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Abstract: The need for a more energy-efficient future is now more evident than ever. Energy
disagreggation (NILM) methodologies have been proposed as an effective solution for the reduction
in energy consumption. However, there is a wide range of challenges that NILM faces that still have
not been addressed. Herein, we propose HeartDIS, a generalizable energy disaggregation pipeline
backed by an extensive set of experiments, whose aim is to tackle the performance and efficiency of
NILM models with respect to the available data. Our research (i) shows that personalized machine
learning models can outperform more generic models; (ii) evaluates the generalization capabilities
of these models through a wide range of experiments, highlighting the fact that the combination of
synthetic data, the decreased volume of real data, and fine-tuning can provide comparable results;
(iii) introduces a more realistic synthetic data generation pipeline based on other state-of-the-art
methods; and, finally, (iv) facilitates further research in the field by publicly sharing synthetic and
real data for the energy consumption of two households and their appliances.

Keywords: energy disaggregation; energy management; data analytics; machine learning

1. Introduction

The European Union (EU) has set ambitious energy goals to reduce greenhouse gas
emissions, increase energy efficiency, and promote renewable energy sources. To achieve
these goals, the EU has launched several initiatives, including the Energy Efficiency
Directive (https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-
directive-and-rules/energy-efficiency-directive_en (accessed on 20 January 2023)) and the
Energy Performance of Buildings Directive (https://energy.ec.europa.eu/topics/energy-
efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed
on 20 January 2023)). Energy disaggregation has played an important role in meeting these
goals by providing a more detailed understanding of energy usage patterns, identifying ar-
eas for energy savings, and informing energy-efficient practices. By disaggregating energy
consumption at the appliance level, building managers and homeowners can identify high-
consuming appliances, adjust their energy usage patterns, and ultimately reduce energy
waste. As a result, energy disaggregation has become an important tool for achieving the
EU’s energy goals and promoting a sustainable energy future.

Energy disaggregation, also known as non-intrusive load monitoring (NILM), is
the process of breaking down a building’s total energy consumption into its individual
appliance-level energy usage [1]. In recent years, there have been significant advances in
energy disaggregation technology and its application. The past decade has seen a prolifer-
ation of research studies [2–7] and commercial products that use machine learning (ML)
algorithms and data analytics techniques to disaggregate energy usage. These advances
have led to the development of more accurate and efficient energy disaggregation methods,
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enabling the more precise analysis of energy consumption patterns and facilitating energy-
efficient practices. Energy disaggregation has been utilized in various settings, including
residential, commercial, and industrial, to optimize energy consumption, reduce energy
waste, and improve energy management.

Energy disaggregation faces several challenges with respect to the available proposed
frameworks. One of the primary challenges is the lack of a standardized framework for
evaluating disaggregation algorithms. This makes it difficult to compare the performance of
different algorithms and choose the best one for a particular application. Furthermore, most
frameworks require a large number of labeled data for training, which can be expensive
and time-consuming to collect. This is especially challenging in commercial or industrial
settings, where there may be many appliances and a high degree of variability in their power
signatures. Another challenge is the need for near real-time processing, which requires
fast and efficient algorithms that can operate in real-world conditions. Finally, frameworks
must also consider privacy concerns as the collection and processing of appliance-level
data may reveal sensitive information about individuals and households. Addressing these
challenges requires the constant development and refinement of NILM algorithms, as well
as collaboration between researchers, industry stakeholders, and policymakers to ensure
that the technology is used in a safe and responsible manner.

In this context, this paper proposes HeartDIS, an end-to-end energy disaggregation
pipeline, which has been fully implemented and used in the context of the Heart Project
(http://heartproject.gr/ (accessed on 20 January 2023)). At a high-level, HeartDIS uti-
lizes a secure data storage and management infrastructure, which has been developed
in the framework of this project, for the collection of the real-time energy consumption
of selected appliances and the aggregated electrical energy consumption of houses for a
specific time period. HeartDIS receives this labelled data as input and performs extensive
experiments related to the training of energy disaggregation algorithms. After selecting the
models–algorithms with the best performance, it can efficiently proceed to the application
of these models in real life. The models’ outputs can then be used by an energy management
platform, which has also been developed for the purposes of the Heart Project, to promote
individuals’ understanding and efficient management of their energy consumption [8]. The
results of the wide range of experiments highlight the need for personalized ML models,
highlight their generalization capability, and showcase that the number of data needed
can be decreased when synthetic data and fine tuning methods are utilized. Given that
personalized ML involves the use of private data, several researchers have emphasized
that certain privacy concerns may arise and proposed specific methodologies to address
them [9–13]. Nonetheless, the proposed methodology incorporates data with the following
characteristics: (a) profile agnostic data: the actual association between consumers and
their consumption patterns remains unknown, ensuring privacy. (b) Limited input data:
the input data are limited to time series, excluding other, potentially valuable, contextual
features such as occupant information, demographics, and location. (c) Synthetic data and
fine tuning: to enhance the training dataset, artificially generated data and fine tuning
techniques are employed, obviating the necessity for intricate and prolonged measurements.
More specifically, the main contributions of this paper can be summarized as follows:

C1. Promoting personalized ML: HeartDIS includes a wide range of experiments, both
at an algorithmic and data level. We utilize an open-source NILM library [14], which,
with some extra additions, is used both for data loading, data pre-processing, and
model training. Our experiments prove that regardless of the volume of open data
available, the best solutions are provided by training on personalized data, showing
the need for personalized ML-models.

C2. Generalization capability: Our experiments show that NILM models do not gen-
eralize well. On the other hand, leveraging fine-tuning techniques can lead to a
significant improvement in the models’ performance. We also highlight that the com-
bination of synthetic data and fine-tuning techniques lowers the need for extensive
labelled data, thus improving the efficiency of our proposed approach.

http://heartproject.gr/
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C3. Realistic synthetic data generation: We propose a slightly altered version of
SynD [15], which randomizes even further the per-device energy consumption
and produces more realistic, and non-overfitting, results that better suit our experi-
mental scenarios.

C4. Reproducibility: We share a new public dataset to support the research community
on NILM tasks, which includes the energy consumption of two houses with three
devices for a period of one month and a synthetic dataset of two homes with various
devices, built using a combination of the consumption traces of real appliances.
We open our source code and data at: https://github.com/Datalab-AUTH/Heart-
Synd (accessed on 20 March 2023) and https://github.com/Virtsionis/torch-nilm
(accessed on 20 March 2023).

The paper is organized as follows. Section 2 gives a brief overview of the background
and related work for energy disaggregation frameworks. Section 3 provides information
for the collection and use of the proposed datasets. The followed methodology is described
in detail in Section 4. Finally, Section 5 presents an extensive overview of the conducted
experiments, and Section 6 presents the conclusions and future work.

2. Related Work

The term disaggregation stands for the process of breaking down a signal to its in-
dividual sources. This problem can be seen from the scope of blind source separation,
where the goal is to extract individual signal sources from the main signal [16]. Specifically,
the objective of energy disaggregation is to estimate the power consumption of the appli-
ances that compose the total power consumption of an installation. This problem can be
faced with either intrusive or non-intrusive methods [17,18]. Intrusive methods make use
of individual meters on all electrical appliances. Thus, the exact power consumption of
every source could be monitored. On the other hand, non-intrusive methods formulate
the problem as a blind source separation task where the individual appliance active power
consumption is identified using only the total consumption. NILM is a viable, efficient,
and low-cost non-intrusive method [19] that was firstly introduced by Hart [20] in the mid
80’s. Hart proposed a combinatorial solution to the problem where the optimal number
of states and appliances in use is computed in order to match the total power consump-
tion. The drawback of the combinatorial method is that it can be applied only on simple
devices with finite number of operation states. A set of popular techniques for NILM are
based on factorial hidden Markov models (FHMM) [21–23]. This type of methods combine
the individual hidden states of multiple independent hidden Markov models in order to
estimate the appliance states and energy consumption. Even though these solutions are
low-cost, they do not produce highly accurate results. With the rise of deep learning and
neural networks during the last decade, the tables have turned and state-of-the-art NILM
architectures have been designed, pushing researchers to focus on deep-learning.

Kelly and Knottenbelt [3] were the first to propose neural networks models specifically
for NILM. Their original work contains three models: a recurrent architecture, a denoising
autoencoder (DAE), and an ANN architecture to regress start/end time and power. Re-
current networks are proven to be a good fit for the problem of NILM [24–26], producing
state-of-the-art results as in the work of Krystalakos et al. [27], where gated recurrent units
(GRUs) were combined with a sliding window approach. On the other hand, convolutional
neural networks (CNN) are also powerful on the disaggregation task [4,28]. Recently, there
have been efforts to combine RNNs with CNNs to produce networks with low compu-
tational costs, eligible for practical applications [29–32]. The advances in other sectors,
such as the field of natural language processing, introduced new methods to the field of
NILM. Variants of Google’s Transformer [33] were adjusted to the problem of disaggre-
gation [34–36] with great results. The use of attention mechanism, the core ingredient of
transformer architectures, has also been used in NILM works to produce networks with
good generalization capabilities [31,34,37,38]. Generative approaches are gaining popular-

https://github.com/Datalab-AUTH/Heart-Synd
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ity in the research area of NILM, either for dataset creation [15,39,40] or for disaggregation
applications [34,41–44].

Currently, NILM research has moved to a phase in which the practical applications
are the next natural step and the main point of interest. Even though state-of-the-art
deep learning solutions have been proposed over the years, their computational cost is
unbearable for practical applications. The main pain point is the fact that the previous
years’ NILM research produced models that can detect the power consumption of one
appliance at the time. To address this issue, multi-target/multi-label approaches have been
proposed [45–49] alongside with transfer learning approaches [13,50] and compression
techniques (Kukunuri et al. [51]). Finally, there have also been efforts to standardize the way
NILM experiments are conducted in order to achieve the reproducibility and comparability
of models with benchmark frameworks [1,52,53] and tool kits [14,54,55].

3. Data Sources

The energy disaggregation pipeline presented in this paper has been developed and
successfully used for the purposes of the Heart Project. Heart includes a methodological
collection of data (ground truth) from energy-consuming household appliances of interest,
as well as the collection of data on the overall consumption of household installations. This
has been achieved by the use of IoT devices, smart plugs, and a specialized cloud platform,
which have been developed in the framework of Heart, where the collected data are stored.
The data collection architecture is presented in Figure 1. Further analysis of the whole data
collection pipeline is out of the scope of this work.

Figure 1. The data collection pipeline, which has been developed in the framework of the
Heart project.

As presented in the Figure 1 and in Table 1, the data sources that have been used for
this research can be split into the following categories:

• Heart Data
• Open Data
• Synthetic Data
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Heart Data: Among the main contributions of the current study is the public sharing
of low-frequency energy consumption data for two households. More specifically, we share
the energy consumption data for two Greek households and three devices per each, for a
one month period, during summer. More specifically, the first household, named Heart 1,
provides the ground truth values for three devices: the washing machine (WM), the fridge
(FR), and the iron (IR), as well as the total consumption measurements of the household.
The second household, named Heart 2, provides the ground truth values for the WM,
the DW, and the FR appliances, along with the total consumption measurements of the
household as well. The sampling period that was used in both of the households was 1
second; however, we applied an under-sampling technique, which converts the sampling
period to 6 seconds, to be in accordance with the other available datasets.

Open Data: Nowadays, there is a great number of publicly available datasets for
NILM [1,56]. In the current research, UK-DALE [57] was used, which contains ground
truth and total consumption measurements for five households in the UK for more than
four years. It contains measurements for the most common household electrical appliances,
and it is one of the go-to datasets for NILM benchmarks. UK-DALE has two versions: one
with high- and one with low-frequency measurements. In this study, the low-frequency
data were used (6-second sampling period), to match the frequency of the heart data.

Synthetic Data: In order to enhance the analysis of the proposed benchmark and
further evaluate our models, we provide a differentiated version of the SynD framework to
produce synthetic households with a sampling period of 6 seconds. SynD [15] introduces
the concept of employing synthetic datasets as a substitute for costly and lengthy measure-
ment campaigns in NILM for residential buildings. The authors present a synthetic energy
dataset consisting of 180 days of synthetic power data for both aggregate and individual
appliances. This dataset includes the consumption traces of more than 20 individual ap-
pliances, from households located in Austria. In our case, we use these data to create a
mixture of real and synthetic data to evaluate the performance of the proposed models.
More specifically, we created a mixture of Austrian and Greek households, adding to the
SynD pipeline electrical traces both from Austrian and Greek households. We modified the
original implementation of SynD to better fit our case study [C3]. We came up with the
following changes regarding the randomness factor of the synthetic data generation:

• Consumption Randomness: We slightly modified the function that produces the
power level of each appliance.

• Event Randomness: We modified the randomness regarding the appearance of the
appliances usage and the intervals of the day in which the usages of the appliances
occurred.

The first synthetic household, namely, Heart 3, contains the total consumption mea-
surements of the household and the ground truth values of the DW and the WM. All
the devices mentioned have electrical traces of Greek appliances. The second synthetic
household, Heart 4, also contains the ground truth values of the same appliances and the
total consumption measurements of the household. The electrical traces also originate from
Greek household measurements but differ from the traces used for the production of the
Heart 3 household. Both households have a total volume of 5 months and contain several
appliances that were used as additional noise, which are produced from Austrian appliance
traces (SynD dataset).

Table 1. Data sources.

Dataset Households Devices Sampling Period Type

Heart Data Heart 1, 2 WM, IR, FR, DW 6 s via under-sampling Real Data

Open Data UK-DALE 1, 2, 4, 5 WM, DW, FR 6 s Real Data

Synthetic Data Heart 3, 4 10–13 additional appliances
for noise, DW, WM 6 s Synthetic Data
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4. Methodology

The experimental methodology that was followed is described in the following section.
Initially, we provide a brief description of the neural networks that were used. Next,
a condensed benchmark analysis of the experiments is presented. It should be noted that all
the experiments were designed and executed using Torch-NILM [14], an open-source deep
learning framework oriented for NILM research. The framework has ready-to-run APIs
alongside popular deep learning NILM architectures and data pre-processing methods,
including a set of benchmarking cases to compare the networks.

4.1. Deep Learning Topologies

Neural networks learn to solve a task by example, meaning that given an input and
the corresponding output, the parameters (weights) of the network are adjusted in order to
match the expected output. This process is called training and involves passing the data a
number of times through the network to achieve learning. The update of the weights is
done using an optimization method based on an algorithm called gradient descent [58].
Due to the mechanics of these algorithms, the data must be given to the network in small
parts called the batches. Each time all the training data are passed through the network,
an epoch is completed. For all the experiments conducted in the current research, the
batch size was set to 1024 and the maximum number of epochs was set to 50, while Adam
was used as the optimizer . The hyper parameters for the training of the models are
presented in Table 2. More details regarding the training of the networks can be found in
the official repository https://github.com/Virtsionis/torch-nilm (accessed on 20 March
2023) of Torch-NILM [14].

Table 2. Training hyper parameters for all the neural networks.

Optimizer Loss Function Sliding
Window Epochs Batch Size

Adam [59] MSE [14] 100 50 1024

Energy disaggregation aims to estimate the power consumption of the individual
appliances that compose the total (mains) consumption of an installation. During training,
both the mains and the appliance consumption time series are given to the model. The ap-
pliance data are used as ground truth in order to help the model learn useful patterns and
features that belong to the appliance’s electrical signature. After the training is completed,
the model can be used for inference, with only the mains consumption of the installation
outputting the individual appliance power consumption.

In the current research, five models were used: DAE [3], WGRU [27], S2P [4], NFED [35],
and SimpleGRU [60]. DAE is based on an architecture type called the denoising autoen-
coder, originally proposed by Vincent et al. [61]. The intuition is to extract the clean
consumption signal of the target appliance from the mains consumption, which is consid-
ered noisy. The model as presented in [3] is composed of three intermediate fully connected
layers. Two convolutional layers (CNN) are used in the input and the output of the network
as feature extractors. On the other hand, WGRU [27] was based on a recurrent network
proposed by Kelly and Knottenbelt [3]. The core element of the network is the bidirectional
GRU layer, a more lightweight variation of the recurrent layer [62]. This architecture
contains a CNN layer before two serially placed GRUs, following a fully connected layer.
The main novelty of this model is that it uses a sliding window approach. The sliding
window approach dictates that the total time series is broken into smaller parts of constant
length (window) and the network tries to estimate the appliance power consumption of
the last point of the window. This way, the network provides one estimate per window,
resulting in faster training than using other methods where the network predictions match
the input size. For all the experiments, the window size was set to 100 points.

https://github.com/Virtsionis/torch-nilm
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Another approach was followed by Zhang et al. [4], where the proposed model S2P is
completely composed of a series of five intermediate CNN layers. Even though S2P contains
millions of parameters, the training and inference times are a lot smaller in comparison to
the WGRU. This is due to the fact that in CNN layers, many operations are executed in
parallel. It should be noted that S2P and WGRU are considered as state-of-the-art models in
NILM applications and are expected to be the best-performing ones in this paper also. In an
attempt to compensate between size and speed, Nalmpantis et al. [35] designed NFED,
an architecture based on FNET [63], a variant of the transformer architecture that uses
the Fourier transformation as a feature extractor instead of the attention mechanism. This
model consists mainly of fully connected layers and some residual connections, and it is
claimed to achieve similar performance to WGRU and S2P models. Finally, SimpleGRU [60]
is a more lightweight version of the WGRU that contains only one GRU layer alongside with
a smaller CNN layer as feature extractor. This model was used mainly as a baseline model.

4.2. Benchmark Cases

Torch-NILM also contains the benchmark methodology that was proposed by Syme-
onidis et al. [52]. The benchmark is composed of four categories of experiments that aim to
stress test the NILM algorithms gradually, from easy to hard tasks. These categories are
described below:

1. Single Residence Learning:

(a) Single Residence NILM: Single building NILM is about training and inference
on the same house at different time periods. Therefore, the models were
evaluated in the same environment where training was executed.

(b) Single Residence Learning and Generalization on Same Dataset: In this
case, the training and inference happens on different houses of the same
dataset.

The objective of these tests is to measure how well the model can be applied to various
types of homes of the same data source. In a nutshell, different homes contain different
energy patterns due to a variety of factors, including occupant habits and the use of other
electric devices. It is expected that measurements from the same dataset will be similar.
In the next chapters, these categories of experiments are notated as Single.

2. Multi-Residence Learning:

(a) Generalization on same dataset: Contains experiments where the training
data are composed of measurements from different homes and testing is ap-
plied to unseen homes of the same dataset.

(b) Generalization to Different Datasets: The training data are exactly similar to
the above; the testing, though, is applied to unseen homes from other datasets.

It is obvious that the difference between these two categories depend on which datasets
the training and testing measurements originate from. The purpose of these experiments is
to evaluate the learning capability of models from a variety of sources. Specifically, for the
2(b) category, where the test instances are completely unknown and from a totally different
dataset, the challenge for the model naturally increases. These experiments are notated as
the Multi category, throughout the paper.

In addition to the benchmarking categories, a fine tuning technique has also been
explored. This technique is also know as transfer learning [64], where a pre-trained model
on one problem is used as a feature extractor to solve a different one. To use the model
to a different domain, its parameters are adjusted by retraining with the data of the new
objective. Usually only the last layers of the model are modified, but in this work the entire
network was retrained since it was found that it produced better results. Transfer learning
is a popular technique in cases of limited data and has been applied in NILM research with
some success in [13,31,50] .

As presented in Section 3, for the experiments, both synthetic and real measurements
were considered. The household appliances that have been selected for the experiments
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are the following three: (i) DW, (ii) FR, and (iii) WM. The choice of these appliances was
not random as these were some common devices available to all of the proposed datasets.
Additionally, in order to investigate whether the volume of the data affects the performance
of the models, the experiments were executed in two more versions:

1. Small volume: The ratio between the data that are used for training and the data that
are used for inference is 3:1.

2. Large volume: The ratio between the data that are used for training and the data that
are used for inference is 4:1.

In the following section, the whole range of experiments, along with the respective
findings, is presented in detail.

5. Experiments and Main Findings

The conducted experiments in this study aim to emphasize the distinct aspects of
energy disaggregation tasks and optimal methodologies. The following sections pro-
vide a detailed account of the experimental design, the corresponding results, and the
key discoveries.

5.1. Experimentation Roadmap

Each experiment utilizes the DAE, NFED, S2P, SimpleGRU, and WGRU deep learning
architectures, which have been further described in Section 2. As mentioned above, the ob-
jective of the experiments is to emphasize on different facets, which can be further used to
classify the type of experiments into the three following categories:

Personalized Models (PM): In this first category of experiments, we focus on forti-
fying the personalized-ML concept. To achieve this, we experiment on households
from the same dataset, both in the training and in the testing procedure. This category
involves experiments with households, which originate from all three datasets.
PM-1: Firstly, we apply our benchmark modeling framework on households included
in the open data dataset.
PM-2: Then, we proceed to the experimentation using the heart data households as
our data source.
PM-3: Finally, we experiment with the synthetic data households mixture.

Generalization Capability (GC): Proceeding to the second group of experiments,
we aim to evaluate the generalization capabilities of the benchmark framework. In that
direction, we utilize different datasets for the training and inference procedures. We split
this case study into two main sub-experiments:

1. Train on one: We evaluate the pure generalization capabilities of our models. We
conduct two separate sub-experiments for this category.

(a) Open and Heart: In this case, we utilize UK-DALE households from the open
dataset for training and the Heart 1, 2 households for testing.

(b) Synthetic and Heart: In the second case, we train our models on Heart 3, 4 of
the synthetic dataset, and we use the heart data for inference.

2. Train on many: The second main sub-category involves an effort to further enhance
the generalization capabilities of our modeling framework by providing a small
volume of data from the same dataset both in the training and in the inference
procedure. Again, this scenario is further split into two sub-experiments.

(a) Open-Heart and Heart: We utilize households from the open and the heart
dataset for training and inference on households only from the heart dataset.

(b) Synthetic-Heart and Heart: In this second case, we use households from the
synthetic and the heart dataset for training and only heart data households
for inference.
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Fine Tuning Solution (FT): The third main category includes a fine-tuning framework
to boost the generalization capabilities of our models. The fine-tuning experimentation
is further divided into two sub-categories.
FT-1: In the first one, we train our models in the UK-DALE households from the open
dataset, fine-tune them utilizing Heart 1, 2 from the heart dataset and infer in the latter,
whereas in the second one,
FT-2: We train our models on the synthetic data (Heart 3, 4), fine-tune them on
Heart 1, 2, and provide inference results for the same.

At this point, we should also clarify that the following sections do not include a
detailed description of all the experiments mentioned above, although all of them have
been successfully conducted. More specifically, we have used both the small and the
large volume versions for all the experiments, but those described refer only to the best-
performing ones. The results of the rest of the experiments are included in Appendix A.

5.2. Personalized Models [PM]

In this first scenario, we utilize the DAE, NFED, S2P, SimpleGRU, and WGRU models
using the WM, the DW, and the FR appliances to showcase the personalization capabilities
of the benchmarking framework, selecting the same datasets both for training and testing.
We segment this scenario into three further sub-scenarios, namely, PM-1, PM-2, and PM-3,
as mentioned in the experimentation roadmap. PM-1 and PM-2 are single and small-volume
experiments, whereas PM-3 is a multi- and large-volume experiment.

PM-1: In this experiment, we trained and tested our models utilizing data from the
UK-DALE dataset. More specifically, we utilized 3 months of training and 1 month of
testing on “UK-DALE 1”. The examined appliances are the WM, the FR, and the DW.

From Figure 2, it seems that the benchmarking framework achieves the best event
detection results in the WM and the FR appliances, whereas, in the case of the DW appliance,
it achieves relatively low F1-scores below 40%. In terms of MAE, all the models seem to
achieve good results, below the value of 10, in the WM, whereas in the FR and the DW
experiments, the MAE is increased in the range [15, 25]. Overall, the models achieve decent
results both in event detection and energy prediction, with the WM appliance and the
WGRU model demonstrating the best results in the current experiment.

WM FR DW
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Figure 2. PM-1 results for the models DAE, NFED, S2P, SimpleGRU, and WGRU for the WM,
the FR, and the DW, utilizing UK-DALE 1 household for training and inference: (a,b) F1-score and
MAE results.

PM-2: After we evaluated the personalization capabilities of our models in the Open
data in the PM-1 experiment, we proceeded to the PM-2 experiment involving the heart
data. Here, the examined appliances are the WM and the FR. We utilized 3 weeks of the
Heart 1 household for training and 1 week of Heart 1 for testing.

As depicted in Figure 3, our models achieve better event detection in the FR appliance,
with F1-scores over 80%, whereas in the WM appliance, only the NFED and S2P models
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achieve an F1-score over 70%. In terms of MAE, all the models in both appliances achieve
great results in the range [10, 15]. In conclusion, the most solid model among the two appli-
ances in terms of event detection and energy prediction was the S2P model, with the NFED
following closely.

PM-3: We conclude the personalized models category of experiments with the syn-
thetic data households mixture. Here, the appliances involved are the DW and the WM. We
use 2 months of “Heart 3” and 2 months of “Heart 4” for training and 1 month of “Heart 3”
and 1 month of “Heart 4” for testing.
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Figure 3. PM-2 results for the models DAE, NFED, S2P, SimpleGRU, and WGRU for the WM and the
FR utilizing Heart 1 household for training and inference: (a,b) F1-score and MAE results.

The S2P and WGRU seem to be the best-performing models, as presented in Figure 4,
both in terms of event detection and energy prediction. Both achieve a MAE score lower
than 5 in the WM appliance and over 80% in the event detection of the WM appliance.
Generally, all the models, except DAE, achieve good results both in terms of F1-score
and MAE metrics. Comparing the current experiment with the PM-1 and PM-2 scenarios,
we conclude that the easier-to-predict nature of synthetic data in comparison to the real
data helps our benchmarking framework to interpret the trends in the data and boost its
overall performance.
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Figure 4. PM-3 results for the models DAE, NFED, S2P, SimpleGRU, WGRU for the WM and DW,
utilizing “Heart 3” and “Heart 4” households for training and Heart 4 for inference: (a,b) F1-score
and MAE results.

5.3. Genaralization Capability (GC)

Following the evaluation of the personalized-ML concept of our proposed benchmark,
we proceed to inspect the generalization capabilities of our models. Although the con-
cept of personalization is solid in the NILM area and the generalization capabilities of
the proposed architectures encounter several difficulties, we propose a way to improve
the generalization capabilities of our models. In this section, we first examine the pure



Energies 2023, 16, 5115 11 of 27

generalization capabilities of the proposed deep learning architectures by training our
models in one dataset and evaluating them in another. Secondly, we add a small chunk
of the dataset in which we infer in the training volume of data to enhance the training of
the models.

Train on one—Open and Heart: In this experiment, the models were trained using
data only from the UK-DALE data set and tested on data from heart installations. We
considered 3 months for training in “UK-DALE 1” and 1 month for inference in “Heart 2”.
The appliances of interest are the WM, the FR, and the DW. The goal of this simulation is
to quantify the GC of the models and whether this setting can be used for real-world use
cases, where the models are tested on unseen data.

In Figure 5, we observe that all models have difficulties in event detection in all three
appliances achieving low F1-scores below 27%. In terms of MAE, the results are decent
only in the WM appliance, whereas in the FR and DW appliances, the predicted energy
values deviate significantly from the actual ones resulting in high MAE scores. As a general
conclusion, we can say that the current experiment reveals the generalization difficulties of
our benchmarking framework.
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Figure 5. Train on one—open and heart results for the models DAE, NFED, S2P, SimpleGRU, and
WGRU for the WM, the FR, and the DW, utilizing “UK-DALE 1” household for training and “Heart
2” household for testing: (a,b) F1-score and MAE results.

Train on one—synthetic and heart: In this case study, the models were trained using
data only from the synthetic data set and tested on the heart data. More specifically, we
used 4 months for training on “Heart 4” and 1 month for inference on “Heart 2” household.
The appliances of interest are the WM and the DW.

As depicted in Figure 6, the WGRU model achieved the best event detection with over
70% on the WM appliance, with the S2P following as the second best with a decent F1-score
over 60%. Also in terms of MAE in the WM appliance, the NFED, S2P, and WGRU models
achieve an MAE score below 15. In the DW appliance, all the models achieve decent results
both in terms of event detection and energy prediction.

As an overall conclusion, we state that the generalization capabilities of our models
increased significantly in comparison with the previous open and heart experiment. This is
justified because the synthetic data in which our models were trained utilize traces from
the heart data that we used for inference.

Train on many—Open-Heart and Heart: This scenario utilizes training data from
“UK-DALE 1” and “Heart 1 & 2” installations, whereas the inference occurs on “Heart 2”.
More specifically, we utilize three months from the “UK-DALE 1”, 15 days from “Heart 1”,
and 15 days from “Heart 2” for training and 15 days from “Heart 2” for inference. The idea
is that given only a small number of data from the target installation, a part of it can be
used for training in combination with publicly available data. This way, the network will
receive useful information from the target installation without the risk of overfitting.
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Figure 6. Train on one—synthetic and heart results for the models DAE, NFED, S2P, SimpleGRU, and
WGRU for the WM and the DW, utilizing “Heart 4” household for training and “Heart 2” household
for testing: (a,b) F1-score and MAE results.

As shown in Figure 7, the WGRU model achieves the best F1-score for the WM and
the FR and the lowest MAE score for all the appliances. The S2P model achieved almost
60% in the DW appliance event detection, which is the highest score. Regarding the MAE
metric, the models perform better than the train on one—open and heart case study for the
WM and almost on par for the DW.
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Figure 7. Train on many—open-heart and heart results for the models DAE, NFED, S2P, SimpleGRU,
and WGRU for the WM, the FR, and the DW, utilizing UK-DALE 1 and Heart 1 and 2 households for
training and Heart 2 household for testing: (a,b) F1-score and MAE results.

Overall, the performance boost for all the models and appliances is notable in compari-
son with the train on one—open and heart case study. This fact proves the point that adding
a small chunk of the data, from which we infer in the training data volume, significantly
improves the performance of the models.

Train on many—Synthetic-Heart and Heart: This case study investigates a similar
multi-category experiment use case with the previous train on many—open-heart and
heart experiment, with the difference being using synthetic households instead of open.
We utilize 2 months of “Heart 4”, 15 days of “Heart 1”, and 15 days of “Heart 2” for
training, as well as 15 days of “Heart 2” for testing. This scenario can be used in real-world
situations where data from publicly available sources cannot be used. Since the synthetic
data contains traces from Greek houses only for the appliances of interest, a performance
boost is expected.

As presented in Figure 8, and in comparison to the previous case study, namely, train
on many—open-heart and heart, for the WM appliance, the best-performing models WGRU
and S2P show an increase of about 10% in F1-score, with the WGRU scoring almost 80%.
In terms of the DW appliance event detection, the performance of the models is similar
but a bit lower than the case train on many—open-heart and heart. Regarding the MAE,
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the WGRU is the winner for both appliances performing on par with the previous case
study. It should be noted that the S2P model showed the greatest improvement, reducing
the error for both appliances.

We conclude that, for the current experiment, we observe that this scenario outper-
forms all the previous GC scenarios. This occurs because the training set has been extended
with a small chunk of data that will be used for inference and contains traces similar to
those of the appliances of interest.
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Figure 8. Train on many—synthetic-heart and heart results for the models DAE, NFED, S2P, Simple-
GRU, and WGRU for the WM and the DW, utilizing Heart 1, 2, and 4 households for training and
Heart 2 household for testing: (a,b) F1-score and MAE results.

5.4. Fine Tuning Solution

The logic behind this case study is quite similar to the GC case. In order to enhance
the performance of the models, a combination of data from various datasets is used during
training. Additionally, a small number of data from the target installation are incorporated
to help the models learn useful patterns specifically from the target household. The datasets
are combined using a technique called fine-tuning or transfer learning. This method uses
a pre-trained model from one domain fine-tuned to a different one. Fine-tuning involves
retraining the model on the new domain data. In the current research, the models are
trained on one NILM dataset and fine-tuned on the target installation. The intuition behind
this method is that the model has already learned the problem of NILM and the basic
appliance features and is then fine-grained with data of different households.

Open-heart and heart: In this scenario, the models are trained on “UK-DALE 1”
installation for four months. Then, 3 weeks of the Heart 2 measurements are used for
fine-tuning and 1 week for testing. The results in Figure 9 show that for the WM, the S2P
achieves almost 81% in F1-score, better than the best-performing model of the previous GC
case study. For the DW, the models perform worse than the best-performing model of the
GC case study, with the best-performing DAE achieving 50% on the F1-metric. The MAE
errors are similar to the train on many—synthetic-heart and heart case study.

Synthetic-heart and heart: Here, data from the synthetic houses were used for the
training instead of UK-DALE. More specifically, the models are trained on “Heart 4” in-
stallation for four months. Then, 3 weeks of the “Heart 2” measurements are used for
fine-tuning and 1 week for testing. As shown in Figure 10, the results for “Heart 2” are
better than the previous open-heart and heart fine-tuning solution for both appliances, with
better F1-scores for the best-performing models and lower MAE errors. This happens due
to the fact that data from the same dataset (heart) was used for training and fine-tuning.
Hence, the models learn similar features due to the similar electrical traces of the data used
for training and for inference.
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Figure 9. Open-heart and heart results for the models DAE, NFED, S2P, SimpleGRU, and WGRU for
the WM and the DW, utilizing UK-DALE 1 for training and Heart 2 for fine-tuning and inference:
(a,b) F1-score and MAE results
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Figure 10. Synthetic-heart and heart results for the models DAE, NFED, S2P, SimpleGRU, and WGRU
for the WM and the DW, utilizing “Heart 4” for training and “Heart 2” for fine-tuning and inference:
(a,b) F1-score and MAE results.

5.5. Main Findings

To facilitate a more direct comparison between the different experimentation scenarios,
we generated Figure 11. There, we present the performance of the best-performing models
in each experiment in terms of F1-score and MAE score for the WM and the DW appliances.
We selected the current devices because they co-exist in all the experimentation scenarios ex-
cept for the PM-2 experiment, which is not present in the current figure for this exact reason.
The FR appliance was also not selected since it is not involved in several experiments.

The main conclusions from Figure 11 are, firstly, the strong personalization character
of the best-performing models (C1) and, secondly, the enhancing of their generalization
capabilities via the fine-tuning framework (C2). The first point can be justified by the fact
that the PM-1 experiment records the highest F1-score among all the experiments and a
significantly lower MAE error. Regarding the second point, it is explained by the fact that
the FT2 experiment achieves the lowest MAE score and the highest F1-score among the
(FT) and GC experiments.
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Figure 11. Highest recorded F1-scores and lowest recorded MAE scores for the experiments in which
the WM and DW appliances were involved: (a) highest recorded F1-scores for the WM and DW per
experiment, (b) average of the highest recorded F1-scores between the WM and DW per experiment,
(c) lowest recorded MAE scores for the WM and DW per experiment, and (d) average of the lowest
recorded MAE between the WM and DW per experiment.

Furthermore, after a detailed revision of the results of the different experimentation
scenarios in the current study, the following key points can be raised:

1. The models perform and generalize better in cases where the training happens on data
from one house and the inference is executed on data coming from houses of the same
dataset. Conducting experiments with training data from multiple households from
the same datasets produced worse results than the single-category experiments (C1).

2. The (FT) solution produces better results than the GC experiments in almost all cases
while enhancing the generalization capabilities of our models at a higher degree (C2).

3. Another observation for the GC and (FT) experiments is the following: for the DW
appliance, the models perform better in situations where we use Synthetic data for
training. On the other hand, in the case of the WM appliance training with open
data produced better results. This may mean that either the quality of the used data
is different for those appliances or that their operation from the users fits better the
target country. For example, it is possible that the UK (open data) people use the WM
similarly to users in Greece (heart data) (the same programs, a similar hour of the day
for operation, etc.).
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4. As presented, the models WGRU and S2P are the most robust models in this study,
being the best-performing models in almost all the experiments. Given their character-
istics (size, training/inference time), one can choose among the two for a real-world
disaggregation application, similar to the investigated scenarios.

5. Finally, combining all the previous points, we can reach a more generic conclusion.
Considering the cost and time restrictions of collecting a large number of data in the
NILM domain, a cost- and time-efficient strategy is very important. Our approach
focuses on that specific point: producing synthetic data to cover the data shortage issue
and at the same time achieves decent performance with the fine tuning solution (C2).
As a result, we can state that we provide a high-performing cost-effective solution in
the NILM community, which will have a high impact on real-life data, time, or funding
shortage scenarios.

At this point, we should also highlight that personalized ML and generalization are
often considered contradictory terms. However, we would like to emphasize that in this
paper’s context, generalization refers to enhancing the performance and applicability of the
models beyond their initial training conditions. While personalized models perform better
in capturing individual consumption patterns, they may face challenges when applied to
unseen scenarios or users. To address this limitation, we have proposed a two-fold strategy
for generalization. First, we employed fine-tuning techniques to adapt the personalized
models to new instances, allowing them to perform well in varying contexts. Secondly, we
incorporated synthetic data to augment the training dataset. This enables our models to
learn from a broader range of consumption patterns, even those not present in the original
dataset. By leveraging synthetic data, we aim to enhance the generalization capabilities of
our models, enabling them to make accurate predictions in scenarios beyond the training
set. Therefore, in our research, the term generalization refers to the ability of our models to
adapt and perform well in new contexts through fine-tuning and the utilization of synthetic
data. We have shown that this approach strikes a balance between personalization and
generalization, providing improved performance while maintaining the ability to generalize
to unseen situations.

6. Conclusions and Future Work

NILM analyzes the energy usage of individual electrical devices within a building or
household. This technique involves the monitoring of the overall power consumption and
utilization of signal processing techniques to disaggregate the power signal into individual
device-level power profiles. In this paper, we propose HeartDIS, a generalizable end-to-end
energy disaggregation pipeline, based on a wide range of experiments both at data and
methodology level.

In terms of data, we utilize various realistic and synthetic data sources. Besides UK-
DALE households, which are extensively utilized in the literature, namely, open data, we
support the open NILM community by providing data of two Greek households, named
heart data. Furthermore, we produce a slightly automated and alternated version of the
SynD framework that suits better our case study, and we produce two synthetic households,
which we also present to the community, named synthetic data. In terms of models, we
utilize the open-source Torch-NILM framework, which contains several popular deep-
learning architectures.

The main scope of the current paper is to prove the personalized nature of the bench-
marking framework and to test the generalization capabilities of the models. The first point
is fortified through the personalized models (PM) experiments. The second point is tested
through the GC and FT experiments. Both enhance the generalization capabilities of the
models, with the latter achieving overall the best results. Finally, a more general conclusion
from the overall experimentation procedure is that the performance of the models is device
and dataset oriented. In other words, different models achieve the best results in different
case studies and different datasets. Nevertheless, we can state that the S2P and the WGRU
models were the best-performing for most of the scenarios
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Regarding future work, taking into account the importance of data privacy in the
context of personalized ML for NILM, further experimentation with privacy-preserving
ML techniques for NILM will be conducted. In our study, we have conducted experiments
utilizing transfer learning techniques, but further research should be considered regarding
the important aspect of privacy preservation, particularly from a differential privacy per-
spective with techniques such as federated learning. These privacy-centric approaches will
further enhance the integrity and ethical considerations of our work.
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Appendix A

Table A1. Performance comparison for the PM-1 experiment for the WM considering open data as
the data source. The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Single Small UK-DALE 1 UK-DALE 1

DAE 0.83 0.07 9.4
NFED 0.88 0.05 8.2

S2P 0.89 0.05 7.8
SimpleGRU 0.85 0.03 7.7

WGRU 0.9 0.03 6.2

WM Single Small UK-DALE 1 UK-DALE 2

DAE 0.18 0.7 10.7
NFED 0.37 0.94 11

S2P 0.65 0.81 10
SimpleGRU 0.5 0.68 12.4

WGRU 0.65 0.84 10

https://github.com/Datalab-AUTH/Heart-Synd


Energies 2023, 16, 5115 18 of 27

Table A1. Cont.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Single Small UK-DALE 1 UK-DALE 4

DAE 0.29 0.08 35.4
NFED 0.37 0.18 32.7

S2P 0.47 0.15 23.2
SimpleGRU 0.42 0.24 27.8

WGRU 0.5 0.19 26.4

WM Single Small UK-DALE 1 UK-DALE 5

DAE 0.22 0.82 42.5
NFED 0.4 0.85 44.1

S2P 0.56 0.79 42.7
SimpleGRU 0.42 0.72 45.3

WGRU 0.47 0.78 44.8

WM Multi Small UK-DALE 1, 5 UK-DALE 1

DAE 0.6 0.11 20.3
NFED 0.81 0.08 11.8

S2P 0.84 0.05 11.1
SimpleGRU 0.81 0.05 10.4

WGRU 0.87 0.05 9.3

WM Multi Small UK-DALE 1, 5 UK-DALE 2

DAE 0.16 0.26 17.1
NFED 0.29 0.68 11.7

S2P 0.43 0.71 12.2
SimpleGRU 0.38 0.68 12.3

WGRU 0.57 0.76 10.7

WM Multi Small UK-DALE 1, 5 UK-DALE 4

DAE 0.24 0.28 44.2
NFED 0.33 0.17 33.5

S2P 0.37 0.28 26.2
SimpleGRU 0.42 0.09 23.8

WGRU 0.41 0.29 24.4

WM Multi Small UK-DALE 1, 5 UK-DALE 5

DAE 0.39 0.16 32.2
NFED 0.67 0.24 27.6

S2P 0.64 0.22 28.4
SimpleGRU 0.63 0.22 28.2

WGRU 0.68 0.28 25.7

Table A2. Performance comparison for the PM-1 experiment for the DW and the FR considering
open data as the data source.The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

DW Single Small UK-DALE 1 UK-DALE 1

DAE 0.33 0.57 21.3
NFED 0.3 0.54 21.4

S2P 0.26 0.52 21.7
SimpleGRU 0.22 0.39 19.1

WGRU 0.26 0.47 20.6

DW Single Small UK-DALE 1 UK-DALE 2

DAE 0.64 0.1 17
NFED 0.67 0.2 15.7

S2P 0.64 0.19 15.7
SimpleGRU 0.58 0.2 15.9

WGRU 0.69 0.17 15.1

DW Single Small UK-DALE 1 UK-DALE 5

DAE 0.38 0.68 49.7
NFED 0.29 0.75 68.1

S2P 0.33 0.58 42.5
SimpleGRU 0.28 0.53 41

WGRU 0.38 0.47 36.4
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Table A2. Cont.

Device Cat. Vol. Train Test Model F1s RETE MAE

DW Multi Small UK-DALE 1, 2 UK-DALE 1

DAE 0.38 0.26 10.6
NFED 0.24 0.17 7.4

S2P 0.34 0.08 7.3
SimpleGRU 0.25 0.14 8.1

WGRU 0.3 0.17 6.7

DW Multi Small UK-DALE 1, 2 UK-DALE 2

DAE 0.65 0.15 19
NFED 0.52 0.19 17.7

S2P 0.56 0.29 20
SimpleGRU 0.51 0.25 19.6

WGRU 0.47 0.14 18.4

DW Multi Small UK-DALE 1, 2 UK-DALE 5

DAE 0.39 0.58 36.6
NFED 0.19 0.71 65.4

S2P 0.27 0.49 43.3
SimpleGRU 0.25 0.23 30.9

WGRU 0.26 0.3 31.4

FR Single Small UK-DALE 1 UK-DALE 1

DAE 0.79 0.12 22.6
NFED 0.82 0.11 18.7

S2P 0.84 0.12 18.9
SimpleGRU 0.84 0.09 17.6

WGRU 0.84 0.11 15.9

FR Single Small UK-DALE 1 UK-DALE 2

DAE 0.82 0.1 21.1
NFED 0.82 0.17 22.2

S2P 0.82 0.16 22.1
SimpleGRU 0.83 0.19 21.3

WGRU 0.82 0.2 20.4

FR Single Small UK-DALE 1 UK-DALE 4

DAE 0.68 0.35 29.4
NFED 0.61 0.21 32.4

S2P 0.54 0.15 35.1
SimpleGRU 0.58 0.18 32.5

WGRU 0.56 0.08 31

FR Multi Small UK-DALE 1, 2 UK-DALE 1

DAE 0.76 0.14 25
NFED 0.81 0.14 21

S2P 0.81 0.13 21
SimpleGRU 0.81 0.14 20.2

WGRU 0.83 0.14 18.7

FR Multi Small UK-DALE 1, 2 UK-DALE 2

DAE 0.83 0.07 18.2
NFED 0.85 0.09 16.7

S2P 0.85 0.11 17.6
SimpleGRU 0.84 0.12 16.5

WGRU 0.86 0.11 15.2

FR Multi Small UK-DALE 1, 2 UK-DALE 4

DAE 0.68 0.34 30.4
NFED 0.6 0.21 31.4

S2P 0.53 0.14 34.1
SimpleGRU 0.61 0.2 30.8

WGRU 0.57 0.11 30
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Table A3. Performance comparison for the PM-2 case study for the WM, the FR, and the DW, utilizing
heart data as data source.The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM single small Heart 1 Heart 1

DAE 0.38 0.53 14.8
NFED 0.74 0.21 10.4

S2P 0.81 0.24 11.2
SimpleGRU 0.5 0.26 11.7

WGRU 0.54 0.34 10.1

WM Single Small Heart 1 Heart 2

DAE 0.26 0.45 13.2
NFED 0.3 0.68 12.1

S2P 0.4 0.56 12.8
SimpleGRU 0.31 0.7 12.4

WGRU 0.25 0.76 11.8

WM Multi Large Heart 1, 2 Heart 1

DAE 0.28 0.13 12.9
NFED 0.58 0.27 9.6

S2P 0.65 0.22 8.9
SimpleGRU 0.37 0.25 10.5

WGRU 0.48 0.22 8.6

WM Multi Large Heart 1, 2 Heart 2

DAE 0.24 0.12 14.7
NFED 0.6 0.14 9.5

S2P 0.62 0.21 10
SimpleGRU 0.31 0.26 12.4

WGRU 0.44 0.25 9.3

FR Single Small Heart 1 Heart 1

DAE 0.9 0.01 13.1
NFED 0.86 0.03 12.4

S2P 0.89 0.05 12.8
SimpleGRU 0.86 0.04 14.6

WGRU 0.9 0.03 10.4

FR Single Small Heart 1 Heart 2

DAE 0.34 0.67 28.6
NFED 0.34 0.67 30.1

S2P 0.4 0.68 29.3
SimpleGRU 0.36 0.6 26.3

WGRU 0.4 0.68 29.3

FR Multi Large Heart 1, 2 Heart 1

DAE 0.86 0.13 15.9
NFED 0.89 0.08 13.1

S2P 0.89 0.1 15.5
SimpleGRU 0.89 0.11 14

WGRU 0.9 0.11 12

FR Multi Large Heart 1, 2 Heart 2

DAE 0.53 0.13 13.4
NFED 0.7 0.08 12.1

S2P 0.71 0.1 13.3
SimpleGRU 0.7 0.11 12.3

WGRU 0.72 0.11 12.3

DW Single Small Heart 2 Heart 2

DAE 0.45 0.27 16.2
NFED 0.38 0.16 12.9

S2P 0.5 0.09 11
SimpleGRU 0.48 0.18 10.2

WGRU 0.5 0.19 9.9
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Table A4. Performance comparison for the PM-3 case study for the WM, the FR, and the DW, utilizing
synthetic data as data source.The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Multi Large Heart 3, 4 Heart 3

DAE 0.27 0.46 15.6
NFED 0.72 0.08 5.2

S2P 0.83 0.06 2.8
SimpleGRU 0.62 0.17 6.1

WGRU 0.81 0.1 3.5

WM Multi Large Heart 3, 4 Heart 4

DAE 0.33 0.12 22.9
NFED 0.79 0.12 7.6

S2P 0.92 0.05 4
SimpleGRU 0.72 0.08 8.8

WGRU 0.87 0.06 4.7

DW Multi Large Heart 3,4 Heart 3

DAE 0.3 0.22 17.7
NFED 0.52 0.1 10.1

S2P 0.57 0.07 7.1
SimpleGRU 0.57 0.21 11.3

WGRU 0.55 0.13 7.5

DW Multi Large Heart 3, 4 Heart 4

DAE 0.33 0.19 19.3
NFED 0.68 0.07 9.2

S2P 0.67 0.05 5.2
SimpleGRU 0.43 0.14 12.5

WGRU 0.63 0.03 5.4

Table A5. Performance comparison for the train on one—open and heart case study for the WM,
the FR, and the DW, utilizing open data for training and heart data for testing.The best results are
highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Single Small UK-DALE 1 Heart 1

DAE 0.15 0.8 13.4
NFED 0.4 0.71 12.3

S2P 0.73 0.56 11.3
SimpleGRU 0.65 0.54 9.4

WGRU 0.63 0.59 10.1

WM Single Small UK-DALE 1 Heart 2

DAE 0.09 0.84 14.4
NFED 0.15 0.86 13

S2P 0.25 0.8 14
SimpleGRU 0.18 0.79 13

WGRU 0.24 0.7 12.5

WM Single Large UK-DALE 1 Heart 1

DAE 0.15 0.55 13.4
NFED 0.35 0.67 12.7

S2P 0.66 0.59 12.1
SimpleGRU 0.56 0.66 11.5

WGRU 0.61 0.6 11.2

WM Single Large UK-DALE 1 Heart 2

DAE 0.14 0.59 15.9
NFED 0.24 0.89 14.1

S2P 0.3 0.71 16.9
SimpleGRU 0.22 0.84 15.2

WGRU 0.29 0.86 14.9
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Table A5. Cont.

Device Cat. Vol. Train Test Model F1s RETE MAE

FR Single Small UK-DALE 1 Heart 1

DAE 0.68 0.04 20.6
NFED 0.75 0.89 22

S2P 0.71 0.07 23.3
SimpleGRU 0.61 0.84 24.8

WGRU 0.61 0.25 24.7

FR Single Small UK-DALE 1 Heart 2

DAE 0.31 0.76 37.4
NFED 0.21 0.87 41.4

S2P 0.13 0.89 43.1
SimpleGRU 0.22 0.87 41.5

WGRU 0.16 0.9 42.7

FR Single Large UK-DALE 1 Heart 1

DAE 0.67 0.4 23.1
NFED 0.74 0.1 23.3

S2P 0.64 0.1 26
SimpleGRU 0.64 0.07 26.7

WGRU 0.65 0.16 24.8

FR Single Large UK-DALE 1 Heart 2

DAE 0.26 0.76 40.3
NFED 0.21 0.87 43.9

S2P 0.12 0.88 44.6
SimpleGRU 0.28 0.76 39.7

WGRU 0.12 0.91 45.4

DW Single Small UK-DALE 1 Heart 2

DAE 0.19 0.64 24.8
NFED 0.25 0.74 24.7

S2P 0.26 0.78 25.2
SimpleGRU 0.21 0.82 24.6

WGRU 0.23 0.82 24

DW Single Large UK-DALE 1 Heart 2

DAE 0.13 0.72 28.2
NFED 0.26 0.67 28

S2P 0.23 0.77 30.3
SimpleGRU 0.13 0.77 33.8

WGRU 0.17 0.81 27.8

Table A6. Performance comparison for the train on one—synthetic and heart case study for the
WM and DW, utilizing synthetic data for training and heart data for inference.The best results are
highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Single Large Heart 4 Heart 1

DAE 0.23 0.16 20.5
NFED 0.21 0.22 23.3

S2P 0.59 0.45 16.3
SimpleGRU 0.35 0.52 29.1

WGRU 0.56 0.4 13.6

WM Single Large Heart 4 Heart 2

DAE 0.18 0.26 20.6
NFED 0.43 0.71 12.7

S2P 0.61 0.52 14.4
SimpleGRU 0.42 0.54 25.2

WGRU 0.72 0.64 11.3

DW Single Large Heart 4 Heart 2

DAE 0.4 0.56 14.8
NFED 0.32 0.74 15

S2P 0.34 0.79 16.1
SimpleGRU 0.35 0.98 16.1

WGRU 0.35 0.79 13.8
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Table A7. Performance comparison for the train on many—open-heart and heart case study for the
WM, the FR, and the DW, utilizing both open and heart data for training and heart data for infer-
ence.The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Multi Small UK-DALE 1,
Heart 1, 2 Heart 1

DAE 0.25 0.29 13.1
NFED 0.62 0.29 8.3

S2P 0.64 0.36 9.9
SimpleGRU 0.74 0.05 6.8

WGRU 0.83 0.1 5.1

WM Multi Small UK-DALE 1,
Heart 1, 2 Heart 2

DAE 0.25 0.23 14.3
NFED 0.62 0.25 8.9

S2P 0.68 0.46 11.5
SimpleGRU 0.55 0.13 8.3

WGRU 0.72 0.19 5.2

WM Multi Large UK-DALE 1,
Heart 1, 2 Heart 1

DAE 0.23 0.39 11.6
NFED 0.58 0.14 8

S2P 0.72 0.17 7.1
SimpleGRU 0.74 0.07 6.1

WGRU 0.78 0.09 5.2

WM Multi Large UK-DALE 1,
Heart 1, 2 Heart 2

DAE 0.24 0.32 12.2
NFED 0.62 0.18 8.5

S2P 0.75 0.25 8.1
SimpleGRU 0.7 0.18 7

WGRU 0.77 0.2 6.1

FR Multi Small UK-DALE 1,
Heart 1, 2 Heart 1

DAE 0.85 0.09 15.5
NFED 0.88 0.08 14.6

S2P 0.88 0.11 16.9
SimpleGRU 0.89 0.1 15.2

WGRU 0.89 0.07 13

FR Multi Small UK-DALE 1,
Heart 1, 2 Heart 2

DAE 0.44 0.23 16.1
NFED 0.66 0.14 14

S2P 0.66 0.14 13.7
SimpleGRU 0.6 0.16 15.2

WGRU 0.68 0.15 12.8

FR Multi Large UK-DALE 1,
Heart 1, 2 Heart 1

DAE 0.85 0.08 16.5
NFED 0.87 0.08 14.8

S2P 0.88 0.11 17.4
SimpleGRU 0.87 0.09 15.1

WGRU 0.89 0.09 13.7

FR Multi Large UK-DALE 1,
Heart 1, 2 Heart 2

DAE 0.4 0.34 20
NFED 0.64 0.19 14.8

S2P 0.61 0.17 16.3
SimpleGRU 0.55 0.24 16.4

WGRU 0.64 0.19 14.1

DW Multi Small UK-DALE 1,
Heart 2 Heart 2

DAE 0.43 0.32 19.8
NFED 0.45 0.14 16.8

S2P 0.48 0.27 17.9
SimpleGRU 0.53 0.23 18

WGRU 0.57 0.1 14.8

DW Multi Large UK-DALE 1,
Heart 2 Heart 2

DAE 0.43 0.45 19.7
NFED 0.43 0.17 17.1

S2P 0.49 0.09 18.5
SimpleGRU 0.53 0.2 17.3

WGRU 0.57 0.13 15.1
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Table A8. Performance comparison for the train on many—synthetic-heart and heart case study for
the WM and the DW, utilizing synthetic and heart households for training and heart households
for inference.The best results are highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM Multi Small Heart 1, 2, 4 Heart 1

DAE 0.25 0.17 15.3
NFED 0.57 0.07 8.94

S2P 0.67 0.14 7.4
SimpleGRU 0.3 0.25 13.28

WGRU 0.6 0.12 7.11

WM Multi Small Heart 1, 2, 4 Heart 2

DAE 0.23 0.28 19.14
NFED 0.62 0.03 9.29

S2P 0.76 0.16 6.24
SimpleGRU 0.47 0.19 11.13

WGRU 0.79 0.01 5.2

WM Multi Large Heart 1, 2, 4 Heart 1

DAE 0.25 0.2 16.73
NFED 0.19 0.14 10.21

S2P 0.11 0.17 8.22
SimpleGRU 0.64 0.12 6.35

WGRU 0.71 0.06 5.5

WM Multi Large Heart 1, 2, 4 Heart 2

DAE 0.24 0.35 20.86
NFED 0.58 0.11 11.46

S2P 0.72 0.14 7.59
SimpleGRU 0.76 0.21 7.11

WGRU 0.75 0.24 5.47

DW Multi Small Heart 2, 4 Heart 2

DAE 0.49 0.25 20.08
NFED 0.46 0.09 16.98

S2P 0.54 0.19 16.8
SimpleGRU 0.53 0.23 18

WGRU 0.55 0.07 14.28

DW Multi Large Heart 2, 4 Heart 2

DAE 0.49 0.27 20.37
NFED 0.4 0.12 16.95

S2P 0.49 0.16 16.23
SimpleGRU 0.58 0.12 15.08

WGRU 0.61 0.13 14.9

Table A9. Performance comparison for the FT-1 case study using Open data for training and Heart
data for fine-tuning and inference for the WM and the DW appliances.The best results are highlighted
in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM FT Large UK-DALE 1 Heart 1

DAE 0.37 0.34 15.13
NFED 0.68 0.2 9.94

S2P 0.82 0.04 8.44
SimpleGRU 0.77 0.17 7.76

WGRU 0.8 0.05 5.92

WM FT Large UK-DALE 1 Heart 2

DAE 0.28 0.28 15.36
NFED 0.57 0.17 11.53

S2P 0.81 0.11 8.3
SimpleGRU 0.74 0.08 8.12

WGRU 0.78 0.2 6.7

DW FT Large UK-DALE 1 Heart 2

DAE 0.5 0.03 15.81
NFED 0.4 0.23 15.03

S2P 0.44 0.25 13.76
SimpleGRU 0.36 0.02 14.33

WGRU 0.49 0.04 11.76
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Table A10. Performance comparison for the FT-2 case study using synthetic data for training and
heart data for fine-tuning and inference for the WM and the DW appliances.The best results are
highlighted in bold.

Device Cat. Vol. Train Test Model F1s RETE MAE

WM FT Large Heart 4 Heart 1

DAE 0.23 0.24 15.23
NFED 0.67 0.4 10.71

S2P 0.8 0.3 8.98
SimpleGRU 0.79 0.25 7.91

WGRU 0.89 0.03 5.68

WM FT Large Heart 4 Heart 2

DAE 0.1 0.05 22.12
NFED 0.63 0.18 9.84

S2P 0.71 0.35 9.41
SimpleGRU 0.67 0.13 8.42

WGRU 0.83 0.2 7.82

DW FT Large Heart 4 Heart 2

DAE 0.48 0.05 12.55
NFED 0.41 0.19 14.23

S2P 0.45 0.18 14.05
SimpleGRU 0.48 0.05 12.21

WGRU 0.55 0.17 10.63
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