission planning method is proposed for high-
penetration wind power based on adaptive uncertainty set optimization [14]. Li et al.
reported that the security of natural gas network and the uncertainty of wind power bring
new challenges to the operation of power system. The robust optimization analysis of
integrated energy system containing wind power is carried out [15]. Carli et al. proposed a
data-driven robust optimization model considering wind power uncertainty and a multi-
demand response plan for the integrated energy system; the system contains power-to-gas
devices and traditional cold-thermal co-generation [16]. Jiang et al. proposed a robust
model predictive control approach to minimize the total economical cost. The approach
satisfies the comfort and energy requests of the final users [17]. In conclusion, the robust
optimization algorithm is an effective method to solve the uncertainty problem of wind
power.

However, the above references only optimize the uncertainty of the power supply side
or load side. There is a lack of analysis on the impact of these two uncertain behaviors on
the optimal scheduling of the system. Moreover, there are few relevant types of research
on the background of the electricity market. This paper studies the optimal scheduling
method of an integrated energy system considering the uncertainty of supply and demand
in the electricity market. The main contributions of this paper are:

• The electric–gas coupling model of the integrated energy system is established, and the
uncertainty model of the supply side and load side of the system is further established
based on this model.

• An optimal scheduling model based on robust chance constraints to maximize system
profits in the electricity market is presented. The model is solved by converting chance
constraints into deterministic constraints.

• The effectiveness of the proposed method is verified by simulations. The proposed
method not only guarantees the robustness of the system but also improves the economy
of the system. It provides ideas for exploring the survival and development mechanism
and strategy of integrated energy systems in the electricity market environment.

The rest of this paper is organized as follows. In Section 2, the uncertainty characteristic
models of the power supply side and load side are established. Then a power system
optimal scheduling model based on robust chance constraint is established in Section 3.
The simulation and experimental results are shown in Section 4. At last, the conclusion is
given in Section 5.

2. Modeling of the Integrated Energy System
2.1. Power Output Equipment

The integrated energy system is a complex energy system that involves multi-interest
subjects and a multi-energy coordinated operation. The network in the integrated energy
system mainly includes a power network, a heat network, and a gas network. The energy
conversion process mainly includes energy input, energy conversion, and energy stor-
age [18–20]. The power-gas coupling system in the integrated energy system is relatively
mature, and mainly uses the P2G technology to complete the conversion between electric
energy and gas energy. The system structure is shown in Figure 1.
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Figure 1. Structure diagram of the integrated energy system.

Energy sources include wind power generation and thermal power units. The grid
side includes the power grid, gas network, and heat network. The electric–gas coupling
system is realized by P2G technology. The networks can be coupled with each other by
the Combined Heat and Power (CHP) units, and the power grid and thermal network
can also be coupled through Heat Pumps (HP). In the optimal scheduling problem, the
mathematical description of source, load, and energy conversion units is established at first.
Then, the robust chance constraints are added to the mathematical model to balance the
economy and robustness. Finally, the scheduling scheme is obtained after calculating the
optimal solution of the mathematical model.

The integrated energy system operation center is responsible for energy supply ser-
vices and energy transactions within the system. The goal of the operation center is to
pursue the optimization of operating costs under the premise of ensuring the reliability
of the energy supply. According to the regulations of the trading center, the system is
divided into internal and external services. The internal service meets the full-time and
efficient energy supply demand through cooperation with various energy equipment in the
community. External service means that operators gather all kinds of flexible resources in
the system. More operational benefits are obtained through energy substitution, demand
response, or purchase and sale strategy, trading surplus or deficit energy with other enti-
ties. Through external services, the operators provide services such as peak shaving and
frequency modulation for the power grid, thus obtaining more operational benefits.

2.1.1. P2G Model

The working principle of P2G is to realize the two-way transmission of electricity
and gas through the combination of surplus power and chemical reaction to produce
corresponding gas. Considering the conversion efficiency, the principle can be expressed as

GP2G = ηP2G · PP2G (1)

where GP2G is the gas power generated by P2G equipment; PP2G is the electric power
consumed by P2G; ηP2G is the conversion efficiency of P2G equipment.

The relationship between the input flow and the output power of the gas turbine
satisfies a second-order fitting relation

HGB,j = αg + βgPGB,i + γgP2
GB,i (2)
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where PGB,i is the output power of the gas-fired boiler at node i of the power grid; HGB,j is
the output heat of the gas-fired boiler at node j; αg, βg and γg is the fitting coefficient of the
gas-fired boiler.

The conversion relationship from gas to heat is

FG,j =
HGB,j

GHV
(3)

where FG,j is input gas flow of the gas turbine at node j of the connecting line of the natural
gas system; HGB,j is the output heat of the gas-fired boiler at node j; GHV is the gas
heat value.

2.1.2. Wind Power Model

The power output of the wind turbine is mainly related to the wind speed. When the
wind speed is less than the cut wind speed or greater than the cut wind speed, the wind
turbine does not work [21]. The mathematical model of wind power generators is

Pw,t =


0 vt ≤ vin, vt ≥ vout

Pw,t,r
vt−vin

vout−vin
vin < vt ≤ vr

Pw,t,r vr < vt ≤ vout

(4)

where Pw,t is the generating power of wind turbine at time t; vin is the cut-in wind speed;
vout is the cut-out wind speed; vr is the rated wind speed of the wind turbine; Pw,t,r is the
rated power of wind turbine.

2.2. Supply and Demand Uncertainty Analysis of the System
2.2.1. Uncertainty Model of Wind Power Output

The source-side power generation system mainly includes thermal power units and
renewable energy generating units, among which renewable energy generation is wind
power generation. Because of the fluctuation and intermittency of wind power output, the
source-side uncertain behavior is caused. The specific uncertainty model can be described
by the prediction bias. Compared with the normal distribution, the Laplace normal mixed
distribution can better reflect the probability density distribution of wind prediction de-
viation [22,23]. Therefore, this distribution is used to describe the prediction deviation of
wind power output. The peak value of output k is

k =
E(∆Pr,w,t − µw)

4

σ4
w

(5)

where Pr,w,t is the predicted value of wind power output; ∆Pr,w,t is the forecast deviation of
wind power output in time period t; E(∆Pr,w,t − µw)

4 is the fourth order center distance of
∆Pr,w,t, µw is the expectation of wind power output forecast deviation; σw is the standard
deviation of forecast deviation of wind power output.

The probability density distribution function is as follows:

f (∆Pr,w,t) =
a

2b
exp

(
−|∆Pr,w,t − µw|

b

)
+

(1− a)√
2πσw

exp

[
− (∆Pr,w,t − µw)

2

2σ2
w

]
(6)

where a = 2 − k/3, σw = εwPr,w,t, b =
√

σ2
w/2, εw is the percentage of the predicted

deviation of wind power output in the predicted value.

2.2.2. Load Uncertainty Model

The uncertainty of the load side mainly refers to the deviation of load prediction.
Considering the uncertainty of load from the perspective of load prediction deviation, the
probability density distribution function of forecast deviation can be used for analysis. It is
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found that the normal distribution can better reflect the probability density distribution
of load prediction deviation [24,25]. Therefore, a normal distribution is adopted here to
describe the load prediction deviation, and its specific probability density distribution
function is

f (∆Pr,l,t) =
1√

2πσl
exp

(
− (∆Pr,l,t − µl)

2

2σ2
l

)
(7)

where σl = ε l Pr,l,t, Pr,l,t is the predicted load value of the system; ∆Pr,l,t is the load prediction
deviation; µl is the expectation of wind power output forecast deviation; σl is the standard
deviation of load prediction deviation; ε l is the percentage of load forecast deviation in
predicted value.

3. Optimization Scheduling Based on Robust Chance Constraints in Electricity Market
3.1. Objective Function

An integrated energy system in the context of the electricity market can be viewed
as an operator that aims to provide safe, stable, and clean energy to the load side while
pursuing its profit maximization. The goal of the system under the electricity market is to
maximize the profit on the premise of meeting the load demand.

max f = FS − FB − FC (8)

where FS, FB, and FC are energy sales revenue, energy purchase cost, and total system
operation cost of the integrated energy system, respectively.

Among them, FS adopts fixed electricity price to transfer synchronously to the load
side, and does not adopt floating electricity price. Therefore, when the operating cost of the
system is at its lowest, the maximum benefits of the system can be satisfied in the electricity
market. The objective function of minimum total system operating cost can be described as

min(FC) = CH,t + CW,t + COG,t + CP2G,t + CCW,t (9)

where CH,t is the operation cost of the thermal generating set; CW,t is the operating cost of
wind power generating set; COG,t is the gas storage cost of the gas storage tank in the gas
system; CP2G,t is the operation cost of electricity to gas in the energy conversion device;
CCW,t is the penalize costs for curtailment.

3.1.1. Operation Cost of Generator Set

The operation cost of issuing units mainly includes the cost of the thermal-generating
unit and wind-power-generating unit, and the calculation method is

CH,t =
Ht
∑

i=1

[(
aiP2

h,i,t + biPh,i,t + ci

)]
· hi,t

CW,t =
Wt
∑

j=1
djPw,j,twjt

(10)

where hi,t is the generation time of thermal power unit i at time t; ai, bi, and ci are the fitting
coefficient of generator operation cost of the thermal power unit i, respectively; Ph,i,t is the
active power output for the thermal power unit i; wjt is the generation time of wind turbine
j at time t; dj is the operating cost fitting coefficient of wind power generator j; Pw,j,t is the
active output of the j-th generator unit.

3.1.2. Gas Storage Cost of Gas Storage Tank in Natural Gas System

The operating cost of natural gas systems only takes the storage cost of the gas storage
tank into consideration.

COG,t = ∑
t∈T

∑
i∈ΩS

OCin
S,iG

in
S,i,t + OCout

S,i Gout
S,i,t (11)
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where OCin
S,i is the unit intake cost of the i-th gas storage tank; Gin

S,i,t is the natural gas flow
injected by the i-th gas storage tank at time period t; OCout

S,i is the unit pumping cost of the
gas storage tank; Gout

S,i,t is the natural gas flow extracted from the i-th gas storage tank at
time period t; COG,t is a collection of gas storage tanks in the system.

3.1.3. Operation Cost of P2G Conversion Device

When transporting natural gas, the natural gas system consumes energy only when
the gas storage tank is used or the compressor is used to pressurize the gas, resulting in the
operation cost. The operation cost resulting from the operation process of P2G equipment
can be expressed as

CP2G,t = ∑
t∈T

∑
n∈ΩP2G

OCP2G,nLP2G,n,t (12)

where OCP2G,n is the unit operating cost of the n-th P2G equipment; LP2G,n,t is the active
power consumed by the n-th P2G equipment in time period t.

3.1.4. Penalty Cost of Wind Abandonment

The penalty cost of abandoning wind is expressed by

CCW,t =
T

∑
t=1

aCW PCW,t (13)

where aCW is the penalty cost coefficient of wind abandonment; PCW,t is the wind aban-
donment power at the moment.

3.2. Constraints

Since there are uncertain factors such as wind power output and load in the system, the
stochastic programming method is an effective method to deal with the model containing
uncertain factors [26,27]. Therefore, the stochastic programming method is used to process
the model. Among stochastic programming methods, one of the most important is chance
constrained programming, which refers to the optimization of artificially set goals under a
certain probability [28,29]. The constraints in this paper include system output constraints,
power and energy constraints, power balance constraints, gas storage constraints, node
traffic balance constraints, and chance constraints.

When constraint conditions are set up, if there are random variables under the con-
straint, chance constrained programming can solve this problem well. Chance constrained
programming needs to make decisions in advance when observing random variables.
Specifically, a confidence value β is set in advance so that the probability of meeting the
constraint conditions is not less than β, which can be described as

Pr{gi(z, ξ) ≥ 0, i = 1, 2, . . . , m} ≥ β (14)

where z is the decision variable; ξ is a random variable with known probability density;
gi(z, ξ) is the chance constraint function; Pr{·} is the probability that the condition is
satisfied in the expression; β is the confidence level.

According to the system model and planning objectives, the main constraints of the
system include the following constraints.

3.2.1. System Output Constraint

System output constraints include thermal power units and wind turbine unit output
constraints, which are limited by the maximum and minimum values.(

Ph,i,t,min ≤ Ph,i,t ≤ Ph,i,t,max
Pw,j,t,min ≤ Pw,j,t ≤ Pw,j,t,max

(15)
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where Ph,i,t,min and Ph,i,t,max are the minimum and maximum output of the thermal power
unit, respectively; Pw,j,t,min and Pw,j,t,max are the minimum and maximum output of the
wind turbine, respectively.

3.2.2. Power and Energy Constraints

The total output of the system at time t should be limited by the load demand. Similarly,
the total power of the system at time t should meet the demand of the system.

Ht
∑

i=1
Ph,i,t +

Wt
∑

j=1
Pw,j,t ≥ PD,t

Ht
∑

i=1
Ph,i,tTh,i +

Wt
∑

j=1
Pw,j,tTw,j ≥ Et

(16)

where PD,t is the total power load demand at time t; Et is the total energy load demand
at time t; Th,i and Tw,j are the output time of thermal power unit i and wind power
unit j, respectively.

3.2.3. Power Balance Constraints of the Power System

The power balance constraint of the power system can ensure the balance between
generating power and consuming power in the same period of time. It can ensure the stable
operation of the system.

Ht

∑
i=1

Ph,i,t+
Gt

∑
l=1

Pg,l,t +
Wt

∑
j=1

(Pw,j,t − PBW,j,t) =
Dt

∑
k=1

PD,k,t +
P2Gt

∑
n=1

PP2G,n,t (17)

where Pg,l,t is the output value of the gas unit l at time t; PBW,j,t is the wind abandon power
of the j-th wind field at time t; PP2G,n,t is the active power consumed by the n-th P2G device
in the time period t.

3.2.4. Constraints of Gas Storage Tank

Gas storage tank can temporarily store gas when there is a large flow of natural gas,
and provide natural gas supply when the load demand is too high. Constraints of gas
storage tanks include total storage constraints and inbound and outbound natural gas flow
constraints as 

GS,i,t = GS,i,t−1 + Gin
S,i,t − Gout

S,i,t
0 ≤ Gin

S,i,t ≤ Gin
S,i,max

0 ≤ Gout
S,i,t ≤ Gout

S,i,max
GS,i,min ≤ GS,i,t ≤ GS,i,max

(18)

where GS,i,t is the storage gas volume of the i-th node gas storage tank at time t. Gin
S,i,max is

the upper limit of natural gas intake of the i-th gas storage tank; Gout
S,i,max is the upper limit

of gas output flow of the i-th gas storage tank; GS,i,min and GS,i,max is the upper and lower
limits of gas storage capacity of the i-th gas storage tank.

3.2.5. Constraints on Node Traffic Balance

In gas network, node flows, in and out, are conserved, and the node flow balance
constraint is conserved as follows

GO,i,t − Gin
S,i,t − ∑

j∈Ω3

Gij,t + GP2G,i,t = ∑
l∈Ωj,l

GLcom,l,t + GLd,i,t + GLG2P,i,t (19)

where GO,i,t is the compressor set supplied by node i; GP2G,i,t is the natural gas injected by
P2G equipment of node i at time t; GLd,i,t is the gas load demand of node i; GLG2P,i,t is the
gas consumed at time t.
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3.2.6. Chance Constraints

In the system, due to the randomness, volatility of wind power output, and the
existence of load prediction deviation, the uncertain behavior of the supply side and
load side will affect the net income of its participation in day-ahead trading. Therefore,
the chance constraints in this paper mainly include new energy output prediction and
load prediction.

Pr(
Ht
∑

i=1
Ph,i,t+

Gt
∑

l=1
Pg,l,t +

Wt
∑

j=1
(Pw,j,t − PBW,j,t) =

Dt
∑

k=1
PD,k,t +

P2Gt
∑

n=1
PP2G,n,t ≥ ∆Pr,w,j,t + Pr l,t) ≥ β1

Pr
( Lt

∑
m=1

Pl,m,t + Pre,t > ∆Prl,t +
Lt
∑

m=1
Pr,l,m,t

)
> β2

Wt
∑

j=1
Pr,w,j,t + ∆Pr,w,j,t ≥ Pclr,w,t

T
∑

t=1
(1− ε) = Γ, 0 6 ε 6 1

(20)

where Pr,w,j,t is the predicted power of wind power; ∆Pr,w,j,t is wind power prediction error;
Pclr,w,t is the clearing power of wind power; Pre,t is the rotation reserve power; Pl,m,t is the
actual load; ∆Prl,t is the predicted load shortage; ε is the probability that the constraint
exceeds the limit; Γ is the robustness. The closer ε is to 1, the higher the security of the
system, but it will lead to a waste of energy. The closer ε is to 0, the higher the economy
will be, but the security of the system will be sacrificed.

As a cooperative optimization objective, a robust maximization objective is constructed
as follows:

maxΓ =
T

∑
t=1

(1− ε) (21)

3.3. Solution Algorithm

The sampling method to solve the reduced chance constraint model includes the
following steps. First of all, the distribution law of variables is calculated. Then, the data
samples are substituted one by one for the test to see whether the result is greater than
1− ε. Lastly, it is judged whether the opportunity constraint is established. This method
needs many samples for verification, the calculation is large, and it is not easy to operate.
Therefore, it is necessary to transform chance constraints into deterministic constraints to
reduce calculation and ensure speed and accuracy.

The power balance constraint Equation (17) is processed through sample-based deter-
ministic transformation. Considering economic objectives and robustness objectives, this
paper uses the MOMDE (Multi-Objective Molecular Differential Evolution) algorithm to
solve the model. By using the evolutionary variation mechanism based on inter-molecular
forces, it can overcome the precocious convergence phenomenon effectively and achieve
efficient depth optimization [30,31]. The flow chart of the solution process is shown in
Figure 2. According to the initialization data, confidence level, and the source and load
probability density function, the random numbers are generated. The chance constraint
parameter values are substituted into the transformed deterministic parameter equation.
The objective function optimization model with constraints is solved by the multi-objective
optimization algorithm.
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4. Example Analysis
4.1. Simulation Parameters

In this paper, a 39-bus system is selected for analysis and calculation. Table 1 shows
system parameters. The selection of system operation parameters refers to the integrated
energy demonstration parks in North China.

Table 1. Main system parameters.

Parameter Value (kW)

Power of CHP 200
Power of GB 300
Power of P2G 400

Output of thermal power unit 3000
Wind farm output 1000

Due to the uncertainty of renewable energy, in order to verify the effectiveness of this
method, the distribution of prediction errors under different wind speeds during the test
process is shown in Table 2. Among them, the predicted value of 24 h renewable energy
output and load demand are shown in Figures 3 and 4, respectively. The maximum relative
error of wind speed prediction is less than 3.2%. The wind power output is larger at night
and smaller during daytime. The low temperature in the early morning leads to a high
heating load. Residents conduct more activities in the afternoon and evening. During these
two periods, the energy consumption load is relatively large.
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Table 2. Error distribution of wind power prediction.

Wind Speed
(m/s) Error (%) Standard

Deviation
Wind Speed

(m/s) Error (%) Standard
Deviation

3–4 1.98 3.96 7–8 0.02 15.82
4–5 2.01 6.27 8–9 −0.71 14.25
5–6 1.45 15.83 10–11 −0.42 12.68
6–7 1.12 16.62 11–12 −3.2 10.23
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4.2. Analysis of Model Optimization

The chance constraint parameter is set to 0.1, and the corresponding optimal dispatch-
ing results of when the optimal solution is obtained through calculation are presented in
Figures 5 and 6, respectively. In order to fully absorb wind power, P2G equipment starts to
operate and convert electric energy into gas energy for storage at night. Especially from
02:00 to 04:00, the electric power consumed by P2G technology greatly increases the electric
load and provides a lot of space for wind power consumption. At the same time, P2G
technology can save costs by purchasing gas. Compared with [15], the uncertainty of the
loads can be further considered in this paper by using chance constraints.
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4.3. Impact of Robust Chance Constraints

The influence of parameter confidence on the economy and the robustness of the
model in the chance constraint is analyzed. Table 3 indicates the different values used to
achieve robust optimization of results. The price unit is Chinese Yuan (CNY).

Table 3. Economy of robust optimization with different confidence intervals.

E Wt
w (CNY) Wt

v (CNY) F (CNY)

0.1 43,829 19,872 198,723
0.15 47,813 16,782 176,281
0.2 38,921 11,982 167,268

0.25 32,869 8729 142,784

It can be seen from Table 3 that with the increase of chance constraint parameters, the
robustness becomes worse, the economy will be improved, and the cost will be reduced.
The goal of robustness maximization is to eliminate the subjective restriction of preset
robustness (confidence level) and obtain a more reasonable and robust economically optimal
scheduling scheme. With the increase in robustness Γ, the confidence interval increases,
the robustness of the system increases, and the economy decreases. Under the condition of
reducing the robustness of the system, the operating cost of the system is reduced, which is
mainly manifested in the reduction of the cost of abandoning wind and purchasing fuel.
With the increase of the chance constraint parameter ε from 0.1 to 0.25, the total cost of the
system is reduced by 28.15%.
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4.4. Comparative Analysis of Different Schemes

To prove the effectiveness and correctness of the proposed method, through the cal-
culation of the following four methods, it can be seen in Table 4 that the profits obtained
by different methods are different. It can be concluded that the proposed robust chance
constraint optimization scheme is more economical. Compared with [18], the influence
of the market environment has been further reflected. Deterministic optimization does
not consider the fluctuation of wind power, the result is too idealistic, and, therefore, the
calculation cost is the lowest. Compared with stochastic optimization and robust optimiza-
tion, when the chance constraint parameter is 0.1, the total system revenue increases by
17.61% and 10.99%, respectively. The cost of robust optimization is the highest because
robust optimization considers the worst scenario and is too conservative. The economy
of stochastic optimization is between deterministic optimization and robust optimization.
The method proposed in this paper fully considers the uncertainty of wind power. The
calculation is closer to the actual operation situation. At the same time, the shortcoming of
traditional robust optimization has been improved. Therefore, it has more reference value.

Table 4. Economic comparison of different schemes.

Optimization Method ε Profit (CNY)

Optimization of deterministic 0 158,247
Optimization of stochastic 0 167,813

Optimization of robust 0 177,823
Chance constraints of robust optimization 0.1 197,362

5. Conclusions

In this paper, the optimal scheduling method of an integrated energy system consider-
ing the uncertainty of power load in the market environment is studied. The uncertainty
models of the supply side and load side of the integrated energy system are established.
Taking the integrated energy system as an operator, an optimal scheduling model based on
robust chance constraints is established to maximize the system’s profit in the electricity
market. The model is solved by converting chance constraints into deterministic constraints.
The simulations show that the proposed method can not only ensure the robustness of the
system, but also improve the economy of the system. Compared with robust optimization,
with the increase of the chance constraint parameter from 0.1 to 0.25, the total cost of the
system is reduced by 28.15%. Compared with stochastic optimization and robust optimiza-
tion, when the chance constraint parameter is 0.1, the total system revenue increases by
17.61% and 10.99%, respectively.

Since the research on uncertain pricing of renewable energy is still in its infancy, the
results can provide a reference for exploring the survival and development mechanism and
strategy of integrated energy systems in the electricity market environment.
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