# Heat Transfer Enhancement in Cooling Jacket of Liquid Cooled Spark Ignition Engine

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}O

_{3}-H

_{2}O, CuO-H

_{2}O nano-fluids [19]. Anwar et al. [20] performed numerical calculation to analyse mini channel heat sink using CuO-H

_{2}O nano-fluids as a coolant. Xie et al. [21] studied numerically the heat transfer and pressure drop characteristics of mini channel heat sink. Tariq et al. [22] investigated the effect of slab thickness in miniature devices.

## 2. Analytical Analysis

- Flow is steady
- Fin spacing is uniform in the longitudinal as well as in horizontal direction
- One cylinder is assumed for the sake of simplicity
- Heat transferred to the surrounding by the engine is 35% [28]

#### Data Reduction

_{b}’ at TDC as shown in Figure 1 was calculated using Equation (3) taken from [29],

_{fin}= η

_{fin}hA

_{fin}(T

_{b}− T

_{∞})

## 3. Numerical Analysis

- The flow is incompressible, turbulent, 3D and in steady state
- Fluid thermal properties are considered constant throughout the flow
- There is no heat generation inside the structure and no viscous heating

_{k}is generation of turbulence kinetic energy which can be described as

_{t}is turbulent viscosity and is described as

_{µ}is described as

_{s}is described as

_{2}= 1.9, σ

_{k}= 1, σ

_{ε}= 1.2, A

_{o}= 4.04 are constants

- Flow inlet velocity as 2.57 m/s
- Pressure outlet at 0 gauge
- Cast iron sleeve inner wall temperature is kept constant at 185 °C [28]
- Incoming flow is assumed at ambient 300 K temperature

#### 3.1. Mesh Independent Study

#### 3.2. Parametric Study

#### 3.2.1. Effect of fin Cross-Section Area

^{2}with fin effectiveness of 1.67 followed by case-2 and case-1 with the fin effectiveness of 1.57 and 1.41, respectively. The details of the results are given in Table 3.

#### 3.2.2. Effect of Fin Spacing

#### 3.2.3. Effect of fin height

## 4. Results and Discussions

#### 4.1. Effect of Pressure Drop

#### 4.2. Temperature Distribution across the Wall

_{1}, P

_{2}, P

_{3}, P

_{4}, and P

_{5}at vicinity are shown in Figure 8. The inner wall temperature of sleeve was kept constant as 185 °C. The temperature gradually decreases starting from the sleeve inner side up to cylinder outer wall surface. It is evident from the results that for case-0 with no fin, the temperature drop is from 185 °C to 159.6 °C, while for the case-10, maximum temperature drop was observed (i.e., from 185 °C to 133 °C). Maximum and minimum drop in temperature was measured as 26.6 °C and 14.9 °C, respectively, in comparison to case-0.

#### 4.3. Effect of Surface Area on Heat Transfer Rate

#### 4.4. Fin Effectiveness

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

A_{s} | Surface Area of heat transfer surface, mm^{2} |

A_{fin} | Surface Area of introduced fins, mm^{2} |

A_{un-fin} | Surface area leftover by fins, mm^{2} |

A_{c} | Cross-section area of fin |

C_{p} | Specific heat, kJ/kgK |

ṁ | Mass flow rate, kg/s |

ΔP | Pressure Difference, Pa |

Q̇ | Heat transfer rate, W |

Q̇_{fin} | Heat transfer rate through introduced fins, W |

Q̇_{unfin} | Heat transferred left over by the fins, W |

Q̇_{T} | Combined heat transfer through fin and finned surface, W |

Q̇_{nofin} | Heat transfer without fins, W |

Q | Volumetric flow rate, m^{3}/s |

R_{th} | Thermal resistance, °C/W |

T | Temperature (°C) |

T_{b} | Base temperature of the surface where fins are attached, (°C) |

T_{∞} | Fluid Inlet Temperature, °C |

T_{o} | Fluid Outlet Temperature, °C |

t | Wall thickness, mm |

u,v,w | Velocity in x,y,z, respectively (m/s) |

h_{u} | Convective heat transfer coefficient for upper surface, W/m^{2} K |

h_{l} | Convective heat transfer coefficient for lower surface, W/m^{2} K |

m | Dimensionless parameter |

k_{s} | Thermal conductivity of fin, W/mK |

R_{ratio} | Radius ratio |

r_{o} | outer diameter, mm |

r_{i} | inner diameter, mm |

R_{E} | Reynolds number |

D_{h} | Hydraulic diameter, mm |

ν | Kinematic viscosity, |

Pr | Prandtl number |

µ | Dynamic viscosity |

k | Thermal conductivity, W/mK |

K | Thermal diffusivity |

h_{c} | Convective heat transfer coefficient, W/m^{2} K |

h | Fin height, mm |

w | Fin width, mm |

LPM | Litres per minute |

${\epsilon}_{fin}$ | Fin effectiveness |

W_{out} | Output of the engine produced, W |

Q_{in} | Heat supplied to the engine, W |

Greek symbol | |

α_{sf} | Surface area density |

ρ | Density (kg/m^{3}) |

µ_{t} | Turbulence viscosity (kg/ms) |

## References

- Wei, L.; Zhu, G.; Jin, Z. Numerical Simulation of Heat Transfer in Finned Tube of Heat Recovery Unit Using Fluid-Solid Coupled Method. Adv. Mech. Eng.
**2014**, 7, 127815. [Google Scholar] [CrossRef] [Green Version] - Serge, N.N.; Tang, F.; Zhang, Z.X. An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system—Analytical method and numerical simulation. Int. J. Hydrogen Energy
**2012**, 37, 16078–16092. [Google Scholar] - Tian, E.; He, Y.; Tao, W. Numerical Simulation of Finned Tube Bank Across a Staggered Circular-Pin-Finned Tube Bundle. Numer. Heat Transf. Appl.
**2015**, 68, 737–760. [Google Scholar] [CrossRef] - Lemouedda, A.; Schmid, A.; Franz, E.; Breuer, M.; Delgado, A. Numerical investigations for the optimization of serrated finned-tube heat exchangers. Appl. Therm. Eng.
**2011**, 31, 1393–1401. [Google Scholar] [CrossRef] [Green Version] - Wais, P. Correlation and numerical study of heat transfer for single row cross-flow heat exchangers with different fin thickness. In Proceedings of the IX International Conference on Computational Heat and Mass Transfer, ICCHMT2016, Cracow, Poland, 23–26 May 2016; Volume 157, pp. 177–184. [Google Scholar]
- Singh, S.; Sorensen, K.; Condra, T.J. Performance study of a fin and tube heat exchanger with different fin geometry. In Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, Portoroz, Slovenia, 19–23 June 2016. [Google Scholar]
- Ali, H.M.; Briggs, A. Condensation of ethylene glycol on pin fin tubes, effects of circumferential pin spacing and thickness. Appl. Therm. Eng.
**2012**, 49, 9–13. [Google Scholar] [CrossRef] - Briggs, A. Enhanced condensation of R-113 and steam on three dimensional pin-fin tubes. Heat Transf.
**2003**, 16, 61–79. [Google Scholar] [CrossRef] - Sara, O.N. Performance analysis of rectangular ducts with staggered square pin fins. Energy Conserv. Manag.
**2003**, 44, 1787–1803. [Google Scholar] [CrossRef] - Din, Z.U.; Ali, A.; Khan, Z.A.; Zaman, G. Investigation of moving trapezoidal and exponential fins with multiple nonlinearities. Ain Shams Eng. J.
**2023**, 14, 101959. [Google Scholar] [CrossRef] - Wei, J.J.; Honda, H. Effects of fin geometry on boiling heat transfer from silicon chips with micro pin fins immersed in FC 72. Int. J. Heat Mass Transf.
**2003**, 46, 4059–4070. [Google Scholar] [CrossRef] - Chyu, M.K.; Hsing, Y.C.; Natarajan, V. Convective Heat Transfer of Cubic fin arrays in a narrow channel. ASME J. Turbomach.
**1998**, 120, 362–367. [Google Scholar] [CrossRef] - Peltonen, P.; Saari, K.; Kukko, K.; Vuorinen, V.; Partanen, J. Large Eddy simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow. Int. J. Heat Mass Transf.
**2019**, 134, 641–655. [Google Scholar] [CrossRef] - Jeng, T.M.; Tzeng, S.C. Pressure Drop and Heat Transfer of Square Pin Fin arrays in inline and staggered arrangements. Int. J. Heat Mass Transf.
**2006**, 50, 2364–2375. [Google Scholar] [CrossRef] - Mokheimer, E.M.A. Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int. J. Heat Mass Transf.
**2002**, 45, 3631–3642. [Google Scholar] [CrossRef] - Saha, A.K.; Acharya, S. Unsteady Simulation of Turbulent flow and heat trransfer in a channel with a periodic array of cubic pin fins. Numer. Heat Transf. (Part A)
**2004**, 46, 731–763. [Google Scholar] [CrossRef] - Tariq, H.A.; Israr, A.; Khan, Y.I.; Anwar, M. Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf.
**2018**, 55, 501–511. [Google Scholar] [CrossRef] - Tariq, H.A.; SHOUKAT, A.A.; Anwar, M.; Israr, A.; Ali, H.M. Water Cooled Micro-hole Cellular Structure as a Heat Dissipation Media: An Experimental and Numerical Study. J. Therm. Sci.
**2018**, 24, 683–692. [Google Scholar] [CrossRef] - Tariq, H.A.; Shoukat, A.A.; Hassan, M.; Anwar, M. Thermal Management of Microelectronic Devices using Micro-hole Cellular Structure and Nanofluids. J. Therm. Anal. Calorim.
**2018**, 136, 2171–2182. [Google Scholar] [CrossRef] - Anwar, M.; Tariq, H.A.; Shoukat, A.A.; Ali, H.M.; Ali, H. Numerical study for heat transfer enhancement using CuO-H
_{2}O nano-fluids through minichannel for microprocessor cooling. J. Therm. Sci.**2018**, 24, 2965–2976. [Google Scholar] [CrossRef] [Green Version] - Xie, X.L.; Tao, W.Q.; He, Y.L. Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink. J. Electron. Packag.
**2007**, 129, 247–255. [Google Scholar] [CrossRef] - Tariq, H.A.; Anwar, M.; Malik, A. Numerical Investigations of Mini-Channel Heat Sink for Microprocessor Cooling: Effect of Slab Thickness. Arab. J. Sci. Eng.
**2020**, 45, 5169–5177. [Google Scholar] [CrossRef] - Hitachi, T.; Gohara, H.; Nagaune, F. Direct liquid cooling IGBT Module for automotive applications. In Fuji Electric Review; Fuji Electric Co., Ltd.: Hong Kong, China, 2012; pp. 55–59. [Google Scholar]
- Selim, M.Y.E.; Elfeky, S.M.S.; Helali, A. Enhancement of Coolant Side Heat Transfer In Water Cooled Engines By Using Finned Cylinder Heads. In Proceedings of the ICEF 2005 ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Ottawa, ON, Canada, 11–14 September 2005; pp. 523–543. [Google Scholar]
- Bhattad, A.; Atgur, V.; Rao, B.N.; Banapurmath, N.R.; Yunus Khan, T.M.; Vadlamudi, C.; Krishnappa, S.; Sajjan, A.M.; Shankara, R.P.; Ayachit, N.H. Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer. Energies
**2023**, 16, 3189. [Google Scholar] [CrossRef] - Sachar, S.; Parvez, Y.; Khurana, T.; Chaubey, H. Heat transfer enhancement of the air-cooled engine fins through geometrical and material analysis: A review. Mater. Today Proc.
**2023**, in press. [Google Scholar] [CrossRef] - Srinivas, D.; Kumar, T.; Santosh, R.; Suresh, V.; Eshwaraiah, R. Thermal analysis and optimization of engine cylinder fins by varying geometry and material. In Proceedings of the 1st International Conference on Manufacturing, Material Science and Engineering (ICMMSE-2019), Telangana, India, 16–17 August 2019; Volume 8, pp. 404–412. [Google Scholar]
- Pulkrabek, W.W. Engineering Fundamentals of the Internal Combustion Engine; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Cengel, Y.A. Heat Transfer, A Practical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Ansys Fluent Documentation. Theory Guide and User Guide. Release 16.0. Available online: http://www.ansys.com (accessed on 1 January 2015).
- Choudhary, P.; Sachar, S.; Khurana, T.; Jain, U.; Parvez, Y.; Soni, M. Energy analysis of a single cylinder 4-stroke diesel engine using diesel and diesel-biodiesel blends. Int. J. Appl. Eng.
**2018**, 13, 10779–10788. [Google Scholar]

Part Detail | Material | $\mathbf{Density}\text{}(\mathbf{Kg}/{\mathbf{m}}^{3})$ | Thermal Conductivity (W/m K) | Specific Heat Constant (KJ/Kg K) |
---|---|---|---|---|

Block | Aluminum Alloy T6 | 2768 | 109 | 0.896 |

Sleeve | Gray Cast Iron | 7200 | 46 | 0.46 |

Fin Cross Section A _{c} (mm^{2}) | Fin Spacing w (mm) | Fin Height h (mm) | |
---|---|---|---|

Case-1 | 4 | 3 | 2 |

Case-2 | 9 | 3 | 2 |

Case-3 | 16 | 3 | 2 |

Total Surface Area A_{s} (m^{2}) | Fin Cross-Section Area A_{c} (mm^{2}) | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{without}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{with}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Fin}\text{}\mathbf{Effectiveness}\text{}{\mathit{\epsilon}}_{\mathit{f}\mathit{i}\mathit{n}}$ | |
---|---|---|---|---|---|

Case-1 | 0.0131 | 4 | 185.58 | 262.51 | 1.41 |

Case-2 | 0.0148 | 9 | 185.58 | 291.91 | 1.57 |

Case-3 | 0.0153 | 16 | 185.58 | 306.47 | 1.65 |

Fin Cross Section A _{c} (mm^{2}) | Fin Spacing w (mm) | Fin Height h (mm) | |
---|---|---|---|

Case 4 | 16 | 2 | 2 |

Case 5 | 16 | 3 | 2 |

Case 6 | 16 | 4 | 2 |

Case 7 | 16 | 5 | 2 |

Total Surface Area A_{s} (m^{2}) | Fin Spacing w (mm) | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{without}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{with}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Fin}\text{}\mathbf{Effectiveness}\text{}{\mathit{\epsilon}}_{\mathit{f}\mathit{i}\mathit{n}}$ | |
---|---|---|---|---|---|

Case-4 | 0.0112 | 2 | 185.58 | 319.34 | 1.72 |

Case-5 | 0.0156 | 3 | 185.58 | 305.57 | 1.64 |

Case-6 | 0.0137 | 4 | 185.58 | 271.32 | 1.46 |

Case-7 | 0.0112 | 5 | 185.58 | 238.60 | 1.28 |

Fin Cross Section A _{c} (mm^{2}) | Fin Spacing w (mm) | Fin Height h (mm) | |
---|---|---|---|

Case-8 | 16 | 2 | 2 |

Case-9 | 16 | 2 | 3 |

Case-10 | 16 | 2 | 4 |

Total Surface Area A _{s} (m^{2}) | Fin Height h (mm) | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{without}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Heat}\text{}\mathbf{Transfer}\text{}\mathbf{with}\text{}\mathbf{Fin}\text{}\dot{\mathit{Q}}\text{}\left(\mathbf{W}\right)$ | $\mathbf{Fin}\text{}\mathbf{Effectiveness}\text{}{\mathit{\epsilon}}_{\mathit{f}\mathit{i}\mathit{n}}$ | |
---|---|---|---|---|---|

Case-8 | 0.0167 | 2 | 185.58 | 319.34 | 1.72 |

Case-9 | 0.0205 | 3 | 185.58 | 540.23 | 2.91 |

Case-10 | 0.0238 | 4 | 185.58 | 638.30 | 3.43 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mehmood, F.; Tariq, H.A.; Anwar, M.; Elahi, H.; Bhutta, M.R.; Khan, T.I.; Israr, A.; Umer, M.; Qazi, U.W.; Ghafoor, U.
Heat Transfer Enhancement in Cooling Jacket of Liquid Cooled Spark Ignition Engine. *Energies* **2023**, *16*, 5126.
https://doi.org/10.3390/en16135126

**AMA Style**

Mehmood F, Tariq HA, Anwar M, Elahi H, Bhutta MR, Khan TI, Israr A, Umer M, Qazi UW, Ghafoor U.
Heat Transfer Enhancement in Cooling Jacket of Liquid Cooled Spark Ignition Engine. *Energies*. 2023; 16(13):5126.
https://doi.org/10.3390/en16135126

**Chicago/Turabian Style**

Mehmood, Faisal, Hussain Ahmed Tariq, Muhammad Anwar, Hassan Elahi, Muhammad Raheel Bhutta, Talha Irfan Khan, Asif Israr, Muhammad Umer, Usama Waleed Qazi, and Usman Ghafoor.
2023. "Heat Transfer Enhancement in Cooling Jacket of Liquid Cooled Spark Ignition Engine" *Energies* 16, no. 13: 5126.
https://doi.org/10.3390/en16135126