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Abstract: Demand response (DR) strategies are recieving much attention recently for their appli-
cations in the residential sector. Electric vehicles (EVs), which are considered to be a fairly new
consumer load in the power sector, have opened up new opportunities by providing the active utiliza-
tion of EVs as a storage unit. Considering their storage capacities, they can be used in vehicle-to-grid
(V2G) or vehicle-to-community (V2C) options instead of taking power in peak times from the grid
itself. This paper suggests a community-based home energy management system for microgrids to
achieve flatter power demand and peak demand shaving using particle swarm optimization (PSO)
and user-defined constraints. A dynamic clustered load scheduling scheme is proposed, including
a method for managing peak shaving using rules specifically designed for PV systems that are
grid-connected alongside battery energy storage systems and electric vehicles. The technique being
proposed involves determining the limits of feed-in and demand dynamically, using estimated load
demands and profiles of PV power for the following day. Additionally, an optimal rule-based manage-
ment technique is presented for the peak shaving of utility grid power that sets the charge/discharge
schedules of the battery and EV one day ahead. Utilizing the PSO algorithm, the optimal inputs
for implementing the rule-based peak shaving management strategy are calculated, resulting in an
average improvement of about 7% in percentage peak shaving (PPS) when tested using MATLAB for
numerous case studies.

Keywords: microgrid; demand response; load scheduling; peak shaving; PV; battery energy storage;
electric vehicle

1. Introduction

Ever since the deregulation of electric power industry, smart grids have gained signifi-
cant attention, as they provide a complete framework for effective electricity utilization.
The smart grid framework encompasses all smart devices that generate and store electricity
and also allows consumer participation to fulfill energy requirements for smart homes
and smart grids. Smart grids aim to optimize electricity distribution and consumption by
incorporating all smart appliances that generate and store electricity, enabling consumers
in households to meet their desired load requirements [1,2]. Consumer households have
electric vehicles (EVs), which are end-user smart appliances that can operate either as a
load (when charging) or as a resource (when fulfilling vehicle-to-grid (V2G) or vehicle-to-
community (V2C) demands). Some EVs have enough power to run multiple smart homes.
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Microgrids (MGs) are a subset of smart grids that use different energy management
techniques and provide dual benefits to the power system. Home energy management
systems (HEMS) contribute to the steadiness and consistency of MGs by enabling residential
consumers to use their domestic appliances in a more efficient manner [3]. HEMS is an
important component of smart grid control systems, given the significant demand for
electricity in the residential sector [4]. Demand response techniques allow residential
consumers to shift the peak load to off-peak periods, thereby reducing the peak power
demand and bringing it closer to the average power demand [5]. One potential solution
for managing peak power demands in HEMS is load scheduling using demand-side
management techniques [6,7]. Recent studies have explored cluster-based load scheduling
optimization approaches at the microgrid level; however, they do not take into account the
preferences of consumers at the appliance level [8,9].

The grey wolf and crow search optimization (GWCSO) algorithm was employed by
Waseem et al. to reduce electricity cost (EC) and the peak-to-average ratio (PAR) [10]. How-
ever, their technique limited the scope of the GWCSO algorithm since they only considered
HVAC loads for scheduling. Additionally, their models did not have a mechanism for
managing large amounts of data from different communities. Aziz et al. presented a large
population-based power scheduling methodology that employed a static clustering-based
approach to manage residential consumers in different communities. However, their ap-
proach assumed that all appliances in the entire population had the same characteristics
and belonged to a similar class of consumers, i.e., homogeneous load assumption [11,12].
Considering community-based population, a non-homogeneous load scheduling approach
integrated with dynamic appliance clustering was proposed [7]. Improvement in PAR and
EC is attained to some extent while leaving some peaks behind. To overcome this limitation,
an alternative approach for further adjusting the demand profiles is to use an algorithm
based on energy storage systems, such as peak shaving, as proposed by authors in refer-
ences [13,14]. These studies do not take into account the impact of weather fluctuations on
consumer behavior while considering their preferences. The highlighted studies indicate
that load scheduling and peak shaving should be implemented in a more realistic scenario
that incorporates weather condition-based changes in consumer preferences as well as the
incorporation of energy storage systems and EVs.

Peak shaving is regarded as a vital application for both grid operators and end users.
Grid operators use peak shaving for balancing supply and demand, yielding a greater load
factor and more economical generator operation. Grid-connected battery energy storage
(BES) systems and EVs can be utilized for peak shaving [15]. Charge/discharge schedules
for BES systems are controlled using various techniques, including rule-based and genetic
algorithms, and dynamic programming [16,17]. Rule-based methods execute instructions
based on an initial data set and if–then statements [18]. However, these algorithms are
not as efficient as optimization methods. The authors drew a contrast between rule-based
peak shaving techniques and optimization methods in [19–21]. Several optimization-based
techniques exist in the literature that incorporate demand and feed-in limits. Regarding
peak shaving, the feed-in limit and demand limit are defined as the maximum power that
can be injected into or extracted from the grid, respectively. The authors discussed the
set demand limit in [22,23] for peak shaving using the battery controller, but they did not
discuss the feed-in limit. For peak shaving applications, flexible daily management along
with effective PV energy consumption is considered for a fixed demand ceiling [24]. Some
studies consider only the dynamic feed-in limit, while others consider only the demand
limit [25]. Vedullapalli et al. investigated peak shaving with BES optimal schedules and
dynamic demand restrictions [26]. However, feed-in limitation is ignored in this study.
In reference [27], both feed-in and demand powers were considered while conserving
flexible daily management. In addition, they proposed an effective rule-based peak shaving
management strategy considering a single household and determined the optimal inputs
for the proposed technique [27]. The literature review suggests the implementation of
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peak shaving in a more practical scenario, incorporating distributed energy resources, such
as EVs.

O. erdinc et al. proposed a novel HEM system based on a multiple integer linear
programming (MILP) model that evaluates the DR strategy based on multiple operational
factors: a small-sized (four people) distributed renewable energy generation system, dy-
namic pricing, and the vehicle-to-home (V2H) and V2G modes of EV and ESS [28,29]. Using
the price signals from the load service entity (LSE), self-owned energy production sources
(EV, ESS and photovoltaic (PV)), load-consuming smart appliances and the consumer pref-
erences, the HEM system controls the smart household operations with the underlying
objective of minimizing the total daily electricity costs. The cost is defined as the difference
between the price of purchasing energy from the grid to the price of selling energy back
to the grid. Both the prices vary with time. The concept of vehicle-to-everything (V2X)
technology is gaining traction in the automotive industry, including electric vehicles (EVs).
V2X refers to the communication and interaction between vehicles and various elements in
their environment, such as other vehicles (V2V), infrastructure (V2I), pedestrians (V2P),
and the grid (V2G). The concept of vehicle-to-everything (V2X) technology, including its
application in electric vehicles (EVs), is still undergoing testing and refinement to achieve
more improved results. While the idea of V2X has gained attention and shows promise,
its widespread implementation and practicality in real-world scenarios are still being
explored [30–32].

Based on the above highlighted limitations of energy management systems, an optimal
demand response-based community energy management system exploiting the battery
storage system and electric vehicles is proposed. An algorithm for load scheduling is uti-
lized in a community architecture, followed by an optimal peak shaving scheme integrated
with an energy management strategy to cater to day-to-day needs. The proposed HEMS
controls the smart household operations with the underlying objective of minimizing
the peak utility grid power (PUGP) and percentage of peak shaving (PPS). The energy
is transferred in the priority of PV first, ESS second and EV last. Resources are selected
once the previous ones completely or partially consumed based on the availability. An
appropriate time granularity is selected based on the ratio of hour to the selected time. One
of the constraints of the model is the balancing of power. According to this, the electricity
needs of a residence, and charging needs of EV and ESS are met by either the grid or
by a combination of energy obtained from PV, ESS and EV. Using the model, limits of
power extraction and injection to the grid, charging and discharging duration, and limits
of EV and ESS, etc., can be set. The proposed strategy offers enhanced performance for
microgrids in community architectures. The load is heterogeneous due to variations in the
power ratings of consumer appliances and diverse user preferences belonging to different
classes. This strategy employs a demand response-based approach to schedule controllable
appliances (CAs) based on user preferences, while taking into consideration multiple types
of consumable appliances commonly found in households. Each class considers its own set
of PV installations. In order to accommodate the seasonal variations in consumer behavior,
the study examines different parameters of CA usage for summer and winter as shown in
Table 1.

This article presents the following contributions:

• The model was tested on a residential community consisting of 40 houses and con-
tained a range of CAs. The study employs community consideration with various
classes of consumers. Ten percent of the higher-class community is assumed to con-
sider electric vehicles rated as 70 kWh battery rating Chevy Volt with a charging
station of 10 kW power limit. A BES of 132 kWh is also considered.

• A load scheduling and optimal rule-based peak shaving algorithm is proposed that
incorporates BES, PV systems, and EV. The peak shaving algorithm takes into account
both the dynamic demand and everyday feed-in limits.

• A rule-based control algorithm considering flexible daily management is proposed
that provides schedules for charging and discharging EV and battery for peak shaving
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of the utility grid power. The algorithm also takes into account the day’s feed-in limits
and demand, which correspond to limited feed-in powers and utility grid demand.

• The PSO algorithm is employed to obtain the optimal inputs for the suggested rule-
based peak shaving management, which is aimed at reducing energy consumption
from the utility grid.

The remaining article is structured as follows. Section 2 describes the considered
system. Section 3 presents the load scheduling control scheme. Section 4 discusses the
optimal peak shaving approach, which includes a discussion of the BES operational modes
in Section 4.2, the proposed method of input determination in Section 4, the suggested
rule-based peak shaving management approach in Section 4.4 and estimation of optimal
inputs in Section 4.5. Section 5 presents the simulation results followed by Section 6, which
concludes the whole article.

2. System Description

The framework offers the real-time monitoring of energy consumption and power
rates, allowing the consumers to adjust their usage and control their bills, forming a
dynamic demand response (DR) strategy for effective energy consumption. For instance,
charging an EV and BES during off-peak times or discharging at peak time. The utility
aims to achieve reduced peaks in the load profile that benefits the consumer by reducing
lowest daily electricity costs. The primary objective of demand response-based HEMS is
to reduce PAR and PUGP to benefit utility as well as customers in terms of reduced cost.
This paper proposes a community-based system architecture compatible with MGs. The
proposed scheme is implemented in a community that is part of one of the many MGs
connected to others. The substations receive the demand response tasks from the electricity
supply and then disseminate the information to their respective communities. Figure 1
illustrates the framework of the community-based scheme for a single community utilizing
HEMS in smart grids. To achieve a load profile with reduced PAR, the proposed scheme
employs a demand response-based HEMS that utilizes optimal load scheduling (LS). The
remaining peaks in the load profile are addressed through dynamic demand and feed-in
limits-based optimal peak shaving (OPS). The target of the OPS is to achieve reduced PUGP
and improved percentage peak shaving (PPS).
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The model takes into account different user preferences from various classes, resulting
in non-homogeneous load demand. The study considers two types of load demand profiles:
summer and winter profiles. Residential consumers tend to use certain appliances more
frequently during specific seasons. For example, air conditioners are not generally used for
heating in winters but more frequently used for cooling in summers. This trend is due to
increased sunlight utilization and completing most tasks during the day.
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As a result, the peak load demand hours tend to fall between 9:00 and 12:00 during
winter and 20:00 and 23:00 during summer [27]. In winter, clothes dryers and electric
heaters are utilized more frequently. However, during hot summer weather, water pumps
and automatic washers are more commonly used due to the need for frequent clothes
changing and bathing. Thus, these appliances usually work with regular tap water during
summers rather than hot water. Moreover, dishwashers can function with normal tap
water during summer but depend on hot water during winter to eliminate greasiness from
utensils. For rice cookers, it is assumed that LCS, MCS, and UMCS have three meals per
day, while HCS may have a different eating pattern. During winter, LCS may have three
meals a day since they wake up early in the morning; however, this may not be the case
during summer. These details are presented in [27] and are reflected in the load demand
profiles. Table 1 shows that clothes dryers are marked as “not applicable” for LCS during
summers. Additionally, electric vehicles are also taken into account, with different arrival
and departure timings depending on seasonal changes. For example, during the summer,
EVs leave for work at around 9:00 h with a lunch break around 2:00 to 3:00 h. During
the winter, HCS begins the day a bit late, leaving for the office at around 11:00 h. Lunch
is generally skipped, with an arrival time of around 6:00 h. We assumed that only 20%
of HCS has EVs in use due to affordability issues; therefore, two EVs are considered in
our community of 10 houses from HCS as shown in Tables 1 and 2. The typical usage
parameters for different classes of consumers in winter and summer are provided in [7],
Table 1, considering all the aforementioned factors. The study includes an examination of
communities comprising 40 households, with an equivalent number of homes from each
consumer class during both summer and winter seasons. During summer, the peak load
amounts to 35.94 kW, while during winter, it is 33.89 kW.

Table 1. Summer/winter CAs usage parameters [7].

Controllable Appliances Summers Operating Hours Winters Operating Hours

LCS

Air Conditioner 1 to 4, 21 to 24 4 to 6
Electric Heating Appliance NA 5 to 8, 19 to 21

Washing Machine 1 to 8, 15 to 20 1 to 11
Clothes Dryer NA 7 to 12

Dishwashing Machine 1 to 13, 18 to 24 9 to 15, 16 to 24
Water pump 1 to 8, 13 to 15, 20 to 24 1 to 7, 17 to 24

Electric Tea Kettle 4 to 6, 10 to 12, 17 to 19 5 to 9, 11 to 1, 18 to 20
Food Steamer 1 to 6, 9 to 11, 16 to 18 1 to 8, 10 to 12, 15 to 18

MCS

Air Conditioner 1 to 6, 20 to 24 5 to 7
Electric Heating Appliance NA 6 to 8, 15 to 22

Washing Machine 1 to 9, 17 to 21 1 to 12
Clothes Dryer 7 to 15, 20 to 24 8 to 15

Dish-washing machine 9 to 12, 15 to 18, 19 to 24 9 to 15, 16 to 1
Water pump 9 to 10, 21 to 23 8 to 11, 20 to 22

Electric Tea Kettle 6 to 10, 13 to 15, 18 to 20 6 to 10, 18 to 21
Food Steamer 1 to 10, 12 to 14, 16 to 19 1 to 12, 16 to 19

UMC

Air Conditioner 1 to 8, 19 to 24 5 to 9
Electric Heating Appliance 15 to 20 7 to 9, 15 to 23

Washing Machine 1 to 10, 17 to 22 1 to 13
Clothes Dryer 11 to 18, 11 to 12 9 to 17

Dish-washing machine 9 to 12, 12 to 17, 19 to 24 9 to 15, 19 to 23
Water pump 1 to 11, 20 to 24 1 to 12, 20 to 24

Electric Tea Kettle 8 to 13, 13 to 16, 19 to 21 8 to 13, 18 to 22
Food Steamer 1 to 11, 12 to 15, 18 to 23 1 to 13, 17 to 22
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Table 1. Cont.

Controllable Appliances Summers Operating Hours Winters Operating Hours

HCS

Air Conditioner 1 to 24 1 to 24
Electric Heating Appliance 15 to 24 15 to 24

Washing Machine 1 to 24 1 to 15
Clothes Dryer 1 to 24 9 to 21

Dish-washing Machine 10 to 3, 7 to 24 10 to 2, 5 to 24
Water pump 1 to 24 1 to 24

Electric Tea Kettle 11 to 14, 18 to 24 10 to 13, 18 to 24
Food Steamer 1 to 12, 18 to 24 1 to 14, 18 to 23

Electric Vehicle 1 to 7, 14 to 15, 19 to 24 1 to 11, 18 to 24

Table 2. CAs power rating (kW) across four distinct classes.

Lower-Class Middle-Class Upper-Middle-Class Higher-Class

Electric Vehicle - - - 70
Air Conditioner 1 1.5 2 2.5

Washing Machine 0.5 0.5 1.5 1.5
Electric Heating

Appliance 1.4 1.4 1.4 1.4

Dish-washing
Machine 0.4 0.4 1.5 1.5

Clothes dryer 1.8 1.8 5 5
Electric Tea Kettle 1.5 1.5 1.5 1.5

Water Pump 0.5 0.5 1.5 1.5
Food Steamer 0.6 0.6 0.6 0.6

3. Optimal Load Scheduling (OLS)

An optimal load scheduling scheme for a domestic community for CAs is presented in
this section. Modified inclined block rate (IBR) pricing and real-time electricity price (RTP)
schemes are utilized. The suggested approach can be implemented in an actual system
with specific adaptations.

3.1. Usage Patterns of Controllable Appliances in Residential Settings

The involvement of consumer choices in the scheduling process is achieved by consid-
ering various time parameters, such as the activation time slot. To cater to user preferences,
the time parameters include the activation time slot (ATS) tak , starting time for the operation
of appliance (AST) αak , the appliance operation end time (AET) βak , time length of the
appliance operation (ATL) lak . The time interval for appliance operation is given by the
range

[
αak , βak

]
which is the valid time interval for CA scheduling with a power rating

of xak .

3.2. Final Objective of Load Scheduling

To perform a more comprehensive analysis of the load demand and consumption pat-
terns throughout the day, each hour is divided into 10 min time slots, resulting in 144 time
slots of a day denoted by τ ε T , where T is a set of integers ranging from 1 to 144 [33].

The set of CAs is denoted by A. Each house comprises 16 devices; let a belong to the
set {1, 2, . . . , 16}. Let ak be an element of the set A. It is assumed that Pak represents the
scheduling vector, representing the utilization of power with a dimension of 1× 144,

Pak , [pak(1), pak(2), · · · . . . , pak(144)] (1)

The kW power consumption value for the ath appliance belonging to kth house is
denoted by pak (τ). The per hour power consumption values are divided by six to generate
per time slot values. The assumption of values for power utilization for each appliance are
based on the values provided in Table 2.
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The activation slot for the ath appliance of kth house is represented by tak . After the
computation of tak , the power utilization scheduling vector for the ath appliance of the kth
house is determined. Given that αak , βak , and lak are all known, tak should lie between αak
and βak − lak . Therefore, the denotation of the modifiable parameter tak is given as

tak ε
[
αak , βak − lak

]
(2)

By utilizing PSO, we can determine the optimal tak allocation for each household in
the community, which results in a decrease in EC and PAR. The user preferences provided
by the customers help in deciding the initial value for optimization denoted by αak . The
cost function to minimize the electricity cost is then saved, and the best particle location
(pbest) is adjusted.

To fulfill the constraint given in Equation (2) for the ath appliance and kth house, it is
necessary to compute the optimal value of ATS for each CA. The optimal ATS values for all
CAs are stored in a variable vector

[
ta1k , ta2k , . . . taik

]
. Using these optimal ATS values, the

scheduling matrix of the power utilization by all CAs can be formulated as shown in the
expression as

P =

{
p | p(τ)aik =

xaik
6 , ∀aikε A, τε

[
taik , taik + laik

]
p(τ)aik = 0, ∀aikε A, τ /∈

[
taik , taik + laik

] (3)

The matrix P contains rows representing the power consumption schedule for each
individual appliance. The column indices are specified by τ. τ /∈

[
tak , tak + lak

]
represents

that τεT, however, does not fall within the range
[
tak , tak + lak

]
. To compute the vector Pscd,

which represents the scheduling of total power utilization, the respective matrix column
vectors are summed up:

Pscd =
{

pscd | pscd(τ) = ∑ P(τ), ∀τε T
}

(4)

P(τ) denotes the τth column in the power utilization scheduling matrix in (4). When
formulating the objective function for the power utilization scheduling problem in a single
residence, the expression is as follows:

minimize EC(Pscd)
s.t. tak ε

[
αak , βak − lak

] (5)

where

EC(Pscd) =
144

∑
τ=1

rtp(τ). pscd(τ) (6)

The price of electricity during the τth time slot is represented by rtp in Equation (6). To
minimize the EC shown in the Equation (6), an optimization strategy can be employed.

3.3. Formulation of DHEMS

The dynamic home energy management system (DHEMS) algorithm is expected to
allocate such an αak to the CAs of various houses so that they operate in time slots that have
the lowest electricity prices. Therefore, to ensure that the appliances of different houses
have their αak in the time slot with the least expensive electricity price in comparison to the
subsequent intervals, scheduling methods coupled with IBR strive to shift the tak values
of all households towards that particular slot. However, IBR prevents the PUP of each
dwelling from crossing the required level. Even then, the accumulation of appliances
tak around the lowest electricity price can cause a PUP peak in the general community,
ultimately affecting the entire power grid. Therefore, to optimize ATS for all appliances, a
power scheduling methodology is required that can scan the surrounding area. The problem
at hand is effectively tackled by the proposed algorithm, which incorporates appliance
clustering within a dynamic clustered home energy management system (DHEMS).
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It is anticipated that the utility will allocate demand response tasks specifically to the
substations, which will then communicate the information to the corresponding communi-
ties they serve. To analyze non-homogeneous loads, the division of the community, which
consists of 40 houses, results in 4 distinct classes: LC, MC, UMC, and HC consumers. The
consumers from these classes have their distinct consumer choices depending on their daily
routines as shown in Table 1. Table 2 exhibits the power ratings utilized for CAs across all
four classes. A randomly generated one-day load profile is subjected to particle swarm
optimization (PSO) to determine the optimal clustering set from various combinations in-
volving C1, C2, and C3 as depicted in Figure 2. Both uniform and non-uniform cluster sizes
are considered when varying C3 from 2 to 7 clusters per community [12]. C1 determines
the community size under each class of consumers. It is assumed that each class consists
of 10 houses. Consequently, each class is divided into 2 communities, each comprising
5 houses. After being classified according to C2, the CAs are placed into their respective C3
clusters. Based on the optimal value of C1, each community comprises 5 dwellings. The
sorting parameter chosen under C2 is AET. In each community, C3 designates the number
of CA clusters which is set to 5 as determined by the optimal value based on C1.
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Figure 2. DHEMS parameters for clustering.

The algorithm developed for load scheduling of the CAs is applied to the formulated
data. The algorithm initiates by organizing the dwellings into groups of communities based
on the criterion of C1. The houses are dynamically grouped into communities based on the
PAR of each cluster. Within each house, the 16 appliances are divided into 5 clusters within
each dwelling, based on their respective AST and AET. The maximum PAR is computed
for all 5 clusters, and all dwellings are subsequently ranked based on this value. Given
that each community consists of 5 houses, the lower class comprises 2 communities with
a combined total of 10 dwellings. Each of the 3 other classes consists of ten dwellings,
resulting in 2 communities per class. Therefore, there are a total of 80 appliances in a
community that consists of 5 dwellings, which is equivalent to 5× 16.

The sequence of steps involved in DHEMS is explained below.
Step 1: The entire population is divided into four classes, each having an equal number

of houses.
Step 2: The population is sorted using a staggered set of houses, which ensures that

the houses are organized in a way that results in descending PARs within each cluster.
Step 3: The criterion for the best clustering is chosen.
Step 4: Appliances are categorized by neighborhood using C2
Step 5: Each community’s appliance cluster number is determined using C3.
Step 6:The parameters tak belonging to the current cluster are set within the range[

αak , βak − lak

]
, and step 4 is repeated for all clusters. The groups of tak are used as particles.

Step 7: The fitness for each cluster is computed by analyzing the EC and Pcc.
Step 8: After updating particles’ positions and velocities, pbest and global best (gbest)

are updated if the fitness of the new particle is superior to that of the previous one.
Step 9: If the termination criterion is not met, we go to step 6.
Step 10: We stop once the full population has been scheduled.
Step 11: Steps 8–11 are repeated until the scheduling of all of the communities

is achieved.
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The overall objective of power scheduling is formulated as follows:

minimize EC(Pcc) s.t. tak ε
[
αak , βak − lak

]
(7)

EC(Pcc)= ∑
∀kεCh

∑
∀aεCc

144

∑
τ=1

rtppc(τ). pak (τ) (8)

In this context, the term EC(Pcc) refers to the overall electricity cost calculated based
on the PUP for the cluster of the currently scheduled community, denoted as Pcc. In
the given context, the symbol rtppc(τ) represents the electricity rate for the τth time slot.
Furthermore, pak (τ) denotes the power rating of the kth house’s ath appliance for the same
time slot. Ch represents all the houses in the current community, while Cc denotes the
current cluster. Therefore, the proposed algorithm’s objective function is to reduce the total
consumer EC associated with power consumption. To keep the PAR under control, the
modified IBR is implemented across the entire community, which is further divided into
smaller communities.

The application of the proposed technique shows reduction in PAR in contrast to
the actual load demand. However, despite the reduction, there are still some existing or
emerging peaks that suggest the potential for further optimization through the use of an
optimization scheme. To address these remaining peaks, we introduce a rule-based OPS
control approach utilizing the PSO algorithm presented in the following section.

4. Optimal Peak Shaving (OPS)

A residential community system connected to the grid is illustrated in Figure 1, which
shows an OPS proposed for MG connected to a utility grid, utilizing a community-based
HEMS architecture. The MG system consists of a PV source, BES, EV and consumer loads.
Considering the grid as a power source that can both provide and absorb energy, the power
balance equation can be defined at the point of common coupling (PCC), while ignoring
the system losses as

Pgd(t) + Ppv(t) + Pbat(t) + PEV(t) = PLD(t) (9)

In (9), Pgd denotes the utility grid power. Ppv, Pbat, PEV and PLD denote PV, bat-
tery, EV and load demand powers all in kWs. t represents the time interval, which is
[(t− 1)× TC, t× TC], where TC is the duration of a time slot and is equal to 10 min. Note
that Pgd is assumed to be the load scheduled output of the OLS scheme. Therefore, from
now on, the term Pgd refers to the load scheduled output of OLS that requires peak shaving
using distributed energy resources, such as PV, BES and EV.

4.1. Distributed Energy Resources

In this study, PV power source, BES and EV are used as OPS control stage resources.
The EV chosen for the study has a Chevy Volt battery rating of 70 kWh and is equipped
with a charging station that has a maximum power limit of 10 kW. It is assumed that the
same power limit is applicable for discharging operations in both V2G and V2C modes.
Charging and discharging efficiencies are considered to be 0.95. The initial EV battery
energy is assumed to be 35 kWh (50% state of energy) when the EV arrives at home, and
the lower limit of the EV state of energy is restricted to about 20 kWh (30% state of energy)
to prevent deep discharging. This limit is based on recommendations from [34], which
suggest battery users to not extract more than 80–90% of the available capacity at any time.

In this study, the ESMAP Tier1 Meteorological Station in Islamabad, Pakistan, is used
to obtain irradiance values for the PV system. Trina solar modules [TSM-320 PD14] with
17.5% efficiency, a size of 1.9× 0.9 m2, and a power output of 320 W are used for the rooftop
PV system. Consumer surveys in Pakistan indicate that low power consumers in LCS use
around 150 units/month, while MCS consumers use 250 units/month without AC. UMCS
consumers with 1 ton AC consume 500 units/month, while HCS consumers consume
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750 units/month with 2 tons AC [35]. Based on these facts, we calculate the units for each
community/day and for each class, which results in 250 units for LCS, 400 units for MCS,
800 units for UMCS, and 1250 units for HCS [36]. Each community has locally generated
PV in various houses, with LCS having 2%, MCS having 4%, UMCS having 6%, and HCS
having 8% of PV installation. A 15 kW PV system is installed, where LCS, MCS, UMCS
and HCS have 300 W, 1.3 kW, 1.5 kW and 3.2 kW, respectively. For peak shaving, a 240 V,
600 Ah battery bank is selected.

4.2. Operating Modes of BES

The demand limit Pd−l can be enforced for Pgd(t) to be restricted within the limit, with
the help of the considered EV, battery, and PV source. Figure 3 depicts the BES operating
time slots for average PV power and load demand profiles. In the event of the presence
of a PV source, four modes of operation are available to restrict Pgd(t) to Pd−l using a BES
and EV.

(1) Discharging Mode: [DCM] When the load demand exceeds the demand limit, and the
PV source and EV are unable to provide the required power, the discharge time tdch
occurs, i.e., PLD(t) > Pd−l && Ppv(t) ≤ PLD(t)− Pd−l. The EVs are also not available
to support the grid due to the nearly expected departure or departed already. The
symbol “&&” represents the logical AND operator.

(2) Charging Mode-I: [CM1] The time period tc1 corresponds to the situation where
the load demand is within the demand limit range, i.e., PLD(t) < Pd−l. The EV, if
connected, can absorb/supply the power as per the requirement.

(3) Charging Mode-II: [CM2] This occurs at time tc2 when the load demand exceeds
the demand limit range, and the PV source is available to provide the required
power, i.e., PLD(t) > Pd−l && Ppv(t) > PLD(t) − Pd−l. EVs can absorb power for
charging themselves.

(4) Charging Mode-III: [CM3] This occurs at time tc3 when the load demand is within the
demand limit range and the PV source is unavailable, i.e., PLD(t) < Pd−l && Ppv(t) = 0.
EVs can absorb power if required for day to day management.Version June 21, 2023 submitted to Journal Not Specified 11 of 24
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4.3. Proposed Technique to Determine Inputs

The suggested rule-based peak shaving management utilizes the predicted load de-
mand, and PV and EV powers to determine the necessary inputs. These inputs include
Pd−l, Eb−c, Epv−c, EEV−c, Egd−c, Cgd, Pm

d−l, and Pfd−lm. Firstly, Pd−l, Eb−c, EEV−c and Epv−c
are calculated. Next, Egd−c is calculated if Epv−c≤ Eb−c, and Pm

d−l is calculated only if
Epv−chg+Egd−c ≤ Eb−c; otherwise, Cgd is calculated. If Epv−c ≤ Eb−c, then Pfd−lm is calcu-
lated. The coordination of these inputs is given in the flowchart shown in Figure 4. Based
on these inputs, the charging/discharging schedules of BES for peak shaving management
are determined. The following technique is used to determine the required inputs for the
suggested rule-based peak shaving management.
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4.3.1. Demand Limit

A control variable, denoted as E∗b−dch, is defined to represent the BES dischargeable
energy over 24 h. Its value can range from 0 kWh to the BES rated energy capacity, Eb−rated,
which includes 0 kWh as well, i.e.,

0 ≤ E∗b−dch ≤ Eb−rated (10)

Given the BES rated energy capacity of 132 kWh, the dischargeable energy over 24 h,
E∗b−dch, is selected from the range of 0 kWh to 12 kWh. The demand limit is defined based
on the value of Eb−dch, which is set to be equal to E∗b−dch. The outcomes obtained from
this approach are

Eb−dch = E∗b−dch (11)

∑ Pb−dch(t)− Eb−dch = 0 ∀tεtdch (12)

When PLD(t) > Pd−l, the PV source or a battery delivers the required quantity of
power PLD(t)− Pd−l to the load. The load is powered by either a battery or a PV source,
while any additional power needed to meet the demand is supplied by the BES, resulting as

Pb−dch(t) =(PLD(t)− Pd−l)− Ppv(t) ∀ tεtdch

=0, otherwise (13)

Substituting (13) into (12) gives

∑((PLD(t)− Pd−l)− Ppv(t))− E∗b−dch = 0 ∀ tεtdch (14)
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Equation (14) is in form of f (Pdem−lm) = 0 where

f (Pd−l) = ∑((PLD(t)− Pd−l) + . . .
. . .− Ppv(t))− Eb−dch ∀tεtdch

(15)

In Equation (15), Pd−l is an independent variable that needs to be solved using the root-
finding method of the regula falsi approach [37]. This method combines the secant method
and the bisection search theorem to converge for finding the equation root. Compared to
the bisection method, the regula falsi method guarantees root convergence and provides
faster response. For applying the method, (Pd−l1, Pd−l2) are selected such that f (Pd−l1) is
positive and f (Pd−l2) is negative. Then, Pd−l0 is calculated using the following equation:

Pd−l =
1
m
(0− f (Pd−l)) + Pd−l (16)

where, m is defined as f (Pd−l2)− f (Pd−l1)
Pdem−lm2−Pdem−lm1

. Using Equation (16), we determine f (Pd−l0).
When | f (Pd−l0)| < e, Pd−l0 becomes Pd−l. When | f (Pd−l0)| > e, either replace Pd−l1 by
Pd−l0, i f ( f (Pd−l0) > 0) or replace Pd−l2 by Pd−l0 i f ( f (Pd−l0) < 0). Then, we continue
the above process until Pd−l0 equals Pd−l. The tolerance and slope of the regula falsi method
are denoted e and m.

4.3.2. Daily Energy Demand for Charging BES

In order to allow for daily management flexibility, the amount of energy required
to charge and discharge the BES over a 24 h period must be equal. This ensures that the
system is balanced and can operate effectively, i.e.,

Eb−c = Eb−dch = E∗b−dch (17)

4.3.3. Daily PV Energy Availability for Charging BES

From Equation (17), the total energy Eb−c used to charge the BES can be determined
from either the PV source or the utility grid. The first step is to determine the amount of
PV energy available for charging the battery over a 24 h period, without the need to inject
it into the grid. In the case when this available PV energy is not enough, we calculate the
amount of utility grid energy available for charging the BES.

The Ppv−c is Ppv(t) and Ppv(t)− PLD(t)− Pd−l(t) during tc1 and tc2, respectively, i.e.,

Ppv−c =Ppv(t) ∀t ∈ tc1

=Ppv(t)− (PLD(t)− Pdem−lm ) ∀t ∈ tc2

=0, otherwise. (18)

To determine the PV energy that can be used to charge the BES over a 24 h period, the
total PV energy output Ppv−chg over 24 h is summed up over 24 h. This is expressed as

Epv−c =
T

∑
t=1

Ppv−c(t) (19)

In this context, T represents the predictive horizon for 24 h, which corresponds to a
total of 144 TSs in our specific case.

4.3.4. Daily Utility Grid Energy Availability for Charging BES

If the condition Epv−c ≤ Eb−c given in Equations (17) and (19) is satisfied, it implies
that the available PV energy is not enough to fulfill the charging demand of the battery.
As a result, if the demand limit is not exceeded, a shortage of energy is obtained from the
utility grid. This indicates that the utility grid not utilized for battery charging during tc2.
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To restrict Pgd to Pd−l during tc2, the power available from the utility grid for charging the
battery is determined, which is Pgd−c(t) equals Pd−l − PLD(t), i.e.,

Pgd−c(t) =Pd−l − PLD(t) ∀t ∈ tc1

=0 otherwise. (20)

The total energy that can be obtained from the utility grid for charging the BES over
a period of 24 h is calculated as the sum of Pgd−chg(t) over the day as illustrated in the
following equation:

Egd−c =
T

∑
t=1

Pgd−c(t) (21)

4.3.5. Utility Grid Energy Coefficient for Charging the BES

If the available PV energy is insufficient for fully charging the BES
(Epv−c ≤ Eb−c && Egd−c + Epv−c > Eb−c) and the sum of the available utility grid energy
and PV energy is greater than Eb−c, then the utility grid must provide the deficit energy
amount required to fully charge the BES (Eb−c− Epv−c) as per Equations (17), (19) and (21).
However, if the total available PV energy is used for charging the battery, only a portion
of the utility grid energy is required. In such a situation, CgdEgd−c can be used as the
required utility grid energy to charge the BES, which equals Eb−c − Epv−c as shown in
the following equations:

CgEgd−c =Ebat−c − Epv−c (22)

Cg =
(Eb−c − Epv−c)

Egd−c)
(23)

4.3.6. Modified Demand Limit

If the total available energy for charging the battery from both the PV source and the
utility grid is less than the required energy to limit Pgd to Pd−l as indicated by the condition
Eb−c + Epv−c ≤ Eb−c in Equations (17), (19) and (21), then the battery cannot be charged
with the necessary amount of energy to maintain flexibility for daily control, resulting in a
violation of SoC f matching with SoCi. To avoid this violation, Pd−l is adjusted so that the
total energy available from both sources over the predictive horizon matches the expected
energy discharge from the battery over the same duration. Thus, the modified demand
limit can be calculated using the following expression:

Pm
d−l =

T

∑
t=1

(
PLD(t)− Ppv(t)

)
T

(24)

4.3.7. Feed-In Limit

If we consider Equations (17) and (19), when Epv−c > Eb−c, the BES can be charged
with the required energy amount without utilizing all available PV energy. Thus, a limit
on PV power, Pfd−lm, is set to prevent the PV source from being used for charging the BES
when Ppv−c(t) ≤ Pfd−lm. For the duration of tc, if Ppv−c(t) > Pfd−lm, then the battery will
be charged fully with the energy Ppv−c(t)− Pfd−lm, and the excess power will be sent to
the grid, i.e.,

f (Pfd−l) = ∑(P(pv−c(t)− Pfd−l)− Eb−c ∀t ∈ tct1 (25)

4.4. The Rules Proposed for Peak Shaving Strategy

The charging/discharging schedules for the BES for the next day are determined based
on the previously calculated inputs using peak shaving management rules. These rules are
designed to maintain flexibility in daily management while limiting the feed-in powers
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and peak utility grid demand to the feed-in limits and appropriate demand, respectively.
This section outlines the principles for the charging and discharging modes.

A. DCM (Through tdch)
Rule 1: The energy discharged by the BES is determined by (PLD(t)− Pd−l)− Ppv(t)−

PEV(t) as per Equation (13).
B. CM1 (During tc1)
Rule 2: If Epv−c ≤ Eb−c&&Epv−c + Egd−c > Eb−c, the amount of energy used

to charge the BES from both the PV source and the utility grid can be expressed as
Ppv(t) + Cgd(Pd−l − PLD(t)) as per Equations (18), (20) and (23). The EV, if available
at home, charges with the remaining grid power by the amount (1− Cgd)(Pd−l − PLD(t)).

Rule 3: If Epv−chg ≤ Eb−c&&Epv−c + Egd−c ≤ Eb−c, the amount of energy used
for battery charging from both sources (PV source and the utility grid) is expressed as
Ppv(t) +

(
Pm

d−l − PLD(t)
)

.
Rule 4: If Epv−c > Eb−c&&Ppv(t) > Pfd−lm, the charging amount of BES using the PV

source is expressed as Ppv(t)− Pfd−lm as per Equation (18). The EV, if connected, charges
with an amount equal to Pfd−lm.

Rule 5: If Epv−c > Eb−c&&Ppv(t) ≤ Pfd−lm, the PV source is not used for charging the
BES and EV.

C. CM2 (During tc2)
Rule 6: If Epv−c ≤ Eb−c, the amount of energy charged to the BES from the PV source

can be expressed as Ppv(t)− (PLD(t)− Pd−l) as per Equation (18).
Rule 7: If Epv−c > Eb−c&&(Ppv(t)− (PLD(t)− Pd−l)) > Pfd−lm, the charging amount

of BES using the PV source is expressed as Ppv(t) − (PLD(t) − Pd−l)) − Pfd−lm as per
Equation (18). The EV, if connected, charges with an amount equal to Pfd−lm.

Rule 8: If Epv−c > Eb−c&&Ppv(t)− (PLD(t)− Pd−l) ≤ Pfd−lm, the PV source is not
used for charging the BES and EV.

D. CM3 (During tc3)
Rule 9: If the current TS is less than 10 and a significant increase in load occurs before

the availability of PV power, i.e., PLD(t) > Pdem−lm, the BES is charged from the utility
grid with the amount of Cgd(Pd−l − PLD(t)). This ensures that enough energy is stored
in the BES to tackle the peak demand before the regular sunlight timings when the PV
power is expected to be available. EV takes the charge from the grid with an amount
(1− Cgd)(Pd−l − PLD(t)) if PLD(t) < Pd−l during these time slots.

Rule 10: When the time of day is greater than 130 and the SoC(t) ≤ SoC f , the BES
will charge from the utility grid with a quantity of Cg(Pd−l − PLD(t)) to ensure that the
SoC f = SoCi for daily flexible management. EV takes the charge from the grid with an
amount (1− Cgd)(Pd−l − PLD(t)) if PLD(t) < Pd−l during these time slots.

The coulomb-counting approach described in [38] is utilized to determine the SoC of
BES in the charging and discharging modes in this study. The resulting utility grid power,
based on Rules 1–10, is presented in Table 3a.

Table 3. Operating modes of a utility grid power in (a) and optimal inputs of the proposed control
algorithm for two cases in (b).

(a)

Modes Rule Utility Grid Power

DCM 1 Pd−l
CM1 2 PLD(t) + Cgd(Pd−l − PLD(t))
CM1 3 Pm

d−l
CM1 4 PLD(t)− Pfd−lm
CM1 5 PLD(t)− Ppv(t)
CM2 6 Pd−l
CM2 7 Pd−l − Pfd−lm
CM2 8 PLD(t)− Ppv(t)
CM3 9&10 Cgd(Pd−l − PLD(t))
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Table 3. Cont.

(b)

Input Parameter Case 1 Case 2 Case 3
kw/kWh OPS Ref. OPS Ref. OPS

Pod−l 18.43 19.93 22.64 23.5 18.43
Eob−c 122.45 156.37 111.3 127.42 124.68
Eopv−c 95.74 87.81 43.84 48.56 90.86
Eog−c 28.02 0.4 118.65 86.97 28.02
Cogd 0.3 60.57 0.15 0.16 0.3
Pm

od−l NA NA NA NA NA
Pofd−lm 2.60 2.24 NA NA 2.60

4.5. Optimal Inputs Estimation

Optimizing the use of the BES to achieve utility grid electricity peak shaving is a
crucial objective. To address this goal, the constraints and fitness function outlined below
are taken into account to formulate an optimization problem:

minimize f = Egd−pk (26)

subjected to,

Pgd(t) + Ppv(t) + Pbat(t) + PEV(t) = PLD(t) (27)

SoCb,l ≤ SoCb(t) ≤ SoCb,u, SoC f = SoCi (28)

Pb−c(t) ≤ Pb−c−mx, Pb−dch(t) ≤ Pb−dch−mx (29)

Eb−dch ≤ Eb−rated (30)

SoCEV,l ≤ SoCEV(t) ≤ SoCEV,u (31)

PEV−c(t) ≤ PEV−c−mx, PEV−dch(t) ≤ PEV−dch−mx (32)

The objective is to minimize the amount of energy drawn from the utility grid dur-
ing peak demand Egd−pk while maintaining a power balance as stated in Equation (27),
ensuring flexibility in daily operations by enforcing constraints on the BES and EV SoC in
Equations (28) and (31), imposing limitations on the charge/discharge power of the battery
and EV as given in Equations (29) and (32), and setting a cap on the BES dischargeable
energy for a day according to Equation (30). The considered system parameters for the pro-
posed scheme are presented in Table 4. It is important to note that Egd−pk in Equation (26)
refers to the maximum energy drawn from the utility grid over the entire day, i.e.,

Egd−pk = maximum(Egd(t)) ∀tε[0, T] (33)

where Egd is determined as
Egd(t) = (Pgd(t))× Tc (34)

Table 4. System parameters [27].

Parameter Value Parameter Value

Pdem−pk 36 kW SoCi/Socu 0.2/0.9
Ppv−inst 15 kW SoCi 0.5

Ebat−rated 132 kW Pbat−chg−m 10 kW
Ahbat−rated 600 Ah Pbat−dsch−m 10 kW
EEV−rated 170 kW PEV−chg/dsch−m 10 kW

As mentioned earlier, the inputs required for peak shaving control rely on the control
variable E∗b−dch. The problem at hand involves offline optimization with a fitness function
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that is nonlinear, and it is resolved through the utilization of PSO. PSO is a well-known
heuristic optimization technique that is commonly employed to obtain solutions to the
resource scheduling and peak shaving algorithms due to its ability to quickly reach the
near-optimal solutions in a reasonable time frame [12]. As a result, PSO is well suited for
this community-based architecture consisting of a large number of homes. The optimal
dischargeable energy at the battery E∗b−dch is determined using PSO as represented in the
flow diagram in Figure 5 [39]. After determining the value of E∗ob−dch, the inputs associated
with E∗ob−dch are considered the optimal inputs needed for the proposed rule-based control,
namely, Pod−l, Eob−c, Eopv−c, Eogd−c, Cogd, Pod−l, and Pd−l. Thus, the inputs that yield the
optimal performance for the rule-based control are obtained by solving the optimization
problem, which are then used by the suggested method for peak shaving management
based on rules to generate optimal BES plans.
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Figure 3. Flowchart outlining the proposed Dynamic Home Energy Management System (DHEMS)
method.
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scheme. To address these remaining peaks, we introduce a rule-based OPS control approach 327

utilizing the PSO algorithm presented in the following section. 328

329

4. OPTIMAL PEAK SHAVING (OPS) 330

A residential community system connected to the grid is illustrated in Fig. [1] which 331

shows an OPS proposed for MG connected to a utility grid, utilizing a community-based 332

HEMS architecture. The MG system consists of a PV source, BES, EV and consumer loads. 333

Considering the grid as a power source that can both provide and absorb energy, the power 334

balance equation can be defined at the point of common coupling (PCC) while ignoring the 335

system losses as: 336
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Pgd(t) + Ppv(t) + Pbat(t) + PEV (t) = PLD(t) (9)
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In 9, Pgd denotes utility grid power. Ppv, Pbat, PEV and PLD denote PV, battery, 339
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Note that Pgd is assumed to be the load scheduled output of OLS scheme. Therefore, from 342

now on, the term Pgd will refer to the load scheduled output of OLS that requires peak 343

shaving using the distributed energy resources such as PV, BES and EV. 344

Figure 5. Flowchart outlining the proposed dynamic home energy management system
(DHEMS) method.

5. Simulation Results

The performance of the proposed method for grid-connected PV systems utilizing
BES and EV is evaluated using MATLAB simulations with different load and PV power
patterns to showcase its effectiveness. Table 3b presents the determined and listed optimal
inputs for the control algorithm in each case. After conducting multiple runs of the PSO
algorithm, the summer load profile with higher PV availability yielded the best fitness
value. The optimal peak energy drawn from the utility grid in this case was determined
to be 19.33 kWh, representing the minimum value achieved. Tables 5 and 6 contain the
quantitative and qualitative comparison between the proposed work and the existing work.
In this section, the discussion focuses on the results obtained from the proposed technique
for the two cases.

Table 5. Quantitative comparison between the proposed technique and the existing work.

Parameters PUGP (kW) PPS (%)
Schemes Case 1 Case 2 Case 1 Case 2

Reference [14] 19.1321 23.5445 43.55 30.53
Proposed DHEMS 18.4317 22.6145 49.15 38.12
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Table 6. Qualitative comparison between the proposed technique and the existing work.

Parameter
Reference Literature

Proposed
[13,22,23] [24] [25] [26] [27]

HEMS based Stage NC 1 NC NC NC Dynamic
Demand Limit Fixed Fixed NC Dynamic Dynamic Dynamic
Feed in limit NC NC Dynamic NC Dynamic Dynamic

Electric Vehicle NC NC NC NC NC Considered
Daily management NC Flexible NC NC Flexible Flexible

1 NC = Not Considered.

5.1. Case 1: Summer Load Profile with High PV Energy Availability

Figure 6a illustrates the load demand profile for summer, emphasizing the aug-
mented availability of PV energy during daylight hours. The estimations based on
Pd−l, Eob−c, Eopv−c, Eogd−c, Cogd and Pofd−lm for summer are 18.4317 kW, 122.4544 kWh,
95.7421 kWh, 28.0261 kWh, 0.3 and 2.6009, respectively. The energy available from the
PV system for charging the BES is more than the energy required for charging the BES:
Eopv−c > Eob−c. Consequently, the value of P∗od−lm is not applicable (NA), as presented in
Table 3b. However, the utility grid power is utilized only at the end of the day to restore
the SoC of BES to 50% for daily management.

Figure 6. Case−1 (summer) subplots (a) profiles for load demand and PV power supply, (b) battery’s
charge/discharge schedules, (c) battery’s SoC, (d) EV power, (e) grid power utility.

Referring to Figure 6b, the discharge in minimum demand (DCH-MD) mode of BES
occurs during the time periods of 6–13 and 91–112 TS until the BES state of charge (SOC)
reaches 50%, based on the estimated value of Podem−lm. Since EV is available during these
time slots before the expected departure around t = 60 TS, EV takes up the load during
t = 12–18, 21–25, 28, and 30–39 TS. During the time slots of 42, 45–46, 51–52 and 55–57 TS,
EV charges itself for attaining a sufficient charge before the departure time for work. The
BES takes the charge when PV is sufficient to take up the load at t = 40–60 TS. The EV is
incorporated with a capacity of 140 kWh as two EVs are considered. The EV supports the
peaks occurring before the departure time of 10:00 h while leaving significant charge for
traveling to and coming back from the office. It again participates around 7:00 h for the
peak occurring in evening. The different modes’ optimal charge/discharge schedules for
the battery are illustrated in the Figure 6b. The resulting BES schedules are presented in the
form of SoC in the depicted Figure 6c. Figure 6d shows the EV charge/discharge schedules
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in the available and connected TS. For the proposed scheme, the utility grid demand is
illustrated in Figure 6e, indicating a cap at Pod−l = 18.4317 kW and a limit of 2.6009 kW
for feed-in power. The figure also shows that the proposed scheme achieves 5.6% more
percentage peak shaving (PPS) reduction as compared to the reference scheme [14]. Further
comparison of the parameter values can be found in Table 3b.

5.2. Case 2: Winter Load Profile with Low PV Energy Availability

In this scenario, the load demand profile for winter, with lower PV energy avail-
ability throughout the day, is considered as shown in Figure 7. The values correspond-
ing to Pd−l, Eob−c, Eopv−c, Eogd−c, and Cogd are 22.6445 kW, 111.324 kWh, 43.8495 kWh,
118.6550 kWh and 0.1502, respectively, for winters. The PV energy available to charge the
BES is not sufficient to meet the required energy for charging the battery. However, the
combined energy available from PV and the utility grid is more than enough to charge
the battery, Epv−c ≤ Eb−c&&Egd−c + Epv−c > Eb−c. Therefore, in this case, the values of
P∗od−l and Pofd−lm are not applicable and are marked as NA as shown in Table 3b. Figure 7
shows the estimated Pob−c, DCH-MD, which is the discharging mode that occurs during
the period t = 60–68, 105–119 TS. CH-M1 occurs during t = 1–8, 79–106 TS. The opti-
mal charge/discharge schedules for the BES in the mentioned modes are illustrated in
Figure 7b. The SoC for the resulting BES schedules is depicted in Figure 7c. Figure 7d
shows the EV charge/discharge schedules in the available and connected TS. Figure 7e
reflects the utility grid demand. This indicates that the utility grid demand is constrained
to Pd−lm = 22.5445 kW/TS with no feed-in power available. It is noticeable that the pro-
posed scheme exhibits a 7.59% improvement in PPS reduction as compared to the reference
scheme without EV. The EV supports the peaks occurring before the departure time of
11:00 h while leaving significant charge for traveling to and coming back from the office.
Table 3b provides a detailed comparison of all the parameter values.

Figure 7. Case−2 (winters) subplots (a) profiles for load demand and PV power supply, (b) battery’s
charge/discharge schedules, (c) battery’s SoC, (d) EV power, (e) grid power utility.

5.3. Case 3: Summer Load Profile with a Cloud Gust

Figure 8a illustrates the load demand profile for summer, emphasizing the augmented
availability of PV energy during daylight hours with a gust of cloud that appears suddenly.
The estimations based on Pd−l, Eob−c, Eopv−c, Eogd−c, Cogd and Pofd−lm for summers are
18.4317 kW, 124.6860 kWh, 90.8623 kWh, 28.0261 kWh, 0.3 and 2.6009, respectively. The
simulations are carried out for a special case, where an unexpected event occurs in the form
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of a gust of cloud. The PV which was available during the day time, suddenly disappears.
It can be seen in Figure 8a that during the available hours of PV, it appears to be zero for
about an hour during the TSs of 49 to 54. As can be seen in Figure 8a, the PV is shown
to be zero in these TSs. The results in Figure 8 can be compared with those in Figure 6
for differences. The BES power as shown in Figure 8b starts discharging for taking up
the load due to the unavailability of PV instead of charging as shown in Figure 6b for the
available PV case during some of the TSs in the duration of TSs 49 to 54. The BES SoC in
Figure 8c also attains a reduced value as compared to the case where the cloud gust is not
available. It should be noted down here that the BES SoC does not drop down below its
threshold. Hence, BES can alone take up the load in the absence of PV while preserving
the EV charge so that it is sufficiently charged before the EV departure since our proposed
strategy transfers the energy in the priority of PV first, ESS second and EV last.
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Figure 7. Case-2 (Winters) Subplots (i) Profiles for load demand and PV power supply, (ii)
Battery’s charge/discharge schedules, (iii) Battery’s SoC, (iv) EV power, (v) Grid power utility.

Figure 8. Case-3 (Summers Cloud) Subplots (i) Profiles for load demand and PV power supply,
(ii) Battery’s charge/discharge schedules, (iii) Battery’s SoC, (iv) EV power, (v) Grid power utility.

Figure 8. Case−3 (summer cloud) subplots (a) profiles for load demand and PV power supply,
(b) battery’s charge/discharge schedules, (c) battery’s SoC, (d) EV power, (e) grid power utility.

6. Conclusions

In conclusion, this paper makes several key contributions in the field of community
home energy management systems (HEMSs):

• The concept of an optimal demand response is proposed within the context of a
community home energy management system based on microgrids. The focus is on
incorporating battery storage systems and electric vehicles to enhance the effectiveness
of the demand response strategy.

• A novel approach is presented, introducing a dynamic clustered load scheduling
strategy tailored for grid-connected photovoltaic (PV) systems, incorporating battery
energy storage systems and electric vehicles to effectively manage peak shaving.
Furthermore, a rule-based method is employed to optimize the management process.

• By integrating dynamic demand response and optimal peak shaving strategies, the
system addresses reduces peak utilization grid power (PUGP) that increases grid
stability by reducing reliance on the public grid.

• The experimental results showcase constrained utility grid demand and feed-in pow-
ers across various load demand scenarios and PV power profiles.

• The application of particle swarm optimization (PSO) improves the percentage of
peak removal by an average of 7%, indicating the effectiveness of the proposed
management strategy.
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• Future research can focus on enhancing the shared apartment architecture by conduct-
ing precise and accurate calculations of electric vehicle (EV), battery energy storage
(BES), and photovoltaic (PV) ratings.

• Further investigations can explore the implementation of metaheuristic optimization
techniques, such as crow search (CSA) and hybrid grey wolf algorithm (HGWO),
considering different types and scenarios of EVs, including vehicle-to-grid (V2G), grid
to vehicle (G2V), vehicle-to-everything (V2X) and vehicle-to-vehicle (V2V) operations.

• Exploring these areas in future research will present promising opportunities to
improve the overall performance of HEMS and drive advancements in the field of
energy management systems within community microgrids.
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Nomenclature

DHEMS Dynamic clustered home energy management system.
MG Microgrid.
PAR Peak-to-average ratio.
HEMS Home energy management system.
PUP Power usage pattern.
IBR Inclined block rate.
PV Photovoltaic.
PSO Particle swarm optimization.
AMI Advanced metering infrastructure.
RTP Real time electricity pricing.
CA Controllable appliance.
ATS Activation time slot.
AST Starting time for operation of appliance
ATL Time length of appliance operation.
AET Ending time for operation of appliance.
LCS Lower class.
MCS Middle class.
BES Battery Energy Storage.
SoC State of charge.
PUGP Peak utility grid power.
PPS Percentage peak shaving.
UMCS Upper middle class.
HCS Higher class.
EC Electricity cost.
αak ATS for appliance a of house k.
βak AET for appliance a of house k.
tak ATS for ath appliance of kth house
lak ATL for appliance a of house k.
xak Device rating for ath appliance of kth house
Ak Set of CAs of kth house.
Pak Power consumption profile for appliance a of house k.
pak (τ) Power consumption value for ath device of kth house, during τth time slot.
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τ Time slot.
P Power consumption scheduling matrix of size 80 × 144.
Pscd Power consumption scheduling vector.
Pcc PUP for cluster of community.
λ Penalty factor.
γc A threshold based on count of houses under current community.
pc Power consumption of community being optimized.
rtppc(τ) Real time electricity price of pc.
th PUP set threshold at 2 kWh.
Ch Current community houses set.
Cc CAs current cluster.
µPUP Mean PUP.
Pgd, Egd Utility grid power (kW) and energy (kWh).
PEV, Pb, PPV, PLD EV, battery, PV and load demand powers (kW).
Pfd−lm, Pd−l Feed-in and demand limits of the day (kW).
Eb−c Energy required for charging battery (kWh).
Eb−c−mx Battery maximum charging power (kW).
Epv−c, Egd−c Available utility grid and PV energy for battery charging (kWh).
Eb−dch Dischargeable energy of the battery (kWh).
Eb−dch−mx Maximum battery discharge power (kW).
Ebat−rated Rated energy capacity of battery (kWh).
Cgd Coefficient of utility grid energy to charge the battery.
Eb−dch, Eb−c Discharging and charging power of battery (kW).
SoCa, SoC f Starting and ending SoC of the day.
SoCu, SoCl Upper and lower limits of SoC.
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