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Abstract: Recently, electric vehicles have gained enormous popularity due to their performance and
efficiency. The investment in developing this new technology is justified by the increased awareness
of the environmental impacts caused by combustion vehicles, such as greenhouse gas emissions,
which have contributed to global warming and the depletion of oil reserves that are not renewable
energy sources. Lithium-ion batteries are the most promising for electric vehicle (EV) applications.
They have been widely used for their advantages, such as high energy density, many cycles, and low
self-discharge. This work extensively investigates the main methods of estimating the state of charge
(SoC) obtained through a literature review. A total of 109 relevant articles were found using the prism
method. Some basic concepts of the state of health (SoH); a battery management system (BMS); and
some models that can perform SoC estimation are presented. Challenges encountered in this task are
discussed, such as the nonlinear characteristics of lithium-ion batteries that must be considered in the
algorithms applied to the BMS. Thus, the set of concepts examined in this review supports the need
to evolve the devices and develop new methods for estimating the SoC, which is increasingly more
accurate and faster. This review shows that these tools tend to be continuously more dependent on
artificial intelligence methods, especially hybrid algorithms, which require less training time and low
computational cost, delivering real-time information to embedded systems.

Keywords: Li-ion battery; state of charge; electric vehicles; estimation

1. Introduction

Several environmental phenomena, such as global warming, highlight the importance
of developing new technologies. Among the various sectors that use fossil fuels, the
transport sector is primarily responsible for generating pollutants and greenhouse gas
emissions, totaling approximately 20% of global carbon dioxide emissions [1].

This is the case of combustion vehicles, which are seen as the main vehicles responsible
for carbon dioxide (CO2) emissions . In 2017, there was an increase in demand for oil of
1.6%, reaching a consumption of 1.5 million barrels per day, a rate higher than the average
of 1% recorded in this decade. Additionally, CO2 emissions were increased by 1.4% in the
same year, reaching the most elevated rate globally, with 32.5 gigatons emitted [2].
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These observations opened new perspectives for electric vehicles (EVs), a promising
alternative for reducing greenhouse gas emissions. Additionally, they can use a technology
based on renewable energy sources [3].

Among the technologies involving EVs, different types of batteries stand out, such
as nickel-cadmium (NiCad), nickel–metal hydride (NiMH), lithium iron phosphate (Li-
FePO4), and lithium-polymer (Li-Po4) batteries [4]. The SoH and the number of cycles of
each battery technology depend mainly on the anodic and cathodic materials used in its
construction [5].

Kostopoulos et al. [6] argue that lithium-ion batteries represent the heart of most EVs
since this model involves promising features such as high voltage, high energy density, low
self-discharge, and long life cycles [7] when compared to other available types [8].

A reliable estimate of the battery SoC is necessary to control charge duration and to
prevent failures [7]. SoC estimation is one of the most critical functions in the EV Li-ion
BMS. The most used methods consider the measured values, models, load parameters, and
algorithms [9].

The estimation of SoC is not precise, and it is not easy to perform. Different studies
obtain alternative measurable parameters for calculating battery performance, such as cur-
rent, voltage, resistance, and temperature [10]. Waag et al. [11] point out charge estimation
as a challenge as it involves internal and external conditions to the battery.

Although the literature presents many investigations involving procedures for esti-
mating battery charge, there is a lack of studies that focus on charge estimation methods
and models, point out their advantages and disadvantages in a critical way, and direct to
future trends; such studies may result in insights for researchers and manufacturers into
EV advancements and development.

Thus, this study aims to provide discussions involving the survey of the state of charge
of batteries, pointing out the main critical problems, solutions obtained by each method,
and the challenges that remain unsolved.

This manuscript is organized as follows: this initial section aims to set the scene and
present the study’s objective; Section 2 presents the methods for the literature review and
for building the visual maps and graphs for analysis, Section 3 provides a presentation
of battery models and how to control them, SoC estimation methods are discussed in
Section 4, Section 5 presents a critical discussion on charge estimation methods, and
Section 6 concludes the review.

2. Methodology for Paper Selection

A survey of studies in the literature was carried out using the relevance calculated
by the databases as a guideline. The theoretical framework was based on full papers
published in databases such as Science Direct®, Scopus®, IEEE®, and MDPI®, searched
on 26 September 2022. It delimited the number of articles into 110 for a deeper analysis,
with 12 reviews. The other 96 studies had their content analyzed. The combination of
keywords used in the searches was “estimation” AND “state of charge” OR “state of health”
AND “vehicle.” The search was reduced by analyzing only the last ten years, that is, since
2013. These articles were read in full and served as a basis for the analysis carried out in
this study.

A mapping of the co-occurrence of the keywords was carried out using the VOSviewer
software [12], for relational analysis of the topics that constitute the selected studies. Figure 1
presents the co-occurrence of keywords, in which it is possible to verify the formation
of three main clusters of information. The first, in green, indicates the application of the
batteries themselves, focusing on vehicles and their models; the second, in red, shows what
can be monitored/estimated, especially indicating the SoH of the batteries; finally, in blue,
the group presents the need to carry out SoC, indicating the use of different Kalman filters
for this purpose as the primary information.
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Figure 1. Co-occurrence of terms—final portfolio.

The literature also points out some reviews on battery charge estimation in electric
vehicles. Berecibar et al. [3] showed one of the primary studies on estimating the health
status of lithium-ion batteries, pointing out that there is no perfect solution for this task.
Chen et al. [13] reviewed lithium-ion batteries, introducing a new method of classifying
used devices of this kind. Rezvanizaniani et al. [14] presented a review of battery health
prognostic and management techniques focused on battery life issues under dynamic oper-
ating conditions. Nejad et al. [15] introduced a review of clustered parameter equivalent
circuit model structures used in lithium-ion batteries for energy storage applications.

The above-mentioned reviews also clearly show that all of the techniques for SoC
estimation still need more development and improvement to reduce measurement error
since each one presents advantages and disadvantages. It is also necessary to find more
effective methods that can work in real-time, dealing with variations, nonlinearities, dif-
ferent climatic parameters, and parametric conditions that encompass the vehicles. This
improvement is of crucial importance to the automobile industry, users, and academia in
general, justifying the preparation of the present study.

3. Battery Modelling and Control

The main types of battery modeling found in the current literature to characterize their
dynamic behavior are presented and discussed in the sequence:

• Electrochemical Models: they are mainly composed of systems of partial differential
equations based on batteries’ physical and chemical characteristics [16]. To use an ap-
propriate model, one can employ optimization techniques for a set of electrochemical
parameters [8];

• Models Based on Equivalent Circuits: equivalent circuit models can simulate the
static and dynamic behavior of batteries, composed of associations of resistors, capaci-
tors, inductors, and nonlinear components such as Warburg impedance [16,17];

• Behavioral and Black-Box Models: Behavioral models and the black-box model
(BBM) obtain the output behavior through nonlinear relationships between system
inputs, without the need to perform physical or electrical specifications [16].
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Charge estimation is intrinsically linked to the battery model and its accuracy. Due
to the nonlinear characteristics of batteries, determining the SoC and SoH values is chal-
lenging. The estimation error tends to increase in systems in which the model is inaccurate,
or measurements cannot be made in real-time. The battery performance will vary accord-
ing to temperature, operating time, and charging and discharging actions over time [18].
Therefore, it is crucial to develop models that cover all of the possible operating conditions.
According to Fotouhi et al. [19], fast and fairly accurate models are preferable rather than
complex and highly accurate ones. They also state that EV discharge rates in the modeling
are also important.

In this sense, the BMS is the device dedicated to monitoring and controlling the
operation of the battery pack to prolong its useful life, operating efficiency, and safety, and
to enable the indicators of battery operation [20]. The BMS comprises sensors, controllers,
and actuators, connecting large amounts of information read by different models and
algorithms [18]. This device must ensure that the operation of the entire battery pack is
efficient and, simultaneously, reliable [16]. The BMS estimates indicators such as SoC and
SoH in EVs. By estimating the SoH, the user is aware of the current situation of their battery
pack and when it should be replaced [20].

When related to EVs, there is particular concern about the safety of the battery bank
regarding possible mechanical collisions; fire risks; and the exact estimation of the SoC .
Note that many batteries suffer serious charges and discharges, affecting the battery life,
particularly lithium-ion batteries [8]. In this way, protection circuits against overloads and
deep discharges are emphasized. Such events are the responsibility of the BMS, highlighting
the need for indicators such as SoC and SoH [20].

Following these premises, SoC estimation is critical in enabling the safe and efficient
use of batteries in EVs. Therefore, the literature presents the development of numerous
techniques for its realization, as discussed in the following section.

4. State of Charge Estimation Methods

The literature introduces different approaches for estimating the EV batteries’ load,
health, and functional status [21]. Among the numerous algorithms and models created for
SoC estimation, some stand out for their simplicity of implementation or complexity [18].
This review divides the SOC estimation methods into five categories, which are shown in
Figure 2.

In conventional methods, SoC estimation occurs indirectly by combining the phys-
ical characteristics of the battery, such as voltage, current, resistance, temperature, and
impedance [3,5]. For example, by identifying the critical parameters of the battery pack, an
improved control and diagnostic system can be obtained, ensuring the safety and longevity
of the battery pack [8]. To perform the SoC estimation techniques based on adaptive filters,
nonlinear observers can be used in complex and nonlinear systems [18].

Learning algorithms comprise computational intelligence algorithms, referring to
fuzzy logic, neural networks, and bio-inspired optimization metaheuristics. Another
possibility is the hybrid approach, in which two or more of these methods are combined to
improve the accuracy of SoC estimation [18].

However, Berecibar et al. [3] reported that a perfect technique for SoC estimation has
not yet been developed. Additionally, the performance of each one depends on the data
available for load forecasting. The following subsections present the most used methods in
the literature, describing a summary of the advantages and disadvantages, the problems
they solve, and some issues of their performance.
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Figure 2. Classification of SOC estimation methods.

4.1. Conventional Methods

The Coulomb count (CC) method, also known as the Ampere-hour (Ah) integration
method, is usually applied to perform SoC and SoH estimation. It is based on the product
of current and discharge time [3]. The method compares the total charge of the battery
concerning the charge released or stored. The CC is simple to implement, but its accu-
racy depends on the sensor. The error accumulated during the measurements cannot be
discarded. Still, predicting the amount of SoC load is difficult, so an incomplete load can
generate a large amount of error [20].

The electrochemical impedance spectroscopy (EIS) is a method to perform SoC estima-
tion, in which small current signals with different frequencies are applied to the battery. This
strategy is suitable for offline analysis as the estimate takes some time to be completed [20].

The open-circuit voltage (OCV) method is widely used to perform an initial estimate
of the SoC for a static or uncharged battery. Nevertheless, these conditions are not always
observed during its use as it does not allow for the use of the technique in real time.
Therefore, this method is usually applied together with the Ah method to determine the
initial SoC prediction [9].
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Chen et al. [22], in their work, mathematically model batteries and perform simulation
tests with electrochemical models to estimate charge capacity. On the other hand, Dong
et al. [23] use the ampere-hour integration, a conventional estimation method, to estimate
the battery charge. They performed simulations, but there was no error calculation in their
work. Maltezo et al. [24] present a battery management system for lead-acid battery banks
used in electric vehicles. The measurement of the state of charge and state of health of
the battery is derived from its charging voltage, no-load voltage, charging current, and
temperature during experimentation. Additionally, Khan et al. [25] used electrochemical
impedance spectroscopy as a reference for optimization with another method, the pseudo-
random binary sequence. Hardware was programmed for testing, and the accuracy reached
was 98%.

4.2. Methods Based on Filtering Algorithms

The Kalman filter (KF) is a technique capable of predicting the behavior of complex
systems, such as the SoC of a battery. Although successful and widely used, it presents a
high computational cost and difficulty in representing nonlinear systems [18]. The imple-
mentation of this technique, when applied to SoC estimation, can be divided into two main
parts. In the first, the prediction of the output variable of the current state is performed; in
the second, the estimate is updated to minimize the error [3]. The method presents good
accuracy and is not sensitive to the initial SoC and associated noise. It requires several
parameters as input, such as voltage, current, capacity, Coulomb efficiency, self-discharge
rate, initial SoC value, and battery model.

The technique is based on partial derivatives and Taylor Series expansion to linearize
the nonlinear behavior of the battery pack, allowing it to operate in nonlinear systems.
Despite not presenting the best estimation values, the method is adaptable to the different
battery models used for simulations. However, this method presents drawbacks as it
works effectively only with first- and second-order nonlinear models; the calculated errors
could be more satisfactory. The articles [26–31] worked with the Kalman filter and some
variations. They made simulations and validations with different conduction cycles to
verify the robustness of the method. References [32–38] operated with the extended Kalman
filter to estimate SoC and SOH. In particular, the authors [32,33,39] used the least square
method to find the best set of parameters to be applied in the estimation. Using the
autoregressive model with exogenous input (ARX) to find battery parameters, Ko and
Choi [40] used the extended Kalman filter (EKF) with a 10 Ah cell (HW 38120 L/S).

Zheng and Zhang [41] focused on the effects of temperature on SoC estimation using
EKF. In testing the algorithm, the authors applied different temperatures to check the
performance. Seo et al. [42] proceeded with similar steps, but they used a new battery
model. Wang et al. [43] carried out their studies with the EKF measuring the internal
resistance of the battery in real-time, while Lin et al. [44] made EKF with dynamic noise
adjustments. Zhou et al. [45] tested the estimation of SoC by EKF with stress tests using
conduction cycles. [46] compared the EKF with the performance of the proportional integral
observer method and concluded that EKF performed better.

Refs. [47–50] worked with the adaptive extended Kalman filter (AEKF). Shen et al. [51]
used a dual-extended Kalman filter to obtain more precision and reduce errors caused
by the sensor. Wang et al. [52] applied a hierarchical adaptive extended Kalman filter to
estimate SOC and made tests with the urban dynamometer driving schedule (UDDS) cycle.

Tran et al. [53] addressed an autoregressive-exogenous model to define the parameters
for SoC estimation by dual EKF. These parameters were updated online. Xiong et al. [54]
applied a Robust EKF, which showed better results than the traditional EKF. They per-
formed tests considering urban driving cycles, showing accurate error values even with
the imprecise initial SoC. Wu et al. [55] used the adaptive forgetting factor recursive aug-
mented least squares algorithm (AFFRALS) to find the best parameters of an affine iterative
adaptive extended Kalman filter (AIAEKF), which performed better than EKF, even with
unknown SoC.
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Su et al. [56] compared the EKF with the multiple model adaptive estimation method
based on a bank of Kalman filters, which showed more accurate results and a faster
conversion rate. Liu et al. [57] used the least square method to find the parameters of an
extreme gradient boosting method (XGBoost). Takyi-Aninakwa et al. [58] used robust long
short-term memory (LSTM) to adjust the model and applied it in a squared gain EKF to
eliminate noise.

The performance of adaptive extended Kalman filter (AEKF) is significantly dependent
on the identification of lithium-ion battery model parameters and the noise information.
In this sense, Wu et al. [59] used auto-tuning multiple forgetting factors recursive least
squares (AMFFRLS) to find the best parameters to estimate the SoC by EKF. The authors
proposed an adaptive timescale dual extended Kalman filter (ATSDEKF) with a sliding
window forgetting factor approximate total recursive least squares (SWFFATRLS) to up-
date the battery capacity. The same research group applied multiple linear regression to
find the better initial parameters of an adaptive forgetting factor adaptive Kalman filter
(AFFAKF) to manage and estimate the SoC and perform the correction of the current and
next measurements, even without the exact current values Wu et al. [60].

He et al. [61] applied the unscented Kalman filter (UKF) in the aforementioned task,
while Zheng et al. [62] used a double Kalman filter and UKF with an extended Kalman
filter. The EKF was responsible for updating the parameters, and the UKF was responsible
for estimating the SoC. Fu et al. [63] used forgetting factor recursive least squares to find
the simulation parameters of the cubature Kalman filter (CKF) to estimate SoC. Zeng et
al. [64] worked with two fuzzy UKF and a bayesian identification algorithm to find the best
parameters to estimate the battery’s charge and the system’s SoH. The process included
tests in conduction cycles within the Matlab software. Yun et al. [65] used something
similar: a variable bayesian unscented Kalman filter coupled with a variable bayesian
square-root cubature Kalman filter to estimate battery SoC. Liu et al. [66] proposed an
adaptive square root unscented Kalman filter that overcame the EKF and UKF and proved
to be more accurate and stable, and they presented a better self-adaptive response to the
system. Lv et al. [67] addressed the adaptive UKF for finding noise that affected the system
when using only UKF in SoC estimate tasks. Zheng et al. [68] found the parameters of the
UKF by the deviation compensation recursive least squares method. Miao and Gao [69]
proposed an adaptive fractional-order UKM, using an augmented vector method to find the
parameters. Biswas et al. [70] proposed the augmented unscented Kalman filter (AUKF),
which proved more accurate than the UKF. The model also provided automatic parameter
adjustment according to driving cycle tests.

In the work from Bhuvana et al. [71], the comparative efficiency and complexity of
the EKF, the UKF, and the CKF concerning battery internal state estimation were realized.
The results clearly showed that the CKF-based method significantly increases the efficiency
of the state estimation compared to the others. As the implementation on an embedded
platform is always a trade-off between complexity and accuracy, the use of the CKF-based
SoC estimation method was suggested. The results of the work from Linghu et al. [72]
indicated that compared with the UKF and the adaptive CKF, the adaptive fifth-degree
CKF could achieve higher state-of-charge estimation accuracy and better overcome the
impact of significant measurement error and initial error.

4.3. Methods Based on Nonlinear Observers

The sliding mode observer (SMO) is a technique that guarantees stability and robust-
ness in measurement, even in the presence of uncertainties and noise. The resulting model
is an equation of state such that the system output is decomposed into observer equations
following the stage. The SMO is based on the exhaustive study of battery behavior, so it
is possible to select the appropriate parameters of the SMO, such as switching gains and
uncertainty limits [73].

The nonlinear observer (NLO) method can perform SoC estimation from a set of
nonlinear observation equations, using models based on a first-order RC equivalent circuit.
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In the NLO, performing a high computational cost matrix calculation is unnecessary,
presenting robustness against measurement errors and uncertainties [74]. When compared
to SMO, this method can improve accuracy and convergence time. However, obtaining an
adequate gain matrix to reduce the error is difficult.

Othman et al. [75] proposed a simple and fast online adaptive observer for the SoC
estimation of the lithium-ion battery. It was confirmed that the computation time of the pro-
posed algorithm is reduced by approximately 2.5 times compared to the extended Kalman
filter-recursive least square (EKF-RLS) method. Despite the reduction in computation time,
the errors are comparable to the latter. The low computational cost is significant when
considering the need to accurately estimate the SoC of a large number of cells in a battery
pack of an EV. Brembeck [76] presented a new highly automated framework for generating
model based observers based on different types of Kalman filters extended with constraint
handling algorithms for the use in embedded application.

Tran et al. [77] proposed a model-based approach using a nonlinear state observer and
an online parameter identification algorithm. A battery model based on an ARX was used
with recursive least squares (RLS) for parameter identification, in an effort to guarantee
reliable estimation results under various operating conditions. The validity and feasibility
of the proposed algorithm were verified by an experimental setup of six Li-ion battery cells
connected in a module in series. It was found that, when compared with a simple linear
state observer (LSO), an NLO can further reduce the SoC error by 1%.

4.4. Methods Based on Learning Algorithms

Artificial neural networks (ANN) are characterized by adaptability and self-learning.
ANNs can be used in many systems with a reasonable approximation, including complex
nonlinear cases. Still, a database that describes the system’s dynamics is required. Regard-
ing SoC estimation tasks when using ANNs, the most usual inputs are voltage, current,
and temperature [78]. The drawback of the ANN for SoC estimation is the need for a
significant computational effort and the amount of memory required for its implementation
and tuning. It requests a large dataset with all of the parametric variations that may occur
during the load and unload cycles and different temperatures at which batteries can oper-
ate [79,80]. Kang et al. [81] worked with a radial basis function neural network to remove
the effects of battery degradation in the SoC estimation. Furthermore, it compared the
created model with a conventional neural network and performed tests with conduction
cycles to verify robustness.

Gao et al. [82] proposed a SoC estimation method based on self-recurrent wavelet
neural network and compared the method with a conventional neural network, a back-
propagation neural network (Multilayer Perceptron—MLP), and a wavelet neural network.
Zhang et al. [83] mention the use of a backpropagation neural network and a particle swarm
algorithm to optimize the network. Bezha and Nagaoka [84] also used backpropagation
ANN to estimate SoC values, varying the number of network inputs (voltage, current,
cycles, and temperature) to find a more robust model. The neural architecture is not men-
tioned in both cases, but the authors are dealing with an MLP [85]. Gu and Wang [86]
used an extreme learning machine to model the SoC of the battery and the recursive least
squares algorithm to perform the online estimation. With beetle antennae search the au-
thors optimized the network to have better parameters. In the work from Ströbel et al. [87],
the battery’s temperature is estimated using an MLP with electrochemical impedance
spectroscopy. The Bayesian regularization backpropagation, and Levenberg-Marquardt
backpropagation, was used to adjust the model.

Ezemobi et al. [88] used ANN to estimate battery health under different load condi-
tions. Hamida et al. [89] employed ANN with the artificial hummingbird optimization
technique (AHOT) to find the optimal parameters for the network. The articles [90,91]
worked with a nonlinear autoregressive neural network with exogenous inputs (NARX)
to estimate the SoC and SoH of the battery, considering as markers the accuracy of the
estimate, the duration of the network training, the robustness to noise, and the impreci-
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sion of the initial estimate. The proposed model is a combination of five artificial neural
networks. Lipu et al. [92] applied a time-delay neural network (TDNN) optimized by an
improved firefly algorithm (iFA), whereas SoC accuracy is subject to the proper parameter
value. The iFA determines the optimal value of the free parameters of the ANN.

Some investigations proposed deep learning approaches to deal with the battery
challenges. The authors [93–95] used an MLP with an LSTM considering a set of different
inputs to estimate SoC and SoH values. Focusing on low temperatures, Cui et al. [96]
proposed a convolutional neural network with a bidirectional weighted gated recurrent
unit (CNN-BWGRU) to estimate SoC.

Fuzzy logic is one of the most important areas of computational intelligence used to
model complex and nonlinear systems [97]. The design of a fuzzy system is composed of a
fuzzification unit responsible for translating the actual inputs into fuzzy sets, and a group
of fuzzy rules that correlates the inputs and outputs. An inference mechanism named
defuzzification corresponds to the inverse fuzzification process, in which fuzzy output
variables are converted into actual output variables. Fuzzy logic emulates the human
capacity for rational decision-making even in ambiguous and uncertain situations [98,99].
However, its implementation requires a large number of mathematical operations and
available memory, as well as a processing unit. Hou et al. [100] used an ANN (indeed an
MLP) endowed with backpropagation to select the parameters and then proposed a fuzzy
neural network to estimate the state of charge.

Algorithms from other nature were presented in recent studies. Gruosso et al. [101]
estimated the state of charge without using a battery current sensor, creating a virtual
sensor with system information. The proposal addressed a principal component analysis
(PCA) with support vector regression (SVR). Surya et al. [102] created an equivalent cell
model with a support vector machine (SVM). The articles [103,104] worked with XGBoost
and supervised regression modeling to estimate the state of charge and health without the
initial battery charge values.

4.5. Hybrid Methods

Hybrid methods can be defined as strategies that use two or more techniques to
perform SoC estimation. This approach considerably increases accuracy and efficiency but
at a higher computational cost than single algorithms.

Li et al. [105] worked with an equivalent circuit model (ECM), applying an RLS method
to find the system parameters of an adaptive EKF to estimate the SoC. They also aggregated
the Elman neural network (ELM) to predict the battery capacity, validating the results with
vehicle driving cycles. Shen et al. [106] applied a transformer neural network (TNN) with
an innovative immersion and invariance (I&I) adaptive observer to reduce the oscillations
in the predictions found by the ANN. Zhang and Zhang [107] used a fuzzy method with
UKF(FUKF) to find an estimator free of system and measurement noise. Ref. [108] applied
an ANN (an MLP) to estimate the SoC and UKF to reduce the percentage of errors.

Zahid et al. [109] proposed a subtractive clustering-based neuro-fuzzy architecture
(SC-ANFIS), in which the neuro-fuzzy set learning features from the dataset and adjusts the
parameters. In the work by Rahbari et al. [110], the adaptive network-based fuzzy inference
system (ANFIS) is used together with teaching learning-based optimization (TLBO). Shen
et al. [111] used moving horizon estimation (MHE) with EKF, and Poloei et al. [112] used a
moving window least mean square approach (LMS) with EKF to estimate the state of charge.
Arasaratnam et al. [113] applied a dual bayesian estimation scheme with a square-root
recursive least-squares (SRRLS) estimator and an extended Kalman–Bucy filter (EKBF) to
determine the SoC.

Finally, Table 1 summarizes the most relevant information among the charge estimation
methods described in this section, grouping them by method and indicating the main
published results with root mean square error (RMSE) and mean absolute error (MAE)
values, advantages and disadvantages, important considerations, and limitations.
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Table 1. Charge estimation methods.

Charge Estimation
Methods Method Main Results Advantages Disadvantages Considerations and Limi-

tations References

Conventional Methods
Ah,
OCV, and
EIS

Those that show error val-
ues have an RMSE of
1.65%, which is a hybrid
model with machine learn-
ing

No need for an algorithm
to implement [18]

Battery needed to be in
resting mode for long
time [18]

Authors who did not
present errors performed
simulations or measure-
ment tests. The hybrid
algorithm obtained results
from physical tests with
an embedded algorithm

[22–25]

Kalman Filter-Based

KF,
EKF,
AKF,
UKF,
DKF, and
AUKF

MAE—range of values
0.0426% to 2.22%,
RMSE—range of values
0.0044% to 4.58%; these
vary depending on the fil-
ter used

Acceptable accuracy, deal-
ing with white noise [18]

Need for an accurate
enough battery model,
extensive time and com-
putational memory, and a
complicated algorithm to
implement [18]

The method’s accuracy is
linked to the accuracy of
the battery model. Such
processes need longer ex-
ecution time and memory
because they have a more
complex algorithm

[26–72]

Nonlinear
Observed-Based

SMO,
NLO

MAE—0.928% and
RMSE—1.7%

Acceptable accuracy and
robustness against model-
ing uncertainties [18]

Difficult for online appli-
cation due to the compli-
cated computational algo-
rithm [18]

The authors performed
physical tests. Still, nonlin-
ear methods are difficult
to apply online due to the
algorithm’s complexity

[73–77]

Learning-Based

Techniques of machine
and deep learning,
ANN and their variations,
fuzzy logic

MAE—range of values
0.001929% to 3%,
RMSE—range of values
0.018% to 3%; these vary
depending on the filter
used

Powerful ability to ap-
proximate nonlinear func-
tions [18]

Need for a large number
of data to train the algo-
rithm applicable for all op-
erating conditions [18]

Applicable for all operat-
ing conditions but need a
large number of data for
algorithm training; they
also require more process-
ing time and cost

[78,81–84,86–104]

Hybrid-Based

RLS + AEKF,
TNN + I,
FUKF,
ANN + UKF,
ELM + Fuzzy,
MHE + EKF,
ANFIS, and
SRRLS + EKBF

RMSE—range of values
0.01119% to 3%; these vary
depending on the filter
used

They reduce the cost of the
system but also make the
estimation results more ef-
fective and reliable [18]

Combining two or three
methods is a laborious
task and has high complex
computation [18]

The combination of the
two strategies increases
the accuracy of the system

[105–113]
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5. Discussion and Future Directions

After carefully reading over a hundred works, a relevant analysis can be conducted
regarding the current state of the methods applied to battery charge estimation in electric
vehicles. Li-ion batteries are currently the most used due to several factors, such as the
energy density, number of cycles, and high voltage. Thus, these batteries are currently the
most viable for EV applications despite their high cost.

Most of the studies on SoC prediction present results obtained from experiments
carried out in the laboratory with distinct variables, such as temperature, controlled charge
and discharge rate, and the use of these techniques in only one or two batteries. So,
the current literature on the SoC estimation method needs a model and/or technique to
overcome this task. The techniques are applied in an ideal scenario that should have the
ability to be calibrated through practical experiments so that it can consider all of the
natural characteristics found by the EV.

Lin et al. [114] point out that good battery charging performance directly influences
consumers’ interest in recognizing and accepting electric vehicles. In this sense, developing
a more intelligent and efficient battery charge state management method is essential.
To achieve this development, a process that performs the following characteristics is needed:

• Automatic calibration through hands-on experiments (self-tuning over time);
• Online estimation method, accuracy, and reliability;
• Scalable for huge batteries or with different configurations;
• Process of simple, practical implementation;
• A model that requires less computational effort;
• Operate in other temperature conditions;
• Operate well with battery nonlinearities;
• Take into account the loss of capacity that the battery has to store energy (SoH) over

the cycles;
• Low circuit volume that does not take up too much physical space.

By analyzing the data in Table 1, it can be observed that despite the good RMSE
values, the observation-based nonlinear methods are unable to operate in real-time, which
is precisely what the industry requires. The same applies to conventional methods when
they require information about the physical states of the battery, which is not feasible for
continuous use.

Although they present higher RMSE values compared to the two previously mentioned
methods, the filter-based and learning-based methods allow for the real-time estimation of
SoC, which favors their application in an industrial context.

Among the methods verified during this review, the Kalman Filter stands out for being
distributed over the study period, especially in the first investigations. Thus, adaptations
have emerged to reduce noise errors or increase its use in applications in which more
complex and nonlinear functions are proposed.

Learning-based methods stood out in this topic, especially in recent years. The most
prominent methods are neural networks and fuzzy methods. However, it is important to
mention that the training time and the computational cost have still been obstacles to fully
accepting the application in embedded systems.

Hybrid algorithms offer a viable solution by combining the advantages of differ-
ent methods, effectively addressing the limitations of each approach. By leveraging the
strengths of multiple techniques, these algorithms can improve response times, minimize
errors, and enhance overall performance. This results in real-time capabilities and increased
robustness, making hybrid algorithms a valuable choice in various applications.

The ideal method should be able to estimate the SoC at different rates of charge,
discharge, battery configurations, and technologies, with temperature variations that occur
during the day and throughout the year. It is crucial to observe that the season and weather
phenomena change the characteristics of batteries. Therefore, the model used should be
able to determine how much charge is left in the EV under all of these conditions.
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The selection of the most suitable technique relies on several factors, including the
battery type, data availability, computational resources, and desired level of accuracy.
Choosing the optimal technique involves considering the specific requirements of the
application; considering the available resources; and striking a balance between accuracy,
complexity, and cost. Evaluating and comparing various techniques within the context of
the particular battery system under consideration is often advantageous.

Finally, the future perspectives indicate using modern components to improve ex-
isting solutions and make changes to obtain better battery models and algorithms that
require less training time and lower computational costs, allowing for real-time actions in
embedded systems.

6. Conclusions

Battery management in hybrid electric vehicles has become a topic of great interest in
recent years. In this sense, alternative energy sources have become more than necessary.
Considering these issues, this review discusses the importance of good power system
management to obtain maximum battery use. The battery models are briefly discussed.

This review sought to approach the methods and algorithms for charge estimation,
discussing how they work, their benefits, their disadvantages, and the error estimate. There
is no complete method for estimating SoC and SoH values. Note that there are different
approaches according to the battery model used and the treatment of variables.

It is possible to identify a pattern in the studied methods in which the researchers use
the Kalman filter at first, including its different adaptations/variations. In the second place,
the methods based on a learning algorithm are often addressed. From this perspective,
it is clear that the trend will likely be toward applying hybrid estimation methods built
on the models mentioned above, extracting the benefits of each and making them work
together. The benefits that such methods seek are a more accurate and real-time charge
estimation, with reduced errors and shorter response and convergence time. With this,
battery management can be more effective, extending its useful life and giving greater
control over changes.
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Abbreviations
The following abbreviations are used in this manuscript:

AEKF Adaptive extended Kalman filter
AFFAKF Adaptive forgetting factor adaptive Kalman filter
AFFRALS Adaptive forgetting factor recursive augmented least squares algorithm
Ah Ampere-hour
AHOT Artificial hummingbird optimization technique
AIAEKF Affine iterative adaptive extended Kalman filter
AKF Adaptive Kalman filter
AMFFRLS Auto tuning multiple forgetting factors recursive least squares
ANFIS Adaptive network-based fuzzy inference system
ANN Artificial neural network
ARX Autoregressive model with exogenous input
ATSDEKF Adaptive timescale dual extended Kalman filter
AUKF Augmented unscented Kalman filter
BBM Black-box model
BMS Battery management system
CC Coulomb count
CKF Cubature Kalman filter

CNN-BWGRU
Convolutional neural network with a bidirectional
weighted gated recurrent unit

CO2 Carbon dioxide
DKF Dual Kalman filter
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
EKBF Extended Kalman–Bucy filter
EKF Extended Kalman filter
ELM Elman neural network
EV Electric vehicle
EVs Electric vehicles
FUKF Fuzzy unscented Kalman filter
I&I Immersion and invariance
iFA Improved firefly algorithm
KF Kalman filter
Li-FePO4 Lithium iron phosphate
Li-Po4 Lithium-polymer
LMS Moving window least mean square approach
LSO Linear state observer
LSTM Long short-term memory
MAE Mean absolute error
MHE Moving horizon estimation
MNN Multilayer neural network
NARX Nonlinear autoregressive neural network with exogenous input
NiCad Nickel-cadmium batteries
NiMH Nickel–metal hydride
NLO Nonlinear observer
OCV Open-circuit voltage
PCA Principal component analysis
RLS Recursive least square
RMSE Root mean square error
SC-ANFIS Subtractive clustering-based neuro-fuzzy architecture
SMO Sliding mode observer
SoC State of charge
SoH State of health
SRRLS Square root recursive least squares
SVM Support vector machine
SVR Support vector regression
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SWFFATRLS Sliding window forgetting factor approximate total recursive least squares
TDNN Time-delay neural network
TLBO Teaching learning-based optimization
TNN Transformer neural network
UDDS Dynamometer driving schedule
UKF Unscented Kalman filter
XGBoost Extreme gradient boosting
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