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Abstract: Energy efficiency and operational safety practices on ships have gained more importance
due to the rules set by the International Maritime Organization in recent years. While approximately
70% of the fuel consumed on a commercial ship is utilized for the propulsion load, a significant
portion of the remaining fuel is consumed by the auxiliary generators responsible for the ship’s
onboard load. It is crucial to comprehend the impact of the electrical load on the ship’s generators,
as it significantly assists maritime operators in strategic energy planning to minimize the chance of
unexpected electrical breakdowns during operation. However, an appropriate handling mechanism
is required when there are massive datasets and varied input data involved. Thus, this study
implements data-driven approaches to estimate the load of a chemical tanker ship’s generator using
a 1000-day real dataset. Two case studies were performed, namely, single load prediction for each
generator and total load prediction for all generators. The prediction results show that for the single
generator load prediction of DG1, DG2, and DG3, the decision tree model encountered the least
errors for MAE (0.2364, 0.1306, and 0.1532), RMSE (0.2455, 0.2069, and 0.2182), and MAPE (17.493,
5.1139, and 7.7481). In contrast, the deep neural network outperforms all other prediction models in
the case of total generation prediction, with values of 1.0866, 2.6049, and 14.728 for MAE, RMSE, and
MAPE, respectively.

Keywords: data-driven; generator load prediction; maritime; shipboard microgrid

1. Introduction

Energy efficiency is becoming more crucial for commercial ship operations due to
rising concerns about fuel price fluctuations and strict emission regulations by the IMO
(International Maritime Organization) [1]. Accordingly, the process of incorporating tech-
nological advancements into the maritime industry has accelerated [2]. Ship transportation,
in particular, is rapidly evolving toward full electrification, with the creation of what are
known as all-electric ships (AES). Innovations in electric propulsion offer flexibility during
voyages where the emissions from diesel combustion can be kept under control [3]. Due
to the incorporation of the microgrid concept into shipboard power systems, AES are
regarded as part of the maritime microgrid. They feature components that are similar to a
typical microgrid, where the generators transmit electricity via an energy line to power the
propulsion and the onboard loads. AES act as mobile microgrids during voyage operations
at sea, where they are considered to be in the stand-alone mode [4]. During this mode, the
entire onboard load and ship propulsion are powered by their onboard power system.

The main engine, which is the fundamental part of the propulsion system in a ship,
consumes a large amount of fuel during voyage operations. Additionally, the other essential
devices in the ship that must be considered when it comes to fuel consumption include
pumps and auxiliary machinery. Generators are the most vital component in the ship’s oper-
ational system because they generate electricity and supply energy to the whole ship. Thus,
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generators are regarded as the highest fuel consumers during ship voyage operations [5].
Knowing how much power will be used during the voyage and in various operational
activities is extremely important for the long-term sustainability and energy efficiency of
ship systems. Power interruptions during onboard operations due to generator failures
may raise the risk of ship malfunctions and result in more serious mishaps. Furthermore,
if sudden loads cannot be foreseen, collapses may occur on the generator side. Strategies
to prevent breakdowns can be developed by understanding the individual behaviour of
the generator and loads, and enable estimation of optimal fuel consumption [6–8]. For
this reason, it is necessary to perform highly accurate load generator predictions [9–11].
From this perspective, this paper aims to predict the load of a chemical tanker in voyage
operations in two scenarios, namely, single load prediction and total load prediction.

However, to obtain a highly accurate prediction, input selection must be treated as
the critical part of the forecasting model. The best way to imitate the actual power value,
regardless of the conditions, is by considering the actual measurements of the ship’s main
components. Accordingly, this study preselects the input variables from the main engine,
diesel generator, and boiler, which are considered the main components in shipboard
power. Additionally, to ensure that predictions can be practically used and reflect the actual
power consumed, the usage of real data from chemical tanker ships is necessary. Thus,
the data utilized in the study should be collected from real ship voyage operations and
not generated by simulations. Existing research forecasting ship power, such as the study
in [12], considers environmental disturbances such as the wind (speed, direction), waves
(height, direction), and position displacement, which react with weather impacts as input
data. Despite the fact that this benefits the dynamic positioning of the ship, it does not
represent the whole usage of power during its journey at sea. In voyage operations, the sea
condition (calm and rough sea) alone does not represent the actual usage of the power. The
actual power reading depends on various uncertain factors, such as dynamic consumer
behaviour, ship length, carriage capacity, voyage duration, and speed of steaming. This
understanding is supported by another recent publication [13] that considers another set
of inputs for power prediction, such as latitude, roll angle, net propulsion power, and
speed. This scenario justifies considering a diversity of inputs that may be involved in the
power usage of a ship. None of them focus on the ship exclusively, but rather focus on the
specific operations, as in the case study in [12], which specifically leveraged forecasting
outputs to tune the ship’s position by using the outputs for system control. This research
gap highlighted the significance of the input selection conducted in this study.

A great challenge lies in how to interpret the relationship between the input data
and the prediction output. A good understanding of how inputs and outputs relate to
each other assists in the development of a reliable forecasting algorithm with the fewest
errors and deviations. Among the preliminary assumptions for the input for load generator
prediction used in this study are the speed and running hours of the main engines, the
consumption and running hours of the diesel generator, temperature, boiler usage, and
freshwater generator readings. To ensure a clear rationale behind all the initial assumptions,
these pre-assumptions for the input-output relationship in the prediction need to be verified.
However, the bulk set of data and its varying values increase the complexity and necessitate
a careful approach to data handling. Despite the barrier of complexity, a large amount
of data is necessary for the prediction model of the algorithm to understand the hidden
relationships between data for the output prediction. This is because the prediction training
draws on all the insight patterns of past data. The more data used, the more accurate the
prediction model. In order to find the right approach to handling large volumes of data, the
research conducted in [3] highlighted that the data-driven approach is a powerful technique
for uncovering meaningful patterns, complicated relationships, and correlation variables
among massive amounts of data with the help of artificial intelligence (AI). Recently,
used models in data-driven research, include support vector machine, multiple-linear
regression, artificial neural network, deep neural network, k-nearest neighbour, random
forest, extreme gradient boosting, and decision tree algorithms, which were broadly applied
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in the maritime sector, showing promising results. This trend can be seen in recent research
publications estimating and optimizing ship speeds with machine learning algorithms to
determine energy efficiency [14], collision avoidance, effective manoeuvring using AIS
(automatic identification system) data for autonomous vessels [15], vessel traffic modelling
and implementation via weather and historical data [16], fuel oil consumption prediction
using voyage data [17–20], object detection for vessel safety [21], and shaft power prediction
for determining ship energy efficiency [22]. Another study where a container ship was
examined with data-driven techniques proves that the models can provide significant
advantages in estimating fuel consumption and determining propeller performance [23].
The proven effective data-driven approaches to maritime applications discussed in the
literature could also provide a good prediction model for chemical tanker load generators.
This justifies the selection of a data-driven strategy for this study.

Accordingly, this paper presents a data-driven approach to the load generator predic-
tion of a chemical tanker ship with the following contributions:

• First, this paper attempts to perform load generator prediction for a chemical tanker
in two case studies, namely, single load generator prediction for each generator in
the ship and total load generator prediction for the total load. The prediction for the
single load generator will assist the ship operator with pre-planning for an unexpected
event due to the real issues raised by one malfunctioning generator during a voyage.
Meanwhile, total load generator prediction can prevent large operational failures that
might cause severe disruptions of the voyage and big losses to shipping lines.

• Second, to address the uncertain number of influence factors that affect the actual
reading of the power generator, this paper provides a correlation analysis that demon-
strates the strong relationship between the chosen inputs and the varying patterns
of output prediction. To make this approach realistic and applicable to new data pre-
dictions, it is integrated using 1000 days of a real voyage dataset instead of a dataset
generated through software simulation.

• Third, eight different data-driven algorithms were tested in this study, including
support vector machine, multiple-linear regression, artificial neural network, deep
neural network, k-nearest neighbour, random forest, extreme gradient boosting, and
decision tree algorithms. Comparative performance analysis of these approaches will
provide the best forecasting model for the ship’s load generator of a chemical tanker
ship with minimum error. This model can be used in energy scheduling and power
planning to optimize system operations.

The other parts of the study are organized as follows: in Section 2, data driven
approaches in the maritime sector are discussed; in Section 3, the prediction methodology
is explained; in Section 4, the important findings in the simulation study are discussed; and
conclusions of the study are explained in Section 5.

2. Data-Driven Approaches in the Maritime Industry

In recent years, data-driven methods have been applied successfully in various dis-
ciplines, and their scheme has been widely applied in solving various problems. In the
assessment of process safety, approximately 500 studies conducted between 1990 and 2020
were sampled [24]. Recent data-driven approaches in the maritime field generally focus on the
assessment of ship performance and management from data collected during voyages [25].

There are several studies in the literature that conduct research on the estimation
technique for the ship’s main generator. For instance, considerable work shows that
machine learning is effective in fuel consumption estimation, and its output precision can
be increased by hyperparameter adjustment [26]. According to a study that highlighted the
role of the maritime sector in global emissions, data-driven methodologies could be used to
predict the fuel consumption of dry cargo ships [27]. Artificial neural networks were used
in a study dealing with estimating the fuel consumption of a bulk carrier [18]. A study
mentioned that fuel consumption estimation with data-driven methods is an important
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measure to achieve better energy efficiency and the sustainability of maritime transport. It
also could help calculate voyage costs [28].

Meanwhile, in a case study that involved photovoltaic energy for a hybrid ship microgrid,
various machine learning algorithms were used for energy estimation, but the scores obtained
at the end of the study were not satisfactory enough [4]. ANN, MLR, decision tree, random for-
est, and XG Boost algorithms were used to solve the ship berthing for cold ironing problem [3].
Shaft speed predictions have been made with data-driven approaches [12]. Nine different
algorithms were used in a study to estimate a container ship’s main engine shaft power and
fuel consumption. However, this study contains some innovative aspects. Classical processes
such as fuel consumption estimation were also carried out in the mentioned study [13]. These
methods are useful for the maritime field problems. In contrast to the literature, marine diesel
generator power prediction and total load estimation of the chemical tanker vessel electrical
microgrid are performed in this paper.

3. Prediction Methodology

This study estimated marine diesel generator power using support vector machine,
multiple-linear regression, artificial neural network, deep neural network, k-nearest neigh-
bour, random forest, extreme gradient boosting, and decision tree algorithms. Approxi-
mately 1000 days of the voyage dataset were obtained from a commercial chemical tanker
ship built in 2017. This study’s dataset is divided into two parts: training and test data.
The first of these parts is the training data, consisting of 750 samples, and the other part
is the test data, consisting of 250 samples. Then, the dataset was processed by purifying
the missing samples using data preprocessing techniques, and it was then converted into a
format that algorithms could operate with. This dataset includes information about the
main engine, auxiliary machines, and diesel generators from various sensors on the ship.
Pearson correlation was used to examine the correlations in the dataset, and a pair plot was
used to investigate the data frames with high correlation. A separate pair plot illustrated
the correlation between the data frames with high correlation between the dataset and the
total load on the diesel generators. The simulation results were digitized with the error
metrics mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE). As a result of the simulations, the loads on the marine diesel
generators during the voyage were successfully estimated with data-driven algorithms. In
addition, a separate simulation has been successfully carried out to estimate the total load
on the system. The k-fold cross-validation method was used to verify the process of the
results. The methodology of the study outlined above is visualized in Figure 1.

In this ship microgrid, diesel generators are the energy generators, while, hotel loads,
alarms, pumps, sensors, and boilers, are the energy consumers. Figure 2 shows the general
structure of the chemical tanker ship microgrid used in this case study. Three diesel
generators power the entire shipload, while a fourth emergency generator is available in
case of a main generator failure.

3.1. Data Processing

Data collection is the fundamental process in data-driven studies [29]. A solid and
clean dataset can also facilitate the achievement of the targeted results in the study [30].
Initially, in this study, a 1461-day voyage dataset was gathered for investigation. Then,
the sections of this dataset that had null values were eliminated, resulting in 1000 days
of refined data that could be used in this study. The ship’s characteristics and the brief
statistical information of the dataset are given in Tables 1 and 2, respectively. The data
features used in this study are as follows:

• Main engine speed (revolutions per minute (rpm)).
• Diesel generator fuel consumption (t/day), power (kW).
• Main engine running hours (h/day).
• Diesel generator running hours (h/day).
• Main engine output maximum continuous rating (%).
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• Main engine power (kW), fuel consumption (t/day).
• Fresh water generator running hours (h/day).
• Scavenge air temperature (◦C), scavenge pressure (bar).
• Main engine exhaust temperature (◦C).
• Boiler running hours (h/day).
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Table 1. Vessel specifications.

Item Specification

Vessel Type Oil/Chemical Tanker
Gross Tonnage 29,590 t

Deadweight Tonnage 49,990 t
Length/Breadth 183/32.3 m

Year Built 2017
Average/Maximum Speed 13.4/17.3 knots

Main Engine Power 7000 kW
Generator Power/Count 580 kW/3

Draft 8 m

Table 2. Summary of the dataset.

Main Engine
Speed (rpm)

Generator Fuel
Consumption (t/d)

Main Engine Fuel
Consumption (t/d) . . . Main Engine

Power (kW)

Generator 1
Power
(kW)

Generator
2 Power

(kW)

Generator 3
Power (kW)

Mean 79.46 1.45 9.95 . . . 4169.8 175.33 267.24 281.27
Std 16.24 1.03 8.44 . . . 1559.2 244.77 248.57 253.12
Min 0 0.01 0 . . . 0 0 0 0.04
Max 98.11 4.5 26.18 . . . 7000.0 580.00 580.00 580.00

In data-driven studies, correlation analysis explains the relationship between the data
and determines the variables. The Pearson correlation coefficient (r) was used to determine
the relationship between two variables in the dataset. The correlation coefficient takes
values between −1 and +1. Figure 3 shows the Pearson correlation matrix of the dataset.
Here, the “+” sign in front of the correlation coefficient indicates a positive correlation



Energies 2023, 16, 5092 7 of 20

between the two variables and the “−” sign indicates a negative correlation between the
two variables. For example, in this dataset, diesel generators’ fuel consumption and the
main engine fuel consumption values are strongly correlated (0.9), while diesel generator 1
running hours and the scavenge air temperature value correlation value is 0.
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The pair plot method can enable a more detailed examination of the correlation
between the variables in the dataset. The pair plot of the variables with a high correlation
coefficient in this study is shown in Figure 4. The relationship between these variables and
the total load of the generators is also shown in Figure 5. While the main engine and power
variables show a strong correlation for all values, other variables cannot form such a linear
graph. When Figure 5 is examined, it can be seen that the total load of the diesel generator
shows a correlation within a specific range with the scavenge pressure variable.
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SHAP values (SHapley Additive exPlanations 3.7.7) follow a method that is based
on game theory and enables the determination of the influence of inputs on the output
variables in the dataset [31,32]. The SHAP values that were discovered quantified the
importance of the inputs in determining the system’s output in this prediction model, and
they are illustrated in Figure 6. Figure 6A shows the effect of input variables on the output
while estimating the power of diesel generator 1. Figure 6B,C show how input variables
affect output for generators 2 and 3, respectively. Meanwhile, Figure 6D shows the effect
of the input variables on the output in the model used to estimate the total load of the
generators. For the DG1 power prediction process (Figure 6A), it can be said that DG2
power, DG1 running hours, and DG3 power are more important than the other features in
the dataset. Figure 6B shows that DG1 power, DG2 running hours, and DG3 power values
are more important features for the DG2 power prediction phase. For the DG3 power
prediction, DG3 running hours, DG2 power, and DG1 power values are more important
than the other features (Figure 6C), and important values are presented in the Figure 6D
for the total load prediction case.
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3.2. Estimation Models
3.2.1. Support Vector Machines (SVM)

The support vector machine (SVM), developed by AT&T Bell Labs, is a supervised
learning method frequently used in classification and regression problems. This algorithm
has an effective usage area for accuracy, proper generalization, and precision theories [33].
In this method, the predicted results that fall within a given range are considered successful,
whereas those that fall outside of that range are considered failed. Vectors that limit this
range value are called support vectors [34]. The model of the SVM is given below.

f (x) = wTx + w0 (1)

H(w, w0) = ∑N
i=1 (y i − f (x i)) +

λ

2
‖w‖2 (2)

Vε(r) =
{

0 i f |r| < ε

|r| − ε otherwise
(3)

Here, w is the normal vector, x is an independent variable, λ is the regularisation
parameter, w0 is coefficient, V is the error function,ε is the error margin, and r is the
error [35]. Figure 7 describes the components of the support vector machine. The blue dots
represent successful predictions within the permissible margin borders (support vectors),
and it can be seen in the figure that the red dots show unsuccessful results or another
cluster [19].
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3.2.2. Multiple Linear Regression (MLR)

The multiple linear regression (MLR) method is a statistical technique that consists
of dependent and independent variables. In this method, dependent variables can be
calculated with the help of more than one independent variable and coefficient [36,37].
Multiple linear regression can be expressed by Equation (4),

y = a0 + a1x1 + . . . + anxn + ε (4)
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where a0, a1, . . . , an are coefficients, y is the dependent variable, ε is the model error, and
x1, x2, . . . , xn are independent variables. In this method, an (coefficients) are calculated
using Equation (5).

an = argmin
(∑n

i=1 (yi−a0−∑n
j=1 ajxij)

2)

(a) (5)

3.2.3. Artificial Neural Network (ANN)

The artificial neural network method, which imitates the working process of the brain,
is a structure consisting of artificial neurons and nodes [38]. In this structure, neurons
receive and process the signal and transmit it to other neurons with which it is connected.
The signal formed in this structure is the sum of the signals coming from the connected
neurons [34]. Other considerations in artificial neural networks are the weight variables
and the activation function [39]. The weight variable affects the value of the output function
by increasing or decreasing the strength of a signal in the neural network. The activation
function, on the other hand, determines how the output signal, which is determined by
the weights, will be transferred from a certain layer of the network to another layer or
the output of the network. A typical artificial neural network is represented in Figure 8.
When the figure is examined, I values represent the input values of the network, while X
values form the input layer. Here, h values create the hidden layer, while A values create
the output layer. O values represent the output values of the network. In addition, the w
values in the figure represent the weights [39–42].
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3.2.4. Deep Neural Network (DNN)

A deep neural network can be defined as an advanced ANN structure [43,44]. This
method has the same weight and activation functions as an ANN structure, but it differs in
the number of hidden layers. In this way, much more parameter optimization can be made
in the deep neural network structure, and more successful results can be obtained [45]. A
typical DNN structure is shown in Figure 9. When Figure 9 is examined, I values form the
inputs, x values form the input layer, w values form the weights, and h values form the
hidden layer. Values form the output layer, while O values are the output values of the
system [46,47].
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3.2.5. K-Nearest Neighbours (KNN)

The k-nearest neighbours algorithm is based on the principle of determining the
distance of k-nearest neighbours to a certain point [48]. Here, the k parameter may vary
according to the model [49,50]. While making predictions with the KNN algorithm, the
model continues training by making use of past data. Minkowski distance (Lp), an impor-
tant parameter used in this algorithm, is used for the specification of the margin between a
start point (xq) and any other point (xj) (Equation (6)).

Lp(xj, xq
)
=
(
∑i |xj,i − xq,i|

p
) 1

p (6)

Here, if p = 1 is the Manhattan distance, p = 2 is the Euclidean distance [51].

3.2.6. Random Forest (RF)

In the random forest (RF) algorithm, an advanced form of the decision tree algorithm,
the results are obtained through multiple decision trees [52]. When used for classification
purposes, the output produced by the most trees is considered the final result. In contrast,
the average results obtained from all of the trees in regression problems give the final
result [53]. A typical RF structure is presented in Figure 10.

3.2.7. Extreme Gradient Boosting (XGBoost)

The extreme gradient boosting method is an approach that uses a decision tree and
gradient boosting structure [54]. In this approach, the value obtained by summing the
results from the decision tree algorithm is f (x), and the model equation is as follows
(Equation (7)) [55].

ŷi = ∑N
j=1 f j(xi) (7)

The XGBoost algorithm advances by making improvements to the objective function,
whose main task is to optimize the complexity penalty and loss function. Here, the loss
function (LF) is expressed in Equation (8) and the complexity penalty (CP) in Equation (9) [56].

LF = ∑n
i=1 l(yi, ŷi) (8)

CP = ∑k
k Ω( fk) (9)
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3.2.8. Decision Tree Regressor (DTree)

The decision tree algorithm is a supervised machine learning method that is frequently
used in regression and classification problems in the literature because they are generally
understandable and practical [57]. In regression problems, if the target variable takes con-
tinuous values, the decision tree regressor can be used at this stage. During the estimation
process, the dataset is iteratively partitioned and the algorithm runs until the partitioning
process stops [58]. The decision tree method can be divided into decision nodes, branches,
and leaves. A simple decision tree model is shown in Figure 11 [20].
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3.3. Validation and Evaluation
3.3.1. Mean Absolute Error (MAE)

Mean absolute error (MAE) is an error metric found by calculating the average absolute
values of the distances between the actual and predicted values [59,60]. Calculation of the
mean absolute error is shown in Equations (10) and (11).

MAE =
1
N ∑N

i=1 ei (10)

ei = |ai − pi| (11)

Here, ei is an error value, ai is the actual value, and pi is the predicted value.

3.3.2. Root Mean Square Error (RMSE)

Root mean square error (RMSE) is a measure of the distance between values predicted
by a model and actual values. It is calculated by taking the square root of the mean of the
square of the difference between the actual values and the predicted values [25,59]. The
calculation of RMSE is given in Equation (12),

RMSE =

√
∑N

i=1 e2
i

N
(12)

where ei = ai − pi represents the error value, ai is the actual value, pi is the predicted value,
and N is amount of data.

3.3.3. Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error (MAPE) is the percentage of difference between
actual and predicted values. The calculation of MAPE is expressed in Equation (13) [61].

MAPE =
100%

n ∑n
i=1

∣∣∣∣yi − pi
yi

∣∣∣∣ (13)

In this equation, y is the actual value and p is the predicted value.

3.3.4. K-Fold Cross-Validation

K-fold cross-validation is a verification method in which algorithms are checked for
overfitting problems [62]. In this method, the dataset is divided into equal parts; one test is
divided for validation and the other parts are separated as training data. The validation
process continues until all parts are processed, and the average of the results obtained is
calculated as the validation score [60]. The k-fold cross-validation process is described in
Figure 12.
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4. Simulation Results and Discussion

Achieving generator load prediction output values that are close to the real values is
the main objective of the proposed training model. A forecasting model that produces the
lowest rate of error demonstrates a high prediction accuracy and is capable of generating
reliable results for new sets of data. In order to figure out the prediction model for a data-
driven approach that can satisfy the prediction objective, eight different algorithms were
utilized, which are SVM, MLR, ANN, DNN, KNN, RF, XGB, and Dtree. The comparative
results from all of the algorithms provide the best prediction model for the generator load of
the chemical tanker. The findings from the analysis of each prediction model’s performance
are addressed in this section.

This study used the TensorFlow environment of Python programming language ver-
sion 3.7.7 in simulations for marine diesel generator power prediction. The computer
hardware utilized an Intel Core i7-9750H 2.60 GHz processor, 32 GB of RAM, and an
NVIDIA GeForce RTX 2070 graphics card. In the first stage of the simulation, the hyperpa-
rameters of the established models were tuned since some of the algorithms were unable
to produce the desired prediction scores. Hyperparameter tuning has the advantage of
providing optimized values for the prediction model, maximizing the predictive accuracy
as much as possible. This is an essential step in controlling the behaviour of the predictive
model. Without the hyperparameter tuning step, the prediction model will make more
errors during the data simulation. Table 3 shows the model hyperparameters obtained as a
result of this process.

The performance of each prediction algorithm was evaluated by several error metrics
such as MAE, RMSE, and MAPE. In the first scenario, the prediction model was conducted
for each generator of DG1, DG2, and DG3 separately.

Table 4 compares the results of the eight prediction algorithms for the power prediction
in each generator. It shows that the decision tree (Dtree) algorithm is more efficient than
the other algorithms used for this specific case study. It reached values of 0.2364 for MAE,
0.2455 for RMSE, and 17.493 for MAPE for the DG1 power prediction case. When DG2
power prediction scores were evaluated, the DTree algorithm reached values of 0.1306
for MAE, 0.2069 for RMSE, and 5.1139 for MAPE. For DG3 power prediction, the DTree
algorithm reached values of 0.1532 for MAE, 0.2182 for RMSE, and 7.7481 for MAPE.
The DTree algorithm is a typical model-based learning method. The difference of this
method from other algorithms is the modelling of the relationship between the input
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variables and the output variable. For this reason, it can achieve successful results in both
linear and nonlinear systems [63]. On the other hand, XGB, RF, and DNN also show a
good performance, with their error measurement performing slightly better than Dtree’s.
Meanwhile, the SVR technique has the worst performance with the highest error rate. This
could be due to it performing operations with a margin between hyperplanes that allows a
certain degree of error. Meanwhile, the other prediction algorithm is intended to minimize
the error rate as much as possible. That justifies the highest error performance for the
case study.

Table 3. Model hyperparameters.

Model Hyperparameter

SVM None
MLR None

ANN solver = ‘lbfgs’, alpha = 0.00001, max_iter = 10,000, activation = ‘tanh’, hidden_layer_sizes = (5000), power_t = 0.7,
validation_fraction = 0.3, batch_size = 250

DNN
input_dim = 16, hidden_layer_count = 17, input_layer_activation_function = ‘relu’,

hidden_layer_activation_function = ‘linear’, output_layer_activation_function = ‘linear’, optimizer = ‘Adam’,
epochs = 1500

KNN n_neighbors = 3, weights = “distance”,algorithm = “kd_tree”, p = 20
RF n_estimators = 350, max_depth = 150

XGB None
Dtree None

Table 4. The prediction results for the single power diesel generator.

MAE RMSE MAPE

DG1 DG2 DG3 DG1 DG2 DG3 DG1 DG2 DG3

SVR 1.6736 1.9411 1.6893 6.3752 4.8703 7.5162 30.865 33.814 36.241
MLR 1.1652 1.3124 1.1804 2.6701 3.1117 2.4007 29.597 28.877 31.195
ANN 0.9589 1.0027 0.9324 1.9204 2.1717 1.8913 34.265 24.977 29.988
DNN 0.5783 0.4025 0.5308 1.8067 1.4948 1.8733 31.714 36.591 33.773
KNN 1.4294 1.5561 1.2901 4.4118 4.4908 4.0399 34.652 32.794 35.763

RF 0.3413 0.2252 0.2892 0.4733 0.2662 0.4714 31.879 8.1517 9.9462
XGB 0.2817 0.1424 0.2926 0.4212 0.2431 0.5093 29.547 6.1015 11.184

DTree 0.2364 0.1306 0.1532 0.2455 0.2069 0.2182 17.493 5.1139 7.7481

Knowing the effects of loads on generators can assist maritime companies in pre-
dicting malfunctions, improving energy efficiency, and conducting maintenance-attitude
studies [64]. When the generator load is known, the fuel consumption can be calculated.
In this way, fuel consumption can be optimized, and steps can be taken toward greater
energy efficiency [65]. Knowing the fuel consumption can also enable the detection of a
malfunction or an error in the generator system when the consumption differs from the
normal state, i.e., when the energy efficiency changes. This can help shipping companies in
terms of predictive maintenance activities.

In the second scenario, the total load power generator prediction model was developed
by taking into account all of the chemical tanker ship’s generators. Table 5 shows the prediction
results for the total load estimation from eight prediction models. To determine whether
the models were overfitting, a 5-fold cross-validation procedure was used. The training
dataset was divided into five parts with 200 samples each in this process; one of these parts
was designated as the validation dataset, while the other four were used as training data in
the model training. The cross-validation process was continued for five iterations, and the
validation scores are given in Table 6 in terms of the mean absolute error metric.
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Table 5. The prediction results for the total power diesel generator.

Total Load Prediction

MAE RMSE MAPE

SVR 1.3520 8.3232 15.966
MLR 1.5283 5.6608 23.302
ANN 1.6575 6.1073 25.048
DNN 1.0866 2.6049 14.728
KNN 1.8220 9.6310 27.184

RF 1.3146 4.9486 14.513
XGB 1.4152 5.7916 16.805

DTree 1.4452 9.0413 19.748

Table 6. 5-fold cross-validation scores (MAE) for the total load prediction.

Model

SVR MLR ANN DNN KNN RF XGB DTree

Fold 1 1.4235 1.5813 1.7434 1.1517 1.9589 1.4257 1.4789 1.4925
Fold 2 1.4387 1.5975 1.6928 1.2146 1.9827 1.3952 1.4912 1.5014
Fold 3 1.4291 1.6124 1.7126 1.1738 1.9186 1.3573 1.4671 1.4874
Fold 4 1.4413 1.5731 1.6891 1.1513 1.8917 1.3841 1.4397 1.4731
Fold 5 1.4275 1.5629 1.6973 1.1725 1.9226 1.3619 1.4515 1.4667

Mean Score 1.4320 1.5854 1.7070 1.1727 1.9349 1.3848 1.4656 1.4842

In this case, the deep neural network (DNN) algorithm outperforms all other algo-
rithms, with minimum error performance values of 1.0866 (MAE), 2.6049 (RMSE), and
14.728 (MAPE). In light of the findings obtained in the first simulation study, it was re-
vealed that model-based algorithms for the generator power estimation case phase are
more advantageous due to the format of the dataset. In addition, it can be said that the
XGBoost algorithm, which uses a progressive learning methodology, stands out among
other algorithms used in the simulation process. In the second part of the simulation study,
concerning the prediction of the total load of the generators, it was revealed that the DNN
algorithm, which works more efficiently in difficult and complex systems, achieves more
successful prediction scores than other algorithms. Unlike ANN, there are multiple hidden
layers in DNN. This allows the algorithm to behave more effectively in more complex prob-
lems. In addition, the DNN algorithm is also a successful method for nonlinear systems.
At this stage, reducing the number of inputs of the system significantly reduced the success
of the models established with MLR, ANN, K-NN, RF, XGBoost, and DTree algorithms.
However, the DNN and SVR algorithms improved their scores in this process. When the
DNN and SVR algorithms were compared, it was determined that the success of the DNN
algorithm increased significantly in the second simulation. It can be observed that the
success of the SVR algorithm also increased, but this increase was not at a satisfactory level.

5. Conclusions

Generators are the second-largest fuel consumer on a ship after the primary engine
and, thus, are an important component when evaluating fuel utilization and enhancing
energy efficiency. If the electrical load on the generators cannot be correctly predicted
and planned for, electrical failures may also occur under sudden loads. This issue may
force the ship’s operations to cease and might result in the ship’s severe damage and
workplace accidents. This study employed data-driven algorithms to estimate the load
on a commercial ship’s generators. The results from the simulation indicated that the
DTree model was the most successful method for the generator load prediction, with MAE
scores of 0.2364, 0.1306, and 0.1532; RMSE scores of 0.2455, 0.2069, and 0.2182; and MAPE
scores of 17.493, 5.1139, and 7.748 for diesel generators DG1, DG2, and DG3, respectively.
On the other hand, the DNN model was the most successful method for the total load
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prediction case, with 1.0866 MAE, 2.6049 RMSE, and 14.728 MAPE scores. The 5-iteration
k-fold cross-validation procedure used to determine whether the models had an overfitting
condition revealed no overfitting condition.

It can be concluded from the results that data-driven algorithms can be useful for
estimating the electrical load on ship generators. The problems arising from the sudden
loads experienced in the ship’s electrical grid may be prevented by injecting these developed
models in this study into the ship microgrid control in the future. This will make it possible
to take preventative action against electrical failures, prevent potential malfunctions, reduce
potential additional maintenance costs, and increase energy efficiency.
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