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Abstract: The Ordovician Wulalike marine siliceous shale is a notable hydrocarbon source rock in the
Northwestern Ordos Basin. However, the causes of quartz and organic matter enrichment are still a
mystery to experts. In this study, the organic geochemistry (maceral compositions, Rbitu, and TOC)
and elemental geochemistry (major and trace elements) with mineralogy (XRD) and petrography
were jointly acquired to systematically investigate the quartz origins and the paleoenvironment, and
the main controlling factors for organic matter enrichment in the Wulalike shale. The results show
that the organic matter is type I kerogen with low TOC concentrations (average 0.51%), and that the
thermal evolution has reached mature and high mature stages (mean Requ is 1.08%). Three types of
quartz are developed in Wulalike shale: biogenic quartz (average 63%) is the most dominant, followed
by clastic quartz (average 31%) and microcrystalline quartz (average 6%). Babio and Ba/Al values
indicate the low paleoproductivity, which is the primary cause for the low TOC found throughout the
area. Redox indexes show the anoxic or dysoxic to oxic conditions from the bottom to the top of the
section. Paleoclimate and paleowater depth proxies also changed from the bottom to the top. Various
paleoenvironments and sedimentological evidence show that Wulalike shale went through the
changing environments, and the early sedimentary environments were conducive to organic matter
enrichment, leading to a relatively high TOC. The paleoproductivity and preservation conditions
have an impact on organic matter enrichment. Based on the results of biogenic quartz distribution
and sedimentary environments, it is considered that the bottom of the Wulalike Formation is the
most favorable for shale gas exploration and development.

Keywords: Ordos Basin; Wulalike Formation; biogenic quartz; paleoenvironments; organic matter
accumulation

1. Introduction

Shale gas exploitation went through a significant progress over the last decade and
has emerged as the most important driver of the global gas supply. The Lower Paleozoic
Wufeng–Longmaxi Formation in the Sichuan Basin, South China, has become important
for the future increase in gas reserves and production in China [1]. The Middle–Upper
Ordovician Wulalike organic-rich marine shale in the northwestern margin of the Ordos
Basin, North China, has not received much attention as it is believed to form a non-
commercial shale gas characterized by a high permeability, low porosity, low strata pressure,
and low total organic carbon (TOC) concentration [2–4]. However, shale gas has been
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gradually discovered in several exploratory wells in the Wulalike shale recently, e.g., the gas
production of the Zhong4 well and Zhongping1 well, reaching up to 4.18 × 104 m3/day
and 6.42 × 104 m3/day, respectively. This is the first time obtaining shale gas in the
Lower Paleozoic of the Ordos Basin, which has aroused great interest in researchers.
Meanwhile, shale oil was recently discovered in the Wulalike Formation in the southwestern
margin of the Ordos Basin [4], which proves that the Wulalike Formation has development
potential and is expected to become one of the main relay targets for unconventional oil
and gas resources in China in the future. Gas-bearing layers in the Sichuan Basin are
mainly distributed in the quartz-rich organic-rich shales in the lower part of the Longmaxi
Formation [5]. In contrast, the Wulalike shale has a high content of quartz (more than 45%)
and numerous siliceous organisms, but a low TOC concentration (averaging 0.49%) [3,6].

Quartz is one of the most prevalent minerals in shale (usually greater than 30%) [6,7],
and it is not only positively connected with TOC content [8,9], but it is also a major determi-
nant of shale reservoir quality [10,11]. It is derived primarily from four sources: terrigenous
clastic quartz, Si-bearing hydrothermal fluids input, conversion of smectite to illite formed
quartz (S-I quartz), and biogenic quartz. Furthermore, scholars [10,12–14] discovered that
when analyzing the brittleness of shale, it is not enough to merely consider the volume
content of the quartz, but that it is also necessary to clarify the origins of the quartz, as
different sources contribute differently to the reservoir attributes [12]. Biogenic quartz has a
greater impact on the brittleness of shale than S-I quartz and terrigenous clastic quartz, and
can easily produce more fractures during hydraulic fracturing [10,14–16]. Furthermore,
it is worth noting that biogenic quartz protects reservoir pores from destruction, but S-I
quartz does not [14,17]. Biogenic quartz is formed by dissolution and recrystallization
of siliceous plankton, such as radiolarians, sponge spicules, and algae [6,14]. Siliceous
plankton is not only a source of high-quality hydrocarbon parent rock, but it also has an
interior cavity that can help preserve organic matter (OM) by providing an OM-hosted
space, which is linked to OM enrichment [14]. The OM is the prerequisite for shale gas
formation and its sedimentary environment is directly related to hydrocarbon genera-
tion. The factors controlling OM enrichment can be summarized into two categories: OM
input factors (e.g., paleoproductivity, paleoclimate, and terrigenous detrital input) and
preservation condition factors (e.g., redox conditions, paleowater depth, and sedimentation
rates) [17–20]. Three modes of OM enrichment have been proposed: (1) the high produc-
tivity model [9]; (2) the anoxic preservation model [21,22]; and (3) superposition of the
two models above [23,24]. The deposition of the OM in shales in different sedimentary
environments is controlled by various factors. For example, both the marine shale of the
Longmaxi Formation and the North American shale have high productivity and good
preservation conditions [7,25]. The continental shale of the Yanchang Formation was con-
trolled by high productivity [26]. Moreover, the marine–continental transitional shale of
the Shanxi Formation was affected by terrigenous clastic input and redox conditions [27].
Thus, it can be seen that understanding the quartz origins and sedimentary environment
can not only predict the high-quality reservoirs, but also provide valuable guidance for the
generation and evaluation of shale gas.

In this study, an array of analyses including TOC content, bitumen reflectance (Rbitu),
organic maceral, mineral composition (XRD), as well as major and trace element concentra-
tions, along with petrographic observations, were jointly acquired for the outcrop profile
of the Wulalike shale in the northwest margin of the Ordos Basin. The purpose of this
study is: (1) to clarify the OM characteristics and shale lithofacies type; (2) to identify
different quartz sources and calculate their contents; (3) to elaborate on the sedimentary
environments and their effects on OM enrichment; and (4) to reconstruct the accumulation
model of OM. This study is expected to provide some basis for further shale gas exploration
in the northwestern margin of the Ordos basin.
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2. Geological Setting

Located in the west of the North China Craton (NCC), the Ordos Basin is a significant
hydrocarbon-bearing basin in China, with an area of about 25 × 104 km2 [4,28] (Figure 1A).
The basin includes six sub-tectonic units: Tianhuan Sag, Yimeng Uplift, Western Thrust
Zone, Jinxi Fold, Yishan Slope, and Weibei Uplift (Figure 1B), and has undergone multi-
stage tectonic evolution [29–31]. Since the early Ordovician, it was affected by the closure
of the Qinling sea and Qilian sea; thus, the sedimentary characteristics in the Ordos Basin
are significantly different from those in North China [32]. In the mid–late Ordovician
period, influenced by the expansion of the Helan trough, the main part of the Ordos Basin
began to uplift, while the western and southern margins subsided substantially, forming
an L-shaped marginal sea and depositing a suite of deep water facies shale [33]. The study
area is situated in the Zhuozishan district in the northwestern margin of the Ordos Basin,
and the Ordovician is composed of the Sandaokan Formation, Zhuozishan Formation,
Kelimoli Formation, Wulalike Formation, and Lashizhong Formation in ascending order [6]
(Figure 2A). The Wulalike Formation is the target layer characterized by the grey–black
bearing graptolite shale and a small amount of limestone interlayers [34], which is dis-
tributed in the western and southern margins of the basin, with the thickness ranging from
20 to 120 m and the burial depths varying from 1500 to 4700 m, as well as a low TOC
contents [3–6].
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Ordos basin and its adjacent areas. Modified from reference [29].
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3. Samples and Methods

To verify the integrity and representativeness of the sample distribution, the entire
stratigraphic section of the Wulalike Formation in the Zhuozishan area was surveyed and
sampled (Figures 1B and 2B). All the samples were selected from the fresh, non-weathered
surface. Thirty-two samples were chosen for TOC, major, and trace elements; 21 were
prepared for XRD; and 9 samples for organic maceral compositions and Rbitu. Major and
trace elements were measured in the Key Laboratory of Western Mineral Resources and
Geological Engineering Ministry of Education, Chang’an University. TOC, XRD, maceral
compositions, and Rbitu were conducted in the Key Laboratory of Oil and Gas Resources,
Ministry of Education, Yangtze University.

For the major elements analysis, 0.5 g of powdered sample (200 mesh), 0.3 g of
ammonium nitrate (oxidant), and 5 g of anhydrous lithium tetraborate (co-solvent) were
weighed and mixed evenly. Next, 0.5 g of potassium permanganate release agent was
added to the crucible. The mixed sample was placed in a crucible and heated at 1100 ◦C for
6 min in a molten furnace; the molten mixture was then poured out to form a translucent
sheet after cooling. The elements were tested using the Shimadzu XRF-1800 spectrometer,
and the relative error of detection was less than 5%. Another 1 g of sample was heated
to 1000 ◦C in the molten furnace, and when cooled to room temperature, the sample was
re-weighed to calculate the loss on ignition.

For the trace elements test, 50 mg of the 200 mesh powdered sample was firstly
weighed in a solution tank, and 0.5 mL of HNO3 and 1 mL of HF were subsequently added.
The mixture sample was heated in an oven at 190 ◦C for 48 h. After cooling, it was taken
out and steamed in an electric heating plate at 140 ◦C to dry. Next, 2.5 mL of 40% HNO3
was added and heated in the cylinder liner at 140 ◦C for 4 h to dissolve the sample again.
After re-melting, the solution was diluted to 50 g with 2% HNO3 in a polyethylene vial for
analysis. The American Thermoelectric X-7 inductively coupled plasma mass spectrometer
was used for testing. The relative error was less than 5%.
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For the TOC analysis, 0.1 g of each 200 mesh sample was firstly weighed. The samples
were thoroughly immersed in 10% diluted hydrochloric acid to eliminate inorganic carbon
and dried at 70 ◦C. After treatment, the samples were washed with distilled water several
times to eliminate any remaining acid. The pretreatment samples were thoroughly burnt
in oxygen at 1200 ◦C to convert all organic carbon into carbon dioxide. The Leco CS-400
carbon analyzer was used to measure the volume of CO2 to estimate the TOC content with
an analytical uncertainty of less than 0.1%.

The 200 mesh samples were mixed with ethanol for XRD analysis and then evenly
coated onto slides. After the ethanol was evaporated, the samples were radiated using
a PW1730 diffractometer with an operating voltage of 40 KV and a current of 100 mA.
The minerals were identified based on the diffractograms using the Origin 8.5 software.
Precipitation was used to separate the clay minerals, and then X-ray diffraction was used
to determine the relative amount of each type of mineral. The analytical uncertainties were
less than 5%.

To determine the microscopic components and Rbitu, the sample was cut into blocks
of 2 cm × 2 cm along the vertical plane, placed in a fixed grinding tool, and poured into
the epoxy resin for cold curing. After complete curing, automatic grinding and polishing
machines and alumina polishing solutions were used for grinding and polishing. After
observation under a 20× dry objective lens, the polished surface had no stains and scratches
with a clear boundary between components. After the sample was completely dried, the
macerals were identified under oil immersion reflected light and fluorescence conditions
using a Leica DM4500 microscope with a 50 times objective. The Leica DM4500P polarizing
microscope with the MPS200 photometer was used to measure the Rbitu.

4. Results
4.1. Petrographic Features

The Wulalike Formation is dominated by grey and black shale, with a weathered and
brittle surface in the outcrop (Figure 3A). Graptolites can be observed on a bedding plane of
shale, showing vein-like, short linear, and grid-like shapes, with sizes ranging from 20 µm
to several centimeters (Figure 3B,C). Horizontal bedding is common in shale (Figure 3D),
indicating a deep water sedimentary environment.
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Figure 3. Characteristics of the Wulalike Formation shale. (A) The weathered surface of shale
developed foliation. (B) Graptolite fossils, occurring on the bedding plane of shale. (C) Fragment
of graptolite under the microscope in plane polarized light. (D) Shale with vertical fractures and
horizontal bedding.

4.2. Quartz Characteristics

Three kinds of quartz were recognized in the Wulalike shale under an optical micro-
scope: biological skeletal quartz, microcrystalline quartz, and terrigenous quartz. Biological
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skeletal quartz refers to the quartz with biomorphic forms, mainly including radiolarians
and sponge spicules. Radiolarian is marked by the central capsule and radial spines with
spherical to ellipsoidal forms (Figure 4A,B). The capsules have a diameter of 50–300 µm
filled with quartz and OM (Figure 4A,B). Sponge spicules have uniaxial and branching
shapes with a length of 100 to 800 µm (Figure 4C,D); some of them only have spicules
fragments due to poor preservation (Figure 4E). Microcrystalline quartz with an amor-
phous form appeared as siliceous cementation, which is the most common variety found in
shale, a majority of which co-existed with OM (Figure 4F,G) and a few with clay minerals
(Figure 4H). Terrigenous quartz is floating and dispersed throughout the shale matrix
and is rarely in contact with other quartz grains (Figure 4I). The grains of terrigenous
quartz are sub-circular to sub-angular in shape, and 20 to 80 µm in size (Figure 4I). It is
worth mentioning that biological skeleton quartz is often found near the bottom of the
Wulalike Formation. On the other hand, terrigenous quartz is mostly found at the top of
the Wulalike Formation.
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Figure 4. Microscopic characteristics of quartz. (A) Radiolarian, showing poor preservation. Cross-
polarized light. (B) Radiolarian with the complete morphology. Plane polarized light. (C,D) are
the forked sponge spicules. (C) and (D) are plane polarized light and cross-polarized light, re-
spectively. (E) Sponge spicule fragment. Plane polarized light. Microcrystalline quartz with an
amorphous form is symbiotic with OM (F) and algae (G). Plane polarized light. (H) Microcrystalline
quartz coexists with clay minerals. Plane-polarized light. (I) Terrigenous quartz, characterized by a
subangular–subcircular shape, was mainly distributed at the top of the Wulalike Formation. Plane
polarized light.

4.3. OM Features

The TOC is the most critical index to assess the quality of source rocks [34,36]. The
TOC content of the Wulalike shale is generally low, varying from 0.14% to 0.90%, with an
average of 0.51% (Table 1). In addition, the TOC pattern displays a decreasing trend from
the bottom to the top of the Wulalike Formation (Figure 5).
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Table 1. TOC, Rbitu, and maceral composition of the OM in the shale samples.

Samples TOC (%) Rbitu (%) Requ (%) Sapropelinite
(%)

Liptinite
(%)

Vitrinite
(%)

Inertinite
(%)

Kerogen
Type

SD02-1 0.90 0.91 0.96 100.00 / / / I
SD02-2 0.69 / / / / / / /
SD02-3 0.44 0.92 0.97 100.00 / / / I
SD03-1 0.28 / / / / / / /
SD03-2 0.71 / / / / / / /
SD03-3 0.44 0.92 0.97 100.00 / / / I
SD03-4 0.31 / / / / / / /
SD03-5 0.54 0.79 0.89 100.00 / / / I
SD03-6 0.81 / / / / / / /
SD03-7 0.72 1.10 1.08 100.00 / / / I
SD03-8 0.75 1.59 1.38 100.00 / / / I
SD03-9 0.75 / / / / / / /

SD03-10 0.78 1.20 1.14 100.00 / / / I
SD03-11 0.61 / / / / / / /
SD03-12 0.48 1.62 1.40 100.00 / / / I
SD03-13 0.55 / / / / / / /
SD03-14 0.50 / / / / / / /
SD03-15 0.60 / / / / / / /
SD03-16 0.52 / / / / / / /
SD03-17 0.36 / / / / / / /
SD03-18 0.41 / / / / / / /
SD03-19 0.50 0.86 0.93 100.00 / / / I
SD03-20 0.46 / / / / / / /
SZ01-1 0.83 / / / / / / /
SZ01-2 0.25 / / / / / / /
SZ01-3 0.70 / / / / / / /
SZ01-4 0.64 / / / / / / /
SZ01-5 0.21 / / / / / / /
SZ01-6 0.19 / / / / / / /
SZ02-1 0.14 / / / / / / /
SZ02-2 0.18 / / / / / / /
SZ02-3 0.16 / / / / / / /

All the organic macerals of the samples are composed of sapropelinite, mainly includ-
ing telalginite, lamalginite, and bituminite (Table 1). This study used the following formula
to estimate the Type Index (TI) [27]:

TI = (100 × A + 50 × B − 75 × C − 100 × D)/100 (1)

where A, B, C, and D correspond with sapropelinite, liptinite, vitrinite, and inertinite,
respectively [27].

The TI ranges from <0, 0–40, 40–80, and >80 represent type III, type II2, type II1, and
type I, respectively [37]. All the TI values of the Wulalike shale are 100, indicating type I
kerogen (Table 1).

Vitrinite reflectance (Ro) is a common indicator of OM maturity [25]. Ro needs to
be replaced by Rbitu to evaluate the OM maturity due to a lack of vitrinite in the Lower
Paleozoic source rocks. The conversion formula is as follows [25]:

Requ = 0.618 × Rbitu + 0.400 (2)

where Requ is equivalent to vitrinite reflectance, and Rbitu is bitumen reflectance.
The Requ ranges from 0.89% to 1.40%, with an average of 1.08% (Table 1), suggesting

that the thermal evolution of the Wulalike shale in the study area has reached the mature
to high mature stages.
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4.4. Mineralogical Compositions and Lithotypes

The Wulalike shale consists of quartz, clay, K-feldspar, plagioclase, calcite, and
dolomite (Table 2, Figure 6). Quartz and clay minerals are the most abundant minerals in
all samples, ranging from 47.1 to 81.6% (averaging 69.5%) and 14.8 to 33.1% (averaging
22.8%). Clay minerals are dominated by illite and illite/smectite, with an average content
of 46.05% and 37.48%, respectively (Table 2, Figure 6). Evidently, the Wulalike Formation’s
quartz content decreases from the bottom to the top, with the largest concentration at the
bottom (Figure 5).

Shale can be categorized into four kinds based on the concentration of the minerals:
siliceous shale (SM), argillaceous shale (AM), calcareous shale (CM), and mixed shale [38]
(Figure 7). According to the ternary diagram, the Wulalike shale belongs to the siliceous
shale (Figure 7).

Table 2. XRD mineralogy results of the shale samples.

Samples
Mineral Composition (%) Clay Mineral Relative Content (%)

Qtz K-Feld Plag Calc Dolo Clay I/S I C S K I/S Ratio

SD02-1 79.1 1.7 0.8 1.1 / 17.3 30 50 14 / 6 5
SD02-2 81.6 1.4 0.7 / / 16.3 45 46 9 / / 5
SD02-3 79.8 1.5 / / / 18.8 34 56 10 / / 10
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Table 2. Cont.

Samples
Mineral Composition (%) Clay Mineral Relative Content (%)

Qtz K-Feld Plag Calc Dolo Clay I/S I C S K I/S Ratio

SD03-2 80.8 1.4 / / / 17.7 64 29 7 / / 10
SD03-3 81.3 1.4 0.6 0.7 / 16 68 21 11 / / 10
SD03-4 79.3 1.3 / 0.3 / 19.2 51 43 6 / / 5
SD03-5 83 1.3 1 / / 14.8 59 22 19 / / 10
SD03-6 73.9 1.6 0.9 / / 23.6 61 24 14 1 / 10
SD03-7 74.4 1.5 1.3 0.8 / 22 34 61 3 / 2 5
SD03-10 65.7 1.2 1.4 7.5 / 24.3 42 42 11 / 5 5
SD03-11 72.2 1.5 1.1 0.8 / 24.3 55 33 12 / / 10
SD03-13 77.6 1.3 0.8 / / 20.3 55 26 18 1 / 5
SD03-16 73.7 1.6 0.8 0.9 / 23.1 40 41 10 / 9 5
SD03-19 76.8 1.2 0.7 0.4 / 20.9 53 33 14 / / 5
SD03-20 73.9 1.4 0.8 / / 23.8 52 31 17 / / 5
SZ01-2 59.4 1.6 2.8 / 3.1 33.1 31 50 13 / 6 5
SZ01-4 51.6 / 2 14.1 1.2 31.2 43 38 15 / 4 10
SZ01-6 51.3 / 1.5 23.2 / 23.9 47 27 25 1 / 5
SZ02-1 49.3 1.1 2.2 17.4 / 30 41 35 17 / 7 5
SZ02-2 47.2 0.8 2.7 21.5 / 27.8 22 47 26 / 5 5
SZ02-3 47.1 1.3 2 20 / 29.6 40 32 21 / 7 5
Avg. 69.5 1.2 1.1 5.2 0.2 22.8 16 37.5 13.9 0.1 2.4 6.7

Note: Qtz = Quartz; K-feld = K-feldspar; Plag = Plagioclase; Calc = Calcite; Dolo = Dolomite; I/S = Illite/Smectite;
I = Illite; C = Chlorite; S = Smectite; K = Kaolinite.
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4.5. Elemental Geochemistry
4.5.1. Major Elements

The contents of the major elements are shown in Table 3. SiO2 is the dominant element
in samples, varying from 50.21% to 85.51% (averaging 74.38%), which is significantly higher
than the Upper Continental Crust (UCC) values [39]. The Al2O3 content ranges from 5.46%
to 12.60%, with an average of 8.63%, which is lower than the UCC [39]. The other elements,
including TiO2, TFe2O3, CaO, P2O5, K2O, Na2O, MnO, and MgO, have a relatively low
content. The SiO2 content shows a trend of gradual decline from the bottom to the top of
the Wulalike Formation, while Al2O3 is the opposite (Figure 5). The variation of TiO2 and
CaO was consistent with that of Al2O3, and their contents gradually increased (Figure 7).
When normalized to the UCC, most elements are in depletion, such as TiO2, MgO, TFe2O3,
K2O, and P2O5, in which Al2O3, MnO, and Na2O are strongly depleted (Table 3, Figure 8A).

Table 3. Major element content (wt%) in shale samples.

Samples SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total

SD02-1 80.50 0.34 8.07 2.06 0.01 1.05 0.54 0.08 2.75 0.05 4.03 99.48
SD02-2 84.52 0.29 6.31 1.85 0.01 0.85 0.26 0.30 2.07 0.04 3.28 99.78
SD02-3 82.91 0.29 7.07 2.10 0.01 1.02 0.26 0.02 2.29 0.04 3.20 99.21
SD03-1 82.77 0.29 7.35 2.07 0.01 0.95 0.35 0.27 2.30 0.06 3.85 100.27
SD03-2 84.02 0.29 6.89 2.10 0.01 1.03 0.26 0.39 2.21 0.05 3.41 100.66
SD03-3 84.77 0.28 6.53 1.92 0.01 0.61 0.20 0.13 1.94 0.10 3.18 99.67
SD03-4 82.72 0.32 7.38 2.97 0.01 0.88 0.20 0.12 2.21 0.05 3.38 100.24
SD03-5 85.51 0.25 5.46 2.31 0.02 0.70 0.18 0.14 1.55 0.04 3.00 99.16
SD03-6 82.12 0.29 6.70 2.94 0.01 1.18 0.27 0.36 1.94 0.04 3.82 99.67
SD03-7 80.48 0.35 7.90 2.57 0.01 1.08 0.26 0.22 2.52 0.04 3.98 99.41
SD03-8 79.90 0.35 8.36 2.95 0.01 1.36 0.31 0.46 2.49 0.05 4.09 100.33
SD03-9 80.15 0.36 8.14 2.86 0.01 1.14 0.28 0.12 2.41 0.05 4.18 99.70

SD03-10 80.28 0.37 8.53 2.84 0.01 1.24 0.27 0.33 2.49 0.06 4.09 100.51
SD03-11 80.01 0.35 8.00 2.99 0.01 1.34 0.29 0.18 2.36 0.06 3.86 99.45
SD03-12 79.74 0.37 8.42 3.06 0.02 1.53 0.35 0.18 2.53 0.07 4.05 100.32
SD03-13 81.25 0.33 7.45 3.13 0.02 1.46 0.27 0.36 2.14 0.05 3.62 100.08
SD03-14 77.34 0.45 9.76 3.32 0.02 1.79 0.29 0.44 2.85 0.07 4.07 100.40
SD03-15 73.87 0.50 10.61 4.76 0.01 1.66 0.36 0.19 3.32 0.08 4.72 100.08
SD03-16 79.19 0.37 8.16 3.39 0.01 1.56 0.27 0.11 2.45 0.07 3.76 99.34
SD03-17 78.68 0.38 8.47 4.00 0.02 1.66 0.25 0.29 2.53 0.07 3.73 100.08
SD03-18 77.37 0.41 8.74 3.86 0.01 1.50 0.26 0.22 2.64 0.06 3.96 99.03
SD03-19 81.07 0.31 7.33 2.93 0.01 1.47 0.24 0.61 2.21 0.06 3.43 99.67
SD03-20 80.74 0.34 7.63 2.85 0.01 1.44 0.23 0.09 2.35 0.06 3.42 99.16
SZ01-1 68.58 0.56 11.88 4.78 0.02 2.62 1.01 0.50 3.56 0.08 6.06 99.65
SZ01-2 65.99 0.66 12.60 4.91 0.03 2.48 2.66 0.45 3.60 0.13 6.06 99.57
SZ01-3 64.03 0.54 10.98 4.40 0.02 2.23 5.10 0.66 3.24 0.09 8.23 99.52
SZ01-4 58.25 0.52 10.20 4.11 0.03 2.25 9.64 0.67 2.96 0.09 11.55 100.27
SZ01-5 55.32 0.52 8.32 3.35 0.04 1.84 13.72 0.39 2.47 0.16 13.70 99.83
SZ01-6 55.23 0.54 9.08 3.49 0.03 2.02 13.23 0.27 2.65 0.16 13.42 100.12
SZ02-1 52.30 0.61 11.78 4.40 0.03 2.57 11.61 0.20 3.31 0.13 12.97 99.91
SZ02-2 50.21 0.63 10.58 4.63 0.04 2.48 14.09 0.35 2.81 0.16 14.43 100.41
SZ02-3 50.30 0.67 11.39 4.53 0.04 2.56 13.27 0.47 3.17 0.13 14.05 100.58
Avg. 74.38 0.41 8.63 3.26 0.02 1.55 32.00 0.30 2.57 0.08 5.83 99.86

UCC a 66.00 0.64 15.40 5.04 0.10 2.48 3.59 3.27 2.80 0.15 - -
a Date cited from reference [39].
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Figure 8. Normalized diagram of (A) the major elements and (B) the trace elements of the shale samples.

4.5.2. Trace Elements

The contents of the selected trace elements are shown in Table 4. When normalized
to the UCC, the elements Cr, Co, Sr, Zr, and Ba are strongly depleted, while Cu and U are
slightly enriched (Table 4, Figure 8B). Sc, V, Ni, Zn, Rb, Pb, and Th are close to the UCC
(Table 4, Figure 8B) [39].

Table 4. Trace element content (ppm) in the shale samples.

Samples Sc V Cr Co Ni Cu Zn Rb Sr Zr Ba Pb Th U

SD02-1 6.26 145.73 40.56 2.22 21.71 32.81 112.9 111.16 81.46 50.4 348.44 18.35 8.4 3.66
SD02-2 5.56 124.84 34.9 2.06 23.26 33.47 156.07 81.2 50.2 44.99 230.34 15.16 7.58 3.71
SD02-3 5.94 124.82 35.89 1.99 45.37 32.59 179.05 81.87 40.12 47.17 225.3 12.52 8.12 4
SD03-1 6.15 104.72 33.89 1.96 27.49 26.44 119.45 83.7 140.33 45.24 212.42 25.58 8.17 4.18
SD03-2 6.07 105.11 35.07 3.62 48.54 22.13 66.84 82.05 49.97 45.26 241.58 17.09 7.82 3.57
SD03-3 5.59 93.32 31.85 1.19 10.25 27.49 30.47 78.03 60 45.53 216.78 39.6 7.37 3.89
SD03-4 6.45 123.76 38.41 2.8 21.05 32.18 86.43 86.01 107.56 49.9 240.65 26.24 8.5 3.45
SD03-5 4.9 111.47 34.78 1.54 18.34 25.87 82 65.41 82.45 39.23 180.91 16.36 6.33 3.3
SD03-6 5.99 108.64 38.12 1.78 19.16 24.83 30.8 77.75 40.84 49.94 200.43 16.6 7.34 2.98
SD03-7 7.07 115.34 42.28 2.06 22.99 24.64 47.18 101.82 44.22 67.96 254.76 19.8 9.53 3.81
SD03-8 7.87 125.87 44.44 2.46 31.44 27.86 48.8 103.7 46.32 55.65 268.01 17.82 10.1 4.04
SD03-9 7.24 117.95 42.21 2.21 30.51 29.13 53.71 98.92 47.08 57.87 256.84 18.85 9.2 4.03

SD03-10 8.09 123.78 48.2 2.42 32.13 32.81 55.1 114.23 53.63 66.47 268.17 15.71 10.22 4.23
SD03-11 7.45 119.55 42.68 2.34 26.9 29.48 58.38 106.89 46.48 59.83 254.43 13 8.75 3.33
SD03-12 8.14 113.46 50.54 2.73 27.82 33 52.97 115.54 48.22 69.46 266.03 11.61 10.38 4.06
SD03-13 7.45 122.5 43.24 3.75 26.26 34.51 43.59 97.7 40.93 55.27 225.62 16.34 8.56 3.39
SD03-14 9.92 98 56.27 5.19 24.97 36.58 43.51 124.03 43.16 72.93 322.41 10.92 11.72 3.68
SD03-15 9.71 136.52 61.17 8.22 31.2 46.98 42.11 145.53 47.77 84.34 349.86 25.78 14.13 4.55
SD03-16 7.8 130.63 44.76 4.51 21.57 32.63 31.27 107.46 38.9 60.09 282.2 15.9 10.53 3.89
SD03-17 8.1 106.85 48.93 5.18 26.2 36.37 31.88 111.59 39.47 63.89 268.48 24.45 10.1 4.06
SD03-18 8.7 112.45 53.38 5.27 22.43 37.03 33.22 119.52 72.44 68.85 250 30.63 10.91 4.31
SD03-19 7.35 107.72 43.92 2.96 21.13 28.84 45.59 97.61 43.47 57.25 243.04 7.86 8.28 3
SD03-20 7.53 108.22 42.91 3.17 22.67 34.07 42.39 106.96 44.66 59.11 277.99 10.97 9.64 3.22
SZ01-1 11.51 134.19 66.19 6.45 35.63 40.58 78.12 163.47 50.05 103.11 360.93 28.11 15.33 5.85
SZ01-2 13.23 115.85 74.08 8.53 33.22 40.17 77.92 172.85 77.76 121.94 331.62 14.2 15.54 5.3
SZ01-3 11.4 123.9 63.66 8.09 32.77 44.86 67.27 152.4 160.47 90.07 326.26 21.21 14.63 4.76
SZ01-4 11.01 130.67 57.28 7.41 24.35 39.4 50.05 131.75 240.99 87.1 240.66 17.88 11.83 4.03
SZ01-5 10.06 83.2 55.75 7.58 21.2 26.08 69.3 113.43 237.18 88.04 223.6 11.9 10.59 3.19
SZ01-6 11.42 91.61 64.61 7.41 23.25 26.41 78.44 136.57 241.19 99.87 239.36 9.63 11.6 3.36
SZ02-1 12.37 100.62 71.15 8.86 30.12 25.38 85.54 165.71 228.02 131.33 287.47 12.53 13.28 3.77
SZ02-2 12.82 87.82 70.84 10.41 27.76 35.52 67.2 141.9 268.1 134.41 252.08 11.64 13.63 2.88
SZ02-3 13.05 96.81 72.93 9.66 29.52 32.85 64.85 155.56 253.99 129.35 297.19 14.7 14.23 3.29
Avg. 8.51 113.94 49.53 4.56 26.91 32.28 66.64 113.51 95.86 71.93 263.87 17.78 10.39 3.84

UCC a 13.6 107 85 17 44 25 71 112 350 190 550 17 10.7 2.8
a Date cited from reference [39].
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5. Discussion
5.1. Origins of Quartz

The input of Si-bearing hydrothermal fluids into the ocean is an important source
of quartz [40]. In marine sediments, the major elements Al, Fe, and Mn are gener-
ally not affected by diagenesis and weathering. Therefore, they are effective indica-
tors for exploring the quartz origin [40]. The Al-Fe-Mn triangular plot shows that the
Wulalike shale was not influenced by hydrothermal fluids (Figure 9A). According to
Marchig et al. [41], the plotted data points for the shale samples are away from the modern
hydrothermal trend line in the Cr-Zr scatter diagram (Figure 9B), indicating that hydrother-
mal fluids are negligible. Several geochemical criteria, such as Al/(Al+Fe+Mn) < 0.35,
Fe/Ti > 20, and (Fe+Mn) × Ti > 25(±5), can also be used to determine the quartz origin,
implying that hydrothermal fluids have no effect [42]. The average values of the above
parameters are 0.67, 9.38, and 0.61, respectively (Table 5), implying that hydrothermal fluids
are unlikely.
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The element Ti usually represents the degree of terrestrial detrital influx [27]. The
correlation diagram between TiO2 and SiO2 shows a conspicuous negative relationship
(R2 is 0.84) (Figure 10A), indicating that terrigenous quartz is not a primary source of silica.
Since zirconium (Zr) usually occurs in zircon, it is an effective substitute for terrigenous
input [8,43]. A significant negative trend (R2 is 0.84) between SiO2 versus Zr of the samples
suggests that clastic quartz was not the main contributor of silica (Figure 10B).

Table 5. Geochemical indexes of the shale samples.

Samples
Al/

(Al+Fe
+Mn)

Si/
(Si+Al+
Fe+Ca)

(Fe+Mn)
× Ti Fe/Ti Babio * Ba/Al * Sr/Cu MgO/

CaO Rb/Sr V/Cr δU Ni/Co Zr/Rb Zr/Al Rb/K

SD02-1 0.75 0.86 0.30 7.07 181.82 81.56 2.48 1.94 1.36 3.59 1.13 9.76 0.45 0.0036 0.0216
SD02-2 0.72 0.89 0.23 7.44 100.06 68.95 1.50 3.27 1.62 3.58 1.19 11.30 0.55 0.0023 0.0185
SD02-3 0.72 0.88 0.26 8.45 79.33 60.19 1.23 3.92 2.04 3.48 1.19 12.00 0.58 0.0024 0.0168
SD03-1 0.73 0.87 0.25 8.33 60.67 54.59 5.31 2.71 0.60 3.09 1.21 14.00 0.54 0.0013 0.0179
SD03-2 0.71 0.88 0.26 8.45 99.32 66.23 2.26 3.96 1.64 3.00 1.16 13.41 0.55 0.0035 0.0196
SD03-3 0.72 0.89 0.23 8.00 81.95 62.71 1.78 3.05 1.02 2.93 1.23 8.58 0.58 0.0019 0.0179
SD03-4 0.65 0.86 0.40 10.83 88.27 61.59 3.34 4.40 0.80 3.22 1.10 7.51 0.58 0.0016 0.0171
SD03-5 0.64 0.90 0.24 10.78 68.18 62.59 3.19 3.89 0.79 3.21 1.22 11.88 0.60 0.0017 0.0178
SD03-6 0.63 0.87 0.36 11.83 62.10 56.51 1.64 4.37 1.90 2.85 1.10 10.77 0.64 0.0025 0.0178
SD03-7 0.70 0.86 0.38 8.57 91.64 60.91 1.79 4.15 2.30 2.73 1.09 11.18 0.67 0.0029 0.0190
SD03-8 0.68 0.85 0.44 9.83 95.40 60.56 1.66 4.39 2.24 2.83 1.09 12.77 0.54 0.0020 0.0180
SD03-9 0.68 0.85 0.43 9.27 88.77 59.60 1.62 4.07 2.10 2.79 1.14 13.78 0.59 0.0022 0.0177

SD03-10 0.69 0.85 0.44 8.95 92.05 59.38 1.63 4.59 2.13 2.57 1.11 13.26 0.58 0.0045 0.0190
SD03-11 0.67 0.85 0.44 9.97 89.25 60.07 1.58 4.62 2.30 2.80 1.07 11.51 0.56 0.0019 0.0206
SD03-12 0.67 0.84 0.48 9.65 92.18 59.68 1.46 4.37 2.40 2.24 1.08 10.20 0.60 0.0050 0.0187
SD03-13 0.64 0.86 0.44 11.07 71.80 57.20 1.19 5.41 2.39 2.83 1.09 6.99 0.57 0.0022 0.0192
SD03-14 0.69 0.82 0.63 8.61 120.90 62.40 1.18 6.17 2.87 1.74 0.97 4.81 0.59 0.0056 0.0181
SD03-15 0.63 0.79 1.00 11.11 130.79 62.29 1.02 4.61 3.05 2.23 0.98 3.80 0.58 0.0073 0.0168
SD03-16 0.64 0.84 0.53 10.69 113.72 65.32 1.19 5.78 2.76 2.92 1.05 4.78 0.56 0.0062 0.0174
SD03-17 0.61 0.83 0.64 12.28 93.60 59.87 1.09 6.64 2.83 2.18 1.09 5.06 0.57 0.0108 0.0183
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Table 5. Cont.

Samples
Al/

(Al+Fe
+Mn)

Si/
(Si+Al+
Fe+Ca)

(Fe+Mn)
× Ti Fe/Ti Babio * Ba/Al * Sr/Cu MgO/

CaO Rb/Sr V/Cr δU Ni/Co Zr/Rb Zr/Al Rb/K

SD03-18 0.63 0.83 0.67 10.98 97.03 59.97 1.96 5.77 1.65 2.11 1.08 4.26 0.58 0.0158 0.0172
SD03-19 0.65 0.86 0.38 11.03 91.70 62.63 1.51 6.13 2.25 2.45 1.04 7.13 0.59 0.0024 0.0200
SD03-20 0.67 0.86 0.41 9.78 120.45 68.82 1.31 6.26 2.39 2.52 1.00 7.15 0.55 0.0049 0.0188
SZ01-1 0.65 0.76 1.13 9.96 115.64 57.39 1.23 2.59 3.27 1.66 1.07 5.52 0.63 0.0028 0.0181
SZ01-2 0.66 0.72 1.37 8.68 71.47 49.71 1.94 0.93 2.22 1.56 1.01 3.89 0.71 0.0109 0.0156
SZ01-3 0.65 0.70 1.00 9.51 99.56 56.13 3.58 0.44 0.95 1.95 0.99 4.05 0.59 0.0063 0.0158
SZ01-4 0.65 0.64 0.90 9.22 30.06 44.57 6.12 0.23 0.55 2.28 1.01 3.29 0.66 0.0097 0.0159
SZ01-5 0.65 0.61 0.74 7.52 51.81 50.76 9.09 0.13 0.48 1.49 0.95 2.80 0.78 0.0253 0.0132
SZ01-6 0.66 0.61 0.80 7.54 51.89 49.79 9.13 0.15 0.57 1.42 0.93 3.14 0.73 0.0670 0.0153
SZ02-1 0.67 0.58 1.14 8.42 44.25 46.09 8.98 0.22 0.73 1.41 0.92 3.40 0.79 0.0357 0.0148
SZ02-2 0.63 0.55 1.24 8.57 33.64 45.01 7.55 0.18 0.53 1.24 0.78 2.67 0.95 0.0449 0.0140
SZ02-3 0.65 0.56 1.29 7.89 62.02 49.29 7.73 0.19 0.61 1.33 0.82 3.06 0.83 0.0715 0.0139
Avg. 0.67 0.79 0.61 9.38 86.60 58.82 3.07 3.42 1.73 2.45 1.06 7.74 0.62 0.0115 0.0175

* The units of Ba/Al and Babio are ppm/% and ppm, respectively.
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Rowe et al. [44] documented that the area above the illite Si/Al line represents a
greater abundance of biogenic silica in the cross-plot of Si and Al (Figure 11). All the
samples fall above the illite Si/Al line (Figure 11), similar to the Wufeng–Longmaxi shale
and Barnett shale, implying that the quartz is mainly of biogenic origin. In addition, pure
marine biogenic siliceous rocks tend to have values of Al/(Al+Fe+Mn) around 0.60 [45]
and Si/(Si+Al+Fe+Ca) values generally higher than 0.85 [40]; the values in this study are
0.67 and 0.79, respectively, indicating that the quartz in the Wulalike shale predominantly
originated from a biogenic source, and that other sources also contributed to quartz. Micro-
scopic observation showed that the Wulalike shale is enriched in siliceous microorganism
fossils, i.e., radiolarians and sponge spicules, which is credible evidence for biogenic quartz
(Figure 4A–E).
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Another origin of silica is the transformation of clay minerals, which formed the
microcrystalline quartz that co-existed with the clay minerals [47,48]. The type of quartz
that commonly appears as siliceous cement can be observed under the microscope in the
Wulalike shale (Figure 4H). The reaction formula is:

Smectite + K+ → Illite + SiO2 + H2O (3)

The temperature at which conversion occurs is generally between 60 to 100 ◦C [49,50].
The Wulalike shale has reached mature to high mature stages (average Requ is 1.08%)
(Table 1), suggesting that the reaction temperature has been reached. The clay minerals of
Wulalike shale are dominated by illite and illite/smectite, and smectite contents are almost
0 (Table 2), indicating that smectite has been transformed into illite.

As discussed before, the quartz in the Wulalike Formation is formed from three quartz
forms: terrigenous clastic quartz, biogenic quartz, and S-I quartz. Terrigenous detrital
quartz transported to the basin is the product of parent rocks’ physical and chemical
weathering, and is primarily floating in the shale matrix. Biogenic quartz refers to the
dissolution and reprecipitation of siliceous organisms. Previous research has revealed that
opal-A, an amorphous unstable mineral (SiO2·nH2O), represents the initial constitution
of siliceous organisms. As the diagenesis progresses, opal-A is converted into opal-CT
and eventually to microcrystalline quartz [6,14]. Most siliceous organisms are dissolved
due to the unsaturated silica in seawater [51]. The remaining biological skeletal quartz
makes up a minor proportion of biogenic quartz, most of which is microcrystalline quartz;
this is why microcrystalline quartz is significantly concentrated in siliceous organisms.
Therefore, biogenic quartz, in this paper, includes biological skeletal quartz and a portion of
microcrystalline quartz. The other part of microcrystalline quartz generated by S-I quartz
is commonly surrounded by clay minerals and dispersed throughout shale matrix, acting
as cement (Figure 4H).

5.2. Contents of Different Origins of Quartz

Excess Si is defined as Si unrelated to detrital Si and can be computed by subtracting Si
connected to terrigenous detrital Al from total Si. The calculation formula is as follows [52]:

Excess Si = Sisample − Alsample × (Si/Al)background (4)

where Sisample and Alsample denote the concentrations of Si and Al in the sample, respec-
tively; (Si/Al)background denotes the average Si/Al ratio in the shale, and 3.11 is used as the
background value [40].

According to the law of conservation of elements, the Si derived from S-I quartz is
originally related to terrigenous detrital Al. Due to the exclusion of bearing-Si hydrothermal
fluids in this study, the excess Si can only be biogenic and calculated by the Formula (4)
above.

The S-I reaction equation is as follows [49]:

1.308{(Al3.15Mg0.85)(Si8.00)O20(OH)4(Na0.85)2H2O [smectite, 1101.1 g]
+ (0.06Fe2O3 + 0.56K2O + 0.02CaO)}

→[(Al4.12Fe0.1Mg0.56)(Si7.17)O20(OH)4(K1.47Na0.01Ca0.03)] [illite, 787.2 g]
+ 3.29SiO2 [197.7 g] + 0.56Na2O + 0.55MgO + 3.23H2O

(5)

Converting clay minerals releases the SiO2 content (S-I SiO2), which may be deter-
mined using the Formula (5). The complete analysis and calculation process are presented
in Yang et al. [13], and are not mentioned in this study. Finally, the terrigenous SiO2 content
can be calculated by removing biogenic SiO2 and S-I SiO2 from the overall SiO2 content.
Thus, the percentages of SiO2 from three different origins have been calculated (Table 6).
The Wulalike shale samples contain an average of 62.52% biogenic SiO2, 31.01% terrige-
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nous SiO2, and 6.46% S-I SiO2, indicating that biogenic quartz is the predominant source,
subsidiary from terrigenous quartz, and S-I quartz may nearly be ignored.

Table 6. Quartz percentage of different origins.

Samples SiO2 Biogenic SiO2 S-I SiO2
Terrigenous

SiO2

Percentage of
Biogenic SiO2 (%)

Percentage of
S-I SiO2 (%)

Percentage of
Terrigenous SiO2 (%)

SD02-1 80.5 55.4 3.41 21.69 68.82 4.24 26.94
SD02-2 84.52 64.9 3.63 15.99 76.78 4.3 18.92
SD02-3 82.91 60.92 4.09 17.9 73.48 4.93 21.59
SD03-2 84.02 62.59 3.85 17.58 74.5 4.58 20.92
SD03-3 84.77 64.46 3.3 17.01 76.04 3.9 20.06
SD03-4 82.72 59.77 4.41 18.54 72.25 5.33 22.42
SD03-5 85.51 68.53 2.79 14.19 80.14 3.26 16.59
SD03-6 82.12 61.28 4.68 16.16 74.63 5.69 19.68
SD03-7 80.48 55.91 5.15 19.41 69.47 6.41 24.12
SD03-10 80.28 53.75 5 21.53 66.96 6.23 26.82
SD03-11 80.01 55.13 5.03 19.85 68.9 6.29 24.8
SD03-13 81.25 58.08 3.99 19.18 71.48 4.91 23.61
SD03-16 79.19 53.81 4.58 20.79 67.95 5.79 26.26
SD03-19 81.07 58.27 4.37 18.42 71.88 5.4 22.72
SD03-20 80.74 57.01 4.81 18.92 70.61 5.95 23.44
SZ01-2 65.99 26.8 6.6 32.58 40.62 10.01 49.37
SZ01-4 58.25 26.53 6.01 25.71 45.54 10.32 44.14
SZ01-6 55.23 26.99 4.3 23.94 48.87 7.79 43.34
SZ02-1 52.3 15.66 5.57 31.06 29.95 10.65 59.4
SZ02-2 50.21 17.31 4.74 28.16 34.47 9.44 56.09
SZ02-3 50.3 14.88 5.2 30.22 29.58 10.35 60.08

5.3. Paleoenvironments
5.3.1. Paleoproductivity

The total amount of OM generated per unit area and time is referred to as paleopro-
ductivity [24]. In general, high productivity contributes to the formation of source rocks.
Previous research has shown that siliceous plankton contributed to significant productivity;
thus, biogenic SiO2 can indicate paleoproductivity [8,53]. As discussed in Section 5.2,
the contents of biogenic SiO2 ranged from 14.88% to 68.53% (with an average of 48.48%)
in the Wulalike Formation (Table 6), and are primarily developed at the bottom of the
Formation and have an obvious tendency to decrease at the top, which is consistent with
the petrographic observations (Figure 12).

Barite (BaSO4) formed in the decomposition of plankton was well preserved and is
more stable than OM; therefore, the content of Barium (Ba) can be referred to as paleopro-
ductivity [27,54]. The calculation formula of biogenic Ba (Babio) is as follows [27]:

Babio = Basample − Alsample × (Ba/Al)detrital (6)

where Basample and Alsample represent the content of Ba and Al in the sample, and (Ba/Al)detrital
represents the average Ba/Al value of the crustal rocks.

(Ba/Al)detrital ranges from 0.0032 to 0.0046, and 0.0039 were commonly selected for the
Babio calculation [43]. The Babio ranges < 200 µg/g, 200–1000 µg/g, and >1000 µg/g indicate
low, intermediate, and high paleoproductivity, respectively [54]. The value of Babio in the
Wulalike shale ranges from 30.06 µg/g to 181.82 µg/g (averaging 86.60 µg/g), indicating a
lean paleoproductivity. Meanwhile, the content of Babio decreases gradually at the top of
the Wulalike Formation. Additionally, Ba/Al can also reconstruct paleoproductivity [55].
Core samples from Central California (CCAL), USA, with Ba/Al values of 100–120, suggest
that they were deposited under high paleoproductivity conditions [56]. The ratios of Ba/Al
in the Wulalike shale vary from 44.57 to 81.56, with an average of 58.82, indicating low
paleoproductivity. Babio and Ba/Al parameters indicate low paleoproductivity during the
Wulalike stage. Furthermore, the paleoproductivity fell steadily at the top of the section.
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5.3.2. Paleoclimate

Paleoclimate affects the weathering of parent rocks and the OM accumulation of
source rocks [57]. Sr/Cu values can be used to assess the paleoclimate [58]. Generally,
Sr/Cu values of 1–5 and >5 indicate humid and arid climates [58]. The Sr/Cu values
range from 1.02 to 9.13 and increase gradually from the bottom to the top of the Wulalike
Formation (Table 5, Figure 12), suggesting that the climate changed from humid to arid.
The increase in Rb/Sr indicates the transition of the paleoclimate from relative drought to
humidity, while the decrease in Rb/Sr is on the contrary [9]. The Rb/Sr ratios decrease
gradually from the bottom to the top of the Wulalike Formation (Figure 12), revealing
that the paleoclimate changed from relative humidity to drought. The ratio of MgO/CaO
can reflect the paleoclimate [57]. The increase in the MgO/CaO ratio represents a warmer
and humid paleoclimate. The MgO/CaO ratio is higher at the bottom of the Wulalike
Formation and is lower at the top (Figure 12), indicating that the climate has changed from
relative humidity to drought.

The above proxies of Sr/Cu, Rb/Sr, and MgO/CaO indicate that the paleoclimate was
mainly warm and humid at the bottom of the Wulalike Formation, gradually turning to
relatively arid at the top.

5.3.3. Redox Conditions

The redox condition is crucial for the preservation of OM. Generally, the anoxic
condition is conducive to the preservation of OM [59]. Trace elements and their derived
parameters can reflect the redox condition, such as V/Cr, δU, and Ni/Co [27,60].

Vanadium (V), not affected by diagenesis in sediments, is enriched in an anoxic
environment [61]. Cr is preferentially gathered into an organic complex under a reducing
atmosphere; therefore, V/Cr can be used as an ideal redox indicator. V/Cr < 2, 2.00–4.25,
>4.25 indicate oxic, dysoxic, and anoxic conditions, respectively [27]. The V/Cr ratios
of samples ranged from 1.24 to 3.59 (Table 5). Furthermore, the higher V/Cr ratios are
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largely found near the bottom of the Wulalike Formation and gradually decreased upward
(Figure 12), indicating that the shale was deposited in anoxic conditions early on and
steadily transitioned to oxic needs later on.

In addition, δU (δU = 2U/(U + Th/3)) is a conventional parameter to judge the
sedimentary environment, with δU > 1 and <1 corresponding to an anoxic and oxic envi-
ronment [62]. The δU values of the Wulalike shale vary between 0.78 and 1.22 (Table 5),
suggesting an unstable redox environment, and are varied from anoxic to oxic conditions
from the bottom to the top of the Wulalike Formation (Figure 12).

The Ni/Co ratio is another credible index for assessing redox conditions [60]. The
specific criteria are shown in Table 7. The Ni/Co ratios range from 2.67 to 14.00, offering
a changing trend from an anoxic condition at the bottom to an oxic state at the top of the
Wulalike Formation (Table 5, Figure 12).

Table 7. Table of differentiation criterion for redox conditions.

The Proxies
Reducing Environment

Oxic
Anoxic Dysoxic

V/Cr >4.25 2–4.25 <2
δU >1 <1

Ni/Co >7 5–7 <5

The above geochemical parameters, V/Cr, δU, and Ni/Co, show that the deposition
environment has changed. The bottom of the Wulalike Formation is in an anoxic or dysoxic
condition, and it gradually changes to the oxic state when it reaches the top.

5.3.4. Paleowater Depth

The sediment grain size (coarse or fine) can determine the paleowater depth by
reflecting the hydrodynamic conditions [63]. Zr and Rubidium (Rb) are enriched in coastal
and fine-grained sediments, respectively [63]; thus, Zr/Rb can reflect the paleowater depth.
Zr/Al and Rb/K can also indicate the paleowater depth based on a similar principle, and
the ratios of Zr/Rb and Zr/Al will increase as the water depth deepend, while the Rb/K
ratio is the opposite [64]. The Zr/Rb and Zr/Al ratios are relatively low at the bottom
of the Wulalike Formation and gradually increase going upward (Figure 12), suggesting
that the water depth becomes shallower from the bottom to the top. The Rb/K ratio has
the opposite trend compared with Zr/Rb and Zr/Al (Figure 12), indicating that the water
depth becomes shallower from the bottom to the top.

Graptolites generally live in a deeper water environment [65]. The horizontal bedding
and abundant graptolites developed at the bottom of the Wulalike Formation and a few
at the top suggest that the water depth has changed (Figure 3). Therefore, it can be
concluded that the water depth became shallower from the early to late stage of the
Wulalike Formation.

5.4. Controlling Factors for Low TOC

The enrichment of OM is a complex process controlled by multiple factors. Generally,
the flourishing growth of plankton indicates high paleoproductivity, and then promotes
enrichment of the OM [17]. Biogenic SiO2, Babio, and Ba/Al with TOC show certain
positive relationships (R2 = 0.41, 0.33, and 0.33, respectively) (Figure 13A–C), indicating
that paleoproductivity plays a primary controlling factor for OM enrichment. However,
the low paleoproductivity resulted in a low TOC content during the Wulalike deposition.

In addition, the Sr/Cu is negatively correlated with TOC (R2 = 0.42) (Figure 13D),
revealing that the paleoclimate contributed to the accumulation of OM. The positive
correlation between Rb/Sr, MgO/CaO, and TOC further supports this view (R2 = 0.22
and 0.11, respectively) (Figure 13E,F). The warm and humid climate in the early stage of
the Wulalike Formation accelerated weathering of the parent rocks. It facilitated more
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terrestrial nutrients entering the ocean, which are beneficial to the reproduction of marine
organisms. In the late period, the arid climate and weakened weathering decreased the
terrigenous nutrients input, resulting in the lean TOC.
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Figure 13. Parameters of OM inputs. (A–C) Plots of paleoproductivity parameters; biogenic SiO2,
biogenic Ba, and Ba/Al showing significant positive correlations with the TOC content. (D–F) Plots
of paleoclimate parameters with TOC content, showing a negative correlation of TOC content with
Sr/Cu and positive correlations with Rb/Sr and MgO/CaO.

The redox condition is a crucial factor in promoting the preservation of OM [21].
Multiple geochemistry proxies show that the Wulalike shale was deposited in anoxic to
oxic environments. There are certain positive correlations in the V/Cr, δU, and Ni/Co
versus TOC (R2 = 0.28, 0.24, and 0.28, respectively) (Figure 14A–C), indicating that OM
accumulation was also controlled by the redox condition. Moreover, the shale formed
under anoxic or dysoxic conditions has a relatively higher TOC content at the bottom of the
Wulalike Formation, indicating that anoxic or dysoxic is conductive to OM preservation.

Meanwhile, the water depth parameters of Zr/Rb and Zr/Al present clear negative
correlations with TOC, as well as a positive correlation of Rb/K with TOC (R2 = 0.39, 0.42,
and 0.45, respectively) (Figure 14D–F). These all suggest that water depth is a pivotal factor
controlling OM enrichment. It could be due to the ocean’s increased reducibility in deep
water, making more space accessible for the preservation of OM.

Based on the above discussion, we can conclude that the Wulalike marine shale is a
typical superposition model of productivity and preservation conditions and can establish
the OM accumulation mechanism (Figure 15). Under the influence of the Caledonian
movement in the Middle–Late Ordovician period, the tectonic rift was developed in the
west of the Ordos Basin, forming the deep water basin facies deposits found in the Wula-
like Formation. Simultaneously, the eastern part of the basin was uplifted and denuded.
Ma et al. [33] documented that a rapid transgression occurred, resulting in the maximum
flooding surface in the early stage of Wulalike; after that, the sea level declined slowly,
followed by the water depth becoming shallow. The water depth variation is consistent
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with the geochemical indexes (Zr/Rb, Zr/Al, and Rb/K) and petrographic observation
results. Influenced by the transgression, on the one hand, the rising sea level led to the
transformation of biota from benthos to plankton. The copious nutrients transported by
the upwelling encouraged plankton blooming, providing a sufficient material basis for
OM enrichment. However, as the sea depth increased rapidly, the water column changed
into a dysoxic or anoxic environment, reducing OM decomposition. The hydrodynamic
conditions weakened, allowing fine sediments, such as clay and organic matter, to precipi-
tate, depositing the organic-rich shale of the Wulalike Formation. At the same time, the
lipid components in the OM are preferentially preserved and enriched under the activity of
anaerobic bacteria, tending the OM towards sapropel (type I kerogen), which has a better
hydrocarbon generation potential. Zhai et al. [66] and Chen et al. [67] believed that the high
water level under the transgressive system tract is favorable for OM enrichment. Thus, the
early sedimentary environments of the Wulalike Formation are most conducive to organic
accumulation (Figure 15A).
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On the other hand, the late sedimentary settings changed and were characterized by
shallow water, decreasing paleoproductivity, and arid climates or oxic conditions, all of
which were detrimental to the production and preservation of OM (Figure 15B). As a result,
the next exploration target should be aimed at the bottom of the Wulalike Formation on the
Ordos Basin’s western margin.
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6. Conclusions

The OM characteristics, shale lithofacies type, origins of quartz, paleoenvironments,
and OM enrichment mechanisms of the Ordovician Wulalike shale near the northwestern
fringe of the Ordos Basin are studied in detail in this research.

1. The Wulalike shale is characterized by a low TOC and type I kerogen; the thermal evolu-
tion has reached the mature to highly mature stages; and the lithotype is siliceous shale.

2. The origins of quartz in Wulalike shale are biogenic quartz (average 63%), terrigenous
clastic quartz (average 31%), and S-I quartz (only 6%).

3. The dominating factors affecting OM accumulation are paleoproductivity and redox
conditions; in addition, paleoclimate and paleowater depth have a certain contribution.

4. The OM enrichment mechanism is the typical superposition model of productivity
and preservation conditions. Based on the results of biogenic quartz distribution and
sedimentary environments, it is considered that the shale at the bottom of the Wulalike
Formation is conducive to exploration, and the next exploration target should focus
on this interval.
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