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Abstract: This article presents a method for assessing the selection of carport power for an electric
vehicle using the Metalog probability distribution family. Carports are used to generate electricity
and provide shade for vehicles parked underneath them. On the roof of the carport, there is a
photovoltaic system consisting of photovoltaic panels and an inverter. An inverter with Internet of
Things functions generates data packets which describe the operation of the entire system at certain
intervals and sends them via wireless transmission to a cloud server. The transmitted data can be
processed offline and used to determine the charging capacity of individual electric vehicles. This
article presents the use of the Metalog family of distributions to predict the production of electricity
by a photovoltaic carport with the accuracy of the probability distribution. Based on the calculations,
an electric vehicle was selected that can be charged from the carport.

Keywords: photovoltaic plants; electricity production; charging electric vehicles; carport; energy
management; distributed generation; zero-emission transport

1. Introduction

The ever-increasing number of vehicles in the world significantly contributes to air
pollution. Transport is the second largest emitter of air pollution after the generation of
energy from conventional sources [1]. That is why it is so important to generate energy
from renewable energy sources and use it to power ecological vehicles with electric drive;
they do not emit any pollutants while driving, whether in the city or on the highway.
Engineers and scientists are looking for effective methods to assess the energy consumption
of different types of vehicles. The aim is to minimize fuel and energy consumption in
various ways. Electricity generation and consumption systems also require monitoring
and optimization.

In the third decade of the 21st century, many of the newly produced devices have func-
tions of the Internet of Things. This means that these items may directly or indirectly collect,
process and/or exchange data via a computer network and the Internet. Concurrently, other
growing trends on a global scale are the advances in electromobility [2–9], obtaining energy
from renewable sources and alternative fuels [10–16] and reducing exhaust emissions from
means of transport [17–24]. The analysis of the literature and the state of knowledge con-
firmed that there are many technologies on the market for obtaining data from photovoltaic
systems, electric car chargers and electricity meters taken from the power grid [2,25,26].
It appears that many of these devices have one-way communication and apply different
data-exchange formats. The lack of uniform data-exchange formats significantly hinders
the integration of these devices and their use in managing the electricity produced and
consumed [27].
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The market for electric and plug-in hybrid vehicles is growing at a rapid pace. These
vehicles have an increasing range on a single charge and greater performance [28]. The
common feature that connects them is the ability to charge traction batteries from external
energy sources. The energy to charge them can come from renewable energy sources.

The authors propose to analyze the entire ecosystem of electricity generation for the
charging of electric vehicles. As an example of such an ecosystem, the infrastructure located
in Lublin Science and Technology Park (LSTP) in Poland was selected. Selected elements of
energy generation for the needs of powering buildings and charging electric vehicles are
presented in the infographic in Figure 1.

Energies 2023, 16, x FOR PEER REVIEW 2 of 17 
 

 

ta-exchange formats significantly hinders the integration of these devices and their use in 
managing the electricity produced and consumed [27]. 

The market for electric and plug-in hybrid vehicles is growing at a rapid pace. These 
vehicles have an increasing range on a single charge and greater performance [28]. The 
common feature that connects them is the ability to charge traction batteries from exter-
nal energy sources. The energy to charge them can come from renewable energy sources. 

The authors propose to analyze the entire ecosystem of electricity generation for the 
charging of electric vehicles. As an example of such an ecosystem, the infrastructure lo-
cated in Lublin Science and Technology Park (LSTP) in Poland was selected. Selected 
elements of energy generation for the needs of powering buildings and charging electric 
vehicles are presented in the infographic in Figure 1. 

 
Figure 1. Selected elements of energy generation for the needs of powering buildings and charging 
electric vehicles in LSTP. 

The electric-vehicle-charging ecosystem consists of the following components (Fig-
ure 2): 
• Photovoltaic field [29]; 
• Charger for electric vehicles; 
• Bidirectional energy meter; 
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electric vehicles in LSTP.

The electric-vehicle-charging ecosystem consists of the following components (Figure 2):

• Photovoltaic field [29];
• Charger for electric vehicles;
• Bidirectional energy meter;
• Photovoltaic carport [30];
• Electric vehicles.
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Figure 2. Selected elements of the power generation ecosystem for electric vehicle charging at LSTP.

The first of the Internet of Things devices is a mounted- on-the-ground photovoltaic
system with a peak power of 40 kWp. The photovoltaic inverter in such an installation
sends a data package to the cloud every few minutes, primarily including the generated
instantaneous power and the amount of energy produced on its basis [31]. In our research,
we have already encountered several different formats of data generated by photovoltaic
systems. The latest online platforms [32] allow the measurement and visualization of the
power produced by photovoltaic systems and the power consumed by the receivers, and
based on this, the calculation of the self-consumption power (this is presented in Figure 3).
Data obtained and stored in the cloud can be processed and used to generate reports on
the daily, monthly and annual performance of the photovoltaic system [33]. The user and
administrator interface of the photovoltaic system is the appropriate software for desktop
and portable computers as well as applications for mobile devices such as smartphones
and tablets. Using the software and the applications, it is also possible to remotely diagnose
the system as a result of reading the error codes stored in the system’s memory [34]. A
22 kW electric-vehicle-charging pole has been connected to the ground-based photovoltaic
farm in LSTP.
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The second of the Internet of Things devices are the chargers for electric vehicles. This
term is used to describe various types of infrastructure aimed at supplying electricity for
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charging the onboard traction batteries of vehicles [35]. There is a two-way communication
between the charging pole and the vehicle battery management system (BMS) to ensure
safety throughout the charging process [36]. Almost every electric-vehicle-charging point
has a built-in electricity meter. Its measurement is needed to determine the electricity
consumption of each user and billing. Individual users are usually identified by magnetic
cards. Charger operators have a continuous view of the charger’s operating parameters via
LAN, Wi-Fi or SIM card. LSTP has a 22 kW charging pole with a Type 2 (3-phase AC) and
Schuko (1-phase AC) socket for charging electric vehicles [37]. The process of charging an
electric vehicle from a charging pole connected to a ground-based photovoltaic installation
is shown in Figure 4.
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The receivers of electricity produced by the photovoltaic system and distributed by
the charging pole are the electric vehicles of LSTP employees and tenants. However, what
if you want to charge an electric vehicle at night or on a less sunny day? The charging pole
for electric vehicles is also connected to the power grid and can draw electricity from it.
The amount of energy consumed from the electricity grid is measured using an electricity
meter. Modern meters are already devices of the Internet of Things, and they also enable us
to measure electricity returned to the power grid. Older ones do not offer such a function,
but they can be equipped with an appropriate communication beacon.

Another important element of the LSTP energy ecosystem is the carport [38,39]. Car-
ports are used to generate electricity and provide shade for vehicles parked underneath
them. Carports are an excellent solution for customers who do not have space on the roof
of their house to install a photovoltaic system and, at the same time, do not want to waste a
large area of land for the installation of a ground photovoltaic system. Photovoltaic panels
located on the roof of the carport generate direct current (DC) electricity, which is then
converted into alternating current (AC) energy by an inverter. The carport located in LSTP
is also an Internet of Things device and will be described in more detail later in the article.

Photovoltaic systems are typically used to generate electricity to power appliances
located in homes or institutional buildings. However, electric vehicles are the largest
consumers of electricity generated from photovoltaic systems [40]. Electric vehicles are
quiet, ecological and provide good driving performance. The range of electric vehicles is
increasing, and they can effectively be used for not only driving around a city but also
for further intercity travel and even international trips. Moreover, electric vehicles can
be and are rapidly becoming devices of the Internet of Things. Communication devices
located inside them are able to send data about the current location of the vehicle and its



Energies 2023, 16, 5077 5 of 16

driving parameters [41]. Operators of electric-vehicle-charging points are offering more
and more online platforms for planning routes [42]. In the area of electric vehicle charging
infrastructure in Europe, a continuous increase in the number of electric-vehicle-charging
points and an increase in charging power is observed [43].

In this article, the authors will present the real data obtained from the Internet of Things
devices installed and tested in LSTP in Poland. The authors will present the possibilities
of obtaining and processing measurement data from the Internet of Things devices in
order to manage electricity produced by a photovoltaic system and consumed by electric
vehicles [44]. In the next part of the article, the use of the Metalog family of distributions
to predict the production of electricity by the carport with the accuracy of the probability
distribution will be presented [45].

2. Objects and Research Methodology

The first research object is the carport. It consists of 15 photovoltaic panels, but only
12 of them are active and generate electricity. The carport has been presented at fairs and
exhibitions many times; 3 solar panels out of 15 were damaged during transport and do not
generate electricity. The constructors used monocrystalline photovoltaic panels produced
by glass–glass technology. Each panel has a peak power of 250 Wp. The peak power of the
carport is 3 kWp. Choosing the right type of photovoltaic panel depends on their specific
application in specific geographical conditions [46]. At the time of the installation of the
carport (2016), monocrystalline panels were a very advanced and innovative technology in
relation to the commonly used polycrystalline panels. An additional innovation in favor of
their use was the method of the construction of the panel itself. The photovoltaic elements
were placed between two panes of glass, hence the name ‘glass–glass’. Such panels are
characterized by a better heat dissipation than traditional panels mounted on a plastic base.
The designers of the carport expected more energy to be produced as a result of better
cooling. This hypothesis was later confirmed in practice.

The angle of inclination of the panels on the carport is 30 degrees, and the entire
carport is directed exactly to the south.

Each panel has a built-in individual optimizer that allows you to track the performance
of each panel separately, which is shown in Figure 5. The structure of the carport was
designed and made by one of the authors together with a group of students in the field of
Transport. The carport generated over 20 MWh of electricity during the period from May
2016 to April 2023. The Internet platform enables the export of the photovoltaic system
operating parameters in *.csv format to a file. It is important that it is possible to export
the instantaneous generated power in 15 min intervals as well as the amount of energy
produced each day.
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The second research object is the Nissan Leaf, the electric vehicle. It was manufactured
in 2015 and has a traction battery with an energy capacity of 24 kWh. Based on conver-
sations with the owner, the authors determined that the range of the vehicle is around
150 km [47]. Therefore, such a vehicle can be characterized as an urban vehicle with the
ability to cover short intercity routes. The vehicle has two charging sockets. The first
one is the Chademo socket for fast charging with a direct current. Through the Chademo
connector, the vehicle battery is charged with a direct current generated by an external DC
charger. The maximum battery charging power is 40–50 kW. However, the charging power
depends on the state of charge of the battery (SoC). The Chademo fast-battery-charging
process takes less than 1 h. The other socket is called Type 1 and is a single-phase socket that
supplies single-phase AC power to the onboard charger. The vehicle has a 3.6 kW onboard
charger. This power is drawn from the charging pole shown in Figure 4 using an electrical
cable connected to the Type 2 socket in the post. The Type 1 and Type 2 connectors only
supply AC power to the vehicle’s onboard charger. The maximum power of the charger is
3.6 kW. Thus, charging the battery with an energy capacity of 24 kWh takes less than 7 h.
Type 2 connectors can deliver 22 or even 50 kW. However, it is the power of the charger
installed in the vehicle that determines the power consumption and charging time of the
battery. If you use a Schuko socket, you need a different cable, as shown in Figure 6 on
the right. With it, the vehicle can be charged from any Schuko socket located in the house,
garage or garden. In the case of charging a vehicle from the Schuko socket, the charging
power was additionally limited to 2.2 kW. This is due to the fact that this connector is
commonly found in private homes. In this way, vehicle manufacturers want to protect
the electrical installation in homes against excessive overload caused by charging electric
vehicles [48]. It takes 11 h to fully charge (SoC = 100%) a battery that has been completely
discharged (SoC = 0%). Such a full charge can be achieved in a private house overnight.
When charging the battery at night, the energy must be taken from the power grid or from
an energy storage. However, lithium-ion batteries can be freely recharged regardless of the
charge level; the charging process can also be interrupted at any time without negative
consequences. Many electric vehicle users charge their vehicles at work, while staying at a
hotel or while shopping. People are looking for ways to charge electric vehicles for free.
Some institutions, such as the aforementioned stores, encourage customers to shop with
them in this way.
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The main limitation related to the use of energy from photovoltaic systems to charge
electric vehicles is the lack of energy generation at night and the very small amounts of
energy generated in the winter months in Poland [30]. The latter limitation depends on the
geographic location of the country and seasonally occurring insolation. Other renewable
energy sources do not have these limitations. Hydropower plants generate electricity
all the time. Wind farms generate electricity day and night when the wind blows. The
best solution is to have an energy mix in which energy comes from various renewable
sources [49].

Both test objects in the form of the carport and an electric vehicle during the battery-
charging process are shown in Figure 6. The latest carports use additional energy storage
to collect the energy produced and use it later to charge electric vehicles [50].

In previous articles, the authors used traditional statistical methods to describe the
amount of energy generated by photovoltaic systems [29]. However, they were assessed as
not being very useful for analyzing data provided by IoT devices in real time.

Metalog modeling is performed in real time. New data are automatically taken into
account by the algorithms updating the previous distribution according to the Bayes rule.
The new data update the a priori distribution to a posteriori. This is fundamentally different
from the traditional approach to statistics [51]. Process planning in controlled conditions
deviating from the natural, expensive data collection and statistical analysis are carried
out offline, and the results obtained are no longer real-time results. If the amount of data
increases, you can raise the order of the matched Metalog [52].

The authors applied a data-speaking approach to processes taking place in real con-
ditions. More and more objects and devices are devices of the Internet of Things with
sensors monitoring the operation of the entire device along with its close and distant sur-
roundings (which is its context). We built a model based on machine learning algorithms,
and then we asked questions to the model to find out the effects of the changes. Inference
algorithms allow for the fact that the answers to the questions asked are not searched for
in the database of historical process data but are generated by predictive and diagnostic
reasoning algorithms.

This article presents the use of the Metalog family of distributions to predict the
production of electricity by a photovoltaic carport with the accuracy of the probability
distribution [51]. The amount of electricity produced on particular days of the month by the
carport located in LSTP is used to determine the cumulative distribution function (CDF). It
is a continuous function. Then, the probability distribution function is determined. The
Metalog layout family allows you to make calculations for a specific carport located in a
specific location (the city of Lublin in Poland) and in a specific context (location on the
ground, location on the roof, inclination of panels, shadowing). The Metalog family of
distributions allows you to determine the percentiles in the production of electricity by
the carport and answer the question of what its value will be with the accuracy of the
probability distribution. Using the Metalog family of distributions, we obtain information
from a knowledge base, not from a database [52]. The difference is essential: in a database,
the answer to the question asked is obtained as a result of searching the database; in the
case of a knowledge base, the answer to the question is obtained as a result of running an
inference algorithm. Based on the calculations, the correctness of the selection of an electric
vehicle that can be charged from the carport is assessed.

The mathematical description of the Metalog family of probability distributions is
presented in the work of its creators. Keelin and Howard provide a detailed description in
their article [52] (Appendix A on page 17). They also run a website on which the principles
of the operation of the software that is created on the basis of this method are described in
detail [53]. In addition, other scientists who have used the Metalog distribution families
present in their articles a mathematical description of the algorithms used [54].
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3. Results
3.1. Analysis of the Instantaneous Power Generated by the Carport

The first purpose of the analysis is to calculate the probability of generating more
than 2.2 kW of power by the tested carport. This corresponds to the power drawn by
the Nissan Leaf’s onboard charger. The course of the power generated by the carport
over time for three days in September 2022 is shown in Figure 7. Lubelskie Voivodship is
characterized by the highest insolation in Poland. Polish conditions regarding the aspect of
generating energy from renewable sources were described in detail in [55]. The average
area air temperature in September 2022 in Poland was 12.3 ◦C.

Energies 2023, 16, x FOR PEER REVIEW 8 of 17 
 

 

searched for in the database of historical process data but are generated by predictive and 
diagnostic reasoning algorithms. 

This article presents the use of the Metalog family of distributions to predict the 
production of electricity by a photovoltaic carport with the accuracy of the probability 
distribution [51]. The amount of electricity produced on particular days of the month by 
the carport located in LSTP is used to determine the cumulative distribution function 
(CDF). It is a continuous function. Then, the probability distribution function is deter-
mined. The Metalog layout family allows you to make calculations for a specific carport 
located in a specific location (the city of Lublin in Poland) and in a specific context (loca-
tion on the ground, location on the roof, inclination of panels, shadowing). The Metalog 
family of distributions allows you to determine the percentiles in the production of elec-
tricity by the carport and answer the question of what its value will be with the accuracy 
of the probability distribution. Using the Metalog family of distributions, we obtain in-
formation from a knowledge base, not from a database [52]. The difference is essential: in 
a database, the answer to the question asked is obtained as a result of searching the da-
tabase; in the case of a knowledge base, the answer to the question is obtained as a result 
of running an inference algorithm. Based on the calculations, the correctness of the selec-
tion of an electric vehicle that can be charged from the carport is assessed. 

The mathematical description of the Metalog family of probability distributions is 
presented in the work of its creators. Keelin and Howard provide a detailed description 
in their article [52] (Appendix A on page 17). They also run a website on which the prin-
ciples of the operation of the software that is created on the basis of this method are de-
scribed in detail [53]. In addition, other scientists who have used the Metalog distribution 
families present in their articles a mathematical description of the algorithms used [54]. 

3. Results 
3.1. Analysis of the Instantaneous Power Generated by the Carport 

The first purpose of the analysis is to calculate the probability of generating more 
than 2.2 kW of power by the tested carport. This corresponds to the power drawn by the 
Nissan Leaf’s onboard charger. The course of the power generated by the carport over 
time for three days in September 2022 is shown in Figure 7. Lubelskie Voivodship is 
characterized by the highest insolation in Poland. Polish conditions regarding the aspect 
of generating energy from renewable sources were described in detail in [55]. The aver-
age area air temperature in September 2022 in Poland was 12.3 °C. 

 
Figure 7. Course as a function of time of the power generated by the LSTP carport on 5, 20 and 23 
September 2022. 

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00
Time [hh:mm]

0

500

1000

1500

2000

2500

Po
w

er
 [W

]

September 5, 2022
September 20, 2022
September 23, 2022

Figure 7. Course as a function of time of the power generated by the LSTP carport on 5, 20 and
23 September 2022.

The authors decided to study three typical cases of generating energy on a sunny day
(5 September), partial cloud cover (23 September) and heavy cloud cover (20 September).
Graphs were made for the data coming from the data cloud and made available for viewing
and saving on a computer hard drive in *.csv format. The data presented in the charts show
that not on all days was the power of the carport higher than 2.2 kW. As the graphs present,
for only a few hours on 5 August, the power generated by the carport was higher than
2.2 kW.

GeNIe 4.0 Academic software was used for a detailed analysis of the power generated
by the carport [56]. The cumulative distribution function (CDF) and the probability density
function (PDF) are shown in Figure 8. These studies were unsuccessful due to the distortion
of the calculation of the probability distribution of the power produced by the carport by
measurements being taken at night, when the carport does not generate energy.

It was decided to limit the next tests to measurements of the carport’s power during
the day only, and only the measurement data from 5 September 2022 between 8.00 a.m.
and 6.00 p.m. were taken into account. This time, the correct cumulative distribution
function (CDF) and probability density function (PDF) graphs for the power generated by
the carport were obtained, as shown in Figure 9.
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Then, the information on the power generated by the carport was obtained from the
knowledge base. The program’s answer to the question asked is as follows: the probability
of generating power equal to or less than 2.2 kW by the carport on 5 September 2022 is
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0.7073 (last row in Figure 10). Thus, the probability of the carport generating more than
2.2 kW is 1-0.7073.
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Figure 10. A method of obtaining information from the knowledge base.

The probability of the carport generating more than 2.2 kW of power on 20 and
23 September 2022 is 0. The analyses show that the photovoltaic carport is not able to
generate more than 2.2 kW to power the vehicle’s onboard charger from the energy it
produces. This means that in the case of the carport and electric-vehicle configuration in
question, it is not possible to operate the system in an off-grid configuration. Without a
connection to the power grid of the LSTP sectors, the carport is not able to generate enough
power to generate more than 2.2 kW in the required time of 11 h. The conclusion is that
the carport must work in conjunction with the energy network (on-grid). Shortages of
power needed to charge an electric vehicle can be supplemented from the power grid.
The surplus of energy produced will also go there and power the receivers located in the
LSTP buildings.

3.2. Analysis of the Daily Amount of Energy Produced by the Carport

The report presented by ACEA (January 2022) shows that the average annual mileage
of vehicles in Poland in 2020 was 8607 km. This means that an average Pole drives less than
24 km a day. Using very simplified calculations, the Nissan Leaf vehicle can therefore be
charged once every 6 days because its range on a single charge is estimated by the owner
at 150 km. However, many people drive their electric vehicle more than the statistical
24 km per day. For further calculations, the authors assumed an average daily mileage
of 50 km. To cover such a route, the tested Nissan Leaf vehicle needs approx. 8 kWh of
electricity. Figure 11 depicts the amount of daily energy produced by the examined carport
in September 2022. The presented data were downloaded from the platform monitoring
the work of the carport and displayed in the program for graphic presentation in the form
of charts. Such simple data show that during 16 working days that month, the energy
generated by the carport was higher than 8 kWh.

Such analysis can also be performed for other months and years of the operation of the
photovoltaic system on the carport. A daily production of electricity of more than 8 kWh
per day is possible in Poland during the summer months. Figure 12 shows the daily energy
production by the carport in July 2020. The presented data were taken from the platform
monitoring the work of the carport. The data-collection system on cloud servers is able
to collect and securely store data from the operation of the carport throughout the life of
the device.
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Figure 11. Daily electricity production by the LSTP carport in September 2022.
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Figure 13 shows the charts of the cumulative distribution function (CDF) and the
probability density function (PDF) for the daily energy generated by the carport in Septem-
ber 2022.

The authors decided to make accurate calculations related to the amount of energy
produced daily by the carport. For this purpose, the information on the energy generated by
the carport was obtained from the knowledge base. The program’s answer to the question
inquired is as follows: the probability of the daily production of electricity equal to or less
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than 8 kWh by the carport in the month of September 2022 is 0.4666. So, the probability of
producing more than 8 kWh is 1-0.4666.
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3.3. Analysis of the Monthly Amount of Energy Produced by the Carport

Data from the photovoltaic-system-monitoring platform are convenient when plan-
ning the charging of electric vehicles from carports and ground and rooftop photovoltaic
systems. As we wrote earlier, the Nissan Leaf electric vehicle needs 8 kWh of electricity
to travel 50 km. Within a month, this translates into 240 kWh of electricity, on which the
vehicle can cover 1500 km. Figure 14 shows a comparison of the monthly energy production
by the carport in particular years of operation. The presented data show that in the months
from March to September, the carport is able to provide the required amounts of energy. In
the autumn and winter months from October to February, the carport is unable to produce
the expected amount of energy. The monthly energy production of the carport can also be
calculated using the Metalog family of distributions.

Not only the owners of carports and other photovoltaic installations can access large
amounts of real data from various photovoltaic systems installed around the world, but
some manufacturers of photovoltaic inverters also have large cloud resources and make
them publicly available. An example is the SolarEdge platform [54], which allows access to
the monitoring systems of many installations that use the company’s inverter. Figure 15
shows the monthly generated graphs of the 3 kWp system installed in Randburg, South
Africa. The performance of Polish and South African photovoltaic installations can be
quickly compared with each other. South Africa’s insolation is not as seasonally volatile,
and the amount of energy produced is more similar in the different months of the year.
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4. Conclusions

This article presents a method for assessing the selection of carport power for an
electric vehicle using the Metalog probability distribution family. Carports are used to
generate electricity and shade for vehicles parked underneath them. On the roof of the
carport, there is a photovoltaic system consisting of photovoltaic panels and an inverter. An
inverter with Internet of Things functions generates data packets describing the operation
of the entire system at certain intervals and sends them via wireless transmission to a cloud
server. This article proves that the transmitted data can be processed offline and later be
used to determine the charging capacity of individual electric vehicles. The article presents
the use of the Metalog family of distributions to predict the production of electricity by a
photovoltaic carport with the accuracy of the probability distribution.

The analyses presented in this article show that the photovoltaic carport is not able
to generate more than 2.2 kW to power the vehicle’s onboard charger from the energy it
produces. This means that in the case of the carport and electric vehicle configuration in
question, it is not possible to operate the system in an off-grid configuration. Without a
connection to the power grid of the LSTP buildings, the carport is not able to generate
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enough power to generate more than 2.2 kW in the required time of 11 h. The conclusion is
that the carport must work in conjunction with the energy network (on-grid).

In the next step of the research, the authors decided to make accurate calculations
related to the amount of energy produced daily by the carport. For this purpose, the
information on the energy generated by the carport was obtained from the knowledge base.
The tested Nissan Leaf electric vehicle needs 8 kWh of electricity to travel 50 km. Within a
month, this translates into 240 kWh of electricity, on which the vehicle can cover 1500 km.
The presented data show that in the months from March to September, the carport is able
to provide the required amounts of energy. In the autumn and winter months from October
to February, the carport is unable to produce the expected amount of energy.

The presented method is universal and can be used both to calculate the probability
of generating a specific amount of power in a given time and to calculate the amount of
energy produced daily by carports and other photovoltaic installations.

The authors intend to continue their research. In the future, the carport will be
expanded with a stationary energy storage. The calculation of its energy capacity will be
the research goal of the next article.
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3. Čulík, K.; Štefancová, V.; Hrudkay, K.; Morgoš, J. Interior Heating and Its Influence on Electric Bus Consumption. Energies 2021,

14, 8346. [CrossRef]
4. Dizo, J.; Blatnický, M.; Semenov, S.; Mikhailov, E.; Kostrzewski, M.; Drozdziel, P.; Štastniak, P. Electric and plug-in hybrid vehicles

and their infrastructure in a particular European region. Transp. Res. Procedia 2021, 55, 629–636. [CrossRef]
5. Liberto, C.; Valenti, G.; Orchi, S.; Lelli, M.; Nigro, M.; Ferrara, M. The Impact of Electric Mobility Scenarios in Large Urban Areas:

The Rome Case Study. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3540–3549. [CrossRef]
6. Marczak, H.; Drozdziel, P. Analysis of Pollutants Emission into the Air at the Stage of an Electric Vehicle Operation. J. Ecol. Eng.

2021, 22, 182–188. [CrossRef]
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